Books

Beyond Software Architecture, Luke Hohmann,
Pearson Education, Inc., Boston, MA (2003). 314 pp.
(ISBN 0-201-77594-8).

Luke Hohmann’s interesting book of practical ad-
vice on software projects definitely bears reading. It
is not the book I expected following a quick glance
or even when I began reading. It is not really a book
on the technical aspects of software architecture, nor
is it entirely a book on the management aspects of
software projects. It falls in between these obvious
categories and gives a lot of practical advice on how
projects should be run and how they should not be
run.

The first two chapters start out with fairly high-level
generalities about business plans, product manage-
ment, and quality assurance, but you should not as-
sume the entire book is at that level—there is a good
deal more depth to it than that. The first item that
stuck with me was the box on page 8 labeled “When
you know it’s going to fail.” This box and the sur-
rounding text give some candid advice on when a
project should be abandoned or canceled. The au-
thor properly uses the phrase “resumé-driven design”
to describe the case when the designers’ technical
background leads to poor architectural choices. You
do not usually get this sort of advice in project man-
agement-type books.

Another piece of practical advice I will certainly re-
member is what the author calls “entropy reduction.”
He recognizes that some software projects have to
meet a deadline even though this sometimes forces
you to use some ugly, inelegant, or experimental
code. He simply notes that this code should be care-
fully commented as REDO or even HACK and then
should be replaced soon after version 1.0 ships. He

IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004

0018-8670/04/$5.00 © 2004 IBM

also cautions that this phase of cleanup, or entropy
reduction, must be limited in scope or else you will
suddenly discover that in cleaning up hacks you are
also allowing new features to creep in.

Hohmann introduces the concept of architecture at
both the technical level and the marketing level, and
I think these are useful distinctions. The marketing
team’s architectural view of a product is of necessity
rather different than that of the developer, but this
in no way indicates that the marketing view is shal-
low or simplistic. Rather the marketing view is out-
ward facing and much less concerned with coding
details than with how product features meet the
needs of the market. That said, I wish he had avoided
some rather grating terminology: markitecture and
tarchitecture for the marketing architecture and tech-
nical architecture, respectively.

The chapter on portability challenges some of the
shibboleths of portability, in particular, that you
should write code that will run unchanged on all plat-
forms (the “lowest common denominator”) even
though you may thus forgo certain advantages that
some platforms may provide. The author suggests
that you should not avoid using the powerful fea-
tures of a database or operating system just because
they are not available on another supported oper-
ating system or database. He further notes that “the
only valid business case for creating portable appli-
cations is that you will profit by doing so.” He in fact
is indicating that you should not go to the effort of
making applications portable unless you are sure that
it will help you make money. He encourages you to
consider the costs of supporting multiple platforms

©Copyright 2004 by International Business Machines Corpo-
ration.

Books 617

by making a matrix of all the possible configurations
and reducing that to a tractable number.

Hohmann describes a number of techniques for
building software in accordance with layered archi-
tectures, techniques that I think bear some expan-
sion. His description of spiking between the layers
is probably good advice, but it needs an example to
make is clearer. By spiking, he seems to mean im-
plementing each feature in all layers before imple-
menting the next feature—as opposed to building
all the features at the first layer and then moving on
to the next layer. The other ideas in that chapter are
also quite useful.

Further chapters on branding, usability, installation,
upgrading, configuration, logs, and release manage-
ment provide useful insight into these common prob-
lem areas. The final chapter on security, written with
Ron Lunde, is particularly useful, and every project
manager should read it. It covers authentication,
open and closed systems (such as internal and ex-
ternal e-mail), transaction security, and software se-
curity. The authors point out that a license key sys-
tem is desirable, but you should make sure that the
code you use to test for this key must not be so sim-
ple that it can be “patched around.” They note that
security through obscurity is one of the weakest se-
curity schemes because secrets may and will be
leaked. One of the most persuasive points in this
chapter argues against implementing software back
doors. It is a far better technical and marketing mes-
sage to say that your software is so secure that even
you cannot break in than to say we will help you crack
it if you need to.

Overall, this is a very useful book of advice for any-
one participating in, or managing, a software devel-
opment project, and I recommend it even if your
team has only one member.

James W. Cooper
IBM Thomas J. Watson Research Center
Yorktown Heights, New York

Note—The books reviewed are those the Editor thinks might be

of interest to our readers. The reviews express the opinions of
the reviewers.

618 BoOks IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004

