
WebSphere Portal:
Unified user access
to content, applications
and services

by R. Will
S. Ramaswamy
T. Schaeck

Portals provide end users with unified access
to content, applications, and collaboration
services in a highly personalized manner.
WebSphere Portal provides a middleware
framework and tools for building and
managing portals using component
applications called portlets. In this paper we
provide an overview of WebSphere Portal and
describe its role in modern information
technology systems. We describe its high-
level architecture and main features, we detail
some of its advanced features, and we outline
directions for its future development.

A Web portal, or simply a portal, is a Web site that
offers a broad array of resources and services typ-
ically targeted towards specific categories of user
populations. Portals are rapidly gaining popularity
and widespread adoption because they provide end
users with unified access to applications, content, and
collaboration services. Portals help corporate infor-
mation technology (IT) staff by allowing them to in-
tegrate independently developed applications in a
very cost-effective way. Portals also help site owners
by allowing them to provide a consistent, branded
experience to their user population while retaining
control over individual user experience.

Portals have been around since the rapid adoption
of the Internet started in the early 1990s. Early por-
tals were built using homegrown frameworks and
technologies and were targeted at users that required
a single entry point to the Web. They allowed users
to explicitly search for information or to browse a
catalog. Examples of such portals that are still ac-
tive are Yahoo!**, MSN**, AltaVista**, and Google.

In recent years, many enterprises have recognized
the value of portals for streamlining and increasing
the efficiency of their interactions with their constit-
uencies. Consequently, a number of vendors started
to offer products for building portals for the enter-
prise. The vendors offering such products include
IBM, SAP, Microsoft, BEA, and Oracle.

WebSphere Portal1 represents one of the most com-
prehensive portal frameworks in the industry. It pro-
vides customers with the wide range of tools and run-
time capabilities required to implement advanced
portal solutions. Many of the concepts first conceived
and implemented in WebSphere Portal have been
adopted as industry standards.

The remainder of this paper is organized as follows.
We first explain the basic concepts and capabilities
of WebSphere Portal, describe its operation, and
present a brief overview of its internal structure.
Next, we detail some of its advanced features that
are included in the latest release. Finally, we discuss
some of the newer concepts being explored for pos-
sible inclusion in future releases.

Overview

The WebSphere* software platform is concerned
with three broad areas of functionality: (1) It pro-

�Copyright 2004 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

WILL ET AL. 0018-8670/04/$5.00 © 2004 IBM IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004420

vides access to applications, content, and collabo-
ration services from a variety of devices, (2) it in-
tegrates and automates business processes, and (3)
it builds, connects, and manages applications. Web-
Sphere Portal is primarily focused on the first of these
areas. It is the user-facing component of the plat-
form, and its goal is to extend the “reach” of the plat-
form by making WebSphere-hosted applications, ser-
vices, and processes broadly accessible to any user
on any device. In addition, WebSphere Portal can
leverage IBM�s Lotus*, Tivoli*, and data manage-
ment products in order to provide the breadth and
depth of services necessary for creating full-featured
portal solutions. For example, Lotus collaboration
services can be used to provide portal users with the
ability to collaborate in various ways, Tivoli security
services can be used to secure and manage the por-
tal, and data management products can be used to

provide the various types of storage facilities required
by the portal.

WebSphere Portal operates by aggregating and in-
tegrating presentation from individual units of user
experience (portlets) to create a unified experience
for end users. The framework�s value lies in making
the process of creating and managing the unified
experience simple and yet extremely flexible. Web-
Sphere Portal�s self-service features allow end-us-
ers to personalize and organize their own view of
applications, to manage their own profiles, to share
documents, and to collaborate with their colleagues.
These aspects of WebSphere Portal contribute sig-
nificantly to WebSphere as an on demand comput-
ing platform. Figure 1 illustrates a sample page pro-
duced by WebSphere Portal. This page contains six
portlets laid out in three columns. The three port-

Figure 1 Sample page produced by WebSphere Portal

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004 WILL ET AL. 421

lets in the left column display a welcome message,
a set of bookmarks, and a product synopsis (from
top to bottom). The portlet in the center column dis-
plays a summary of the day�s news. The two portlets
in the right column display a list of stock quotes and
weather information for a list of cities (from top to
bottom). For detailed information on WebSphere
Portal, see Reference 1.

Portal model and portlets. WebSphere Portal op-
eration is based on a model for user experience, the
portal model. The portal framework interprets the
portal model in order to create the portal experi-
ence for end users. The portal model covers aspects
such as the content hierarchy and associated nav-
igation, security settings, user roles, customization
settings, and device capabilities. A portlet is an ap-
plication that underlies a window within a portal Web
page. The portal model includes a scheme for the
aggregation and integration of a set of portlets into
a unified portal experience. For a given set of port-
lets, the portal model provides flexibility in terms of
how they can be used; by changing the portal model
within which they are used, different portal experi-
ences can be obtained. For example, the sample page
in Figure 1 is produced by using a page definition
that specifies a three column layout, the portlets to
be included in each column, and the order in which
they are to be displayed.

Each portlet is an independently developed Web ap-
plication using an extended J2EE** (Java2 Platform,
Enterprise Edition) Web application architecture.2

The extensions to this architecture ensure that mul-
tiple portlets can coexist on a single Web page, that
portlets can be easily customized based on their role
within the portal model, that portlets can work to-
gether to help users accomplish a given task, and that
portlets can be properly rendered for a variety of user
devices. For example, a portlet may create one or
more portlet instances; a weather portlet might have
an instance configured to show the local weather,
while another instance of the portlet on another Web
page of the portal might show the weather in the 10
largest cities of the world.

The portal provides a set of administrative functions
that allow authorized users to collaboratively define
the portal model, including the content hierarchy
(pages, peer pages, nested pages, etc.), the content
layout for each page (the number of columns or ar-
bitrarily nested rows and columns), and the binding
of portlets to specific sections of the page. As each
page is defined, and a portlet is incorporated into

the page, the administrator may identify the users
who can view and modify the page and may specify
the settings for the portlet. For example, the admin-
istrator may specify that only users in the Managers
group can see the Personnel page or that only users
in the Human Resources group can see the Hiring
Projections portlet within the Personnel page. An
important administrative capability is delegation.
When defining pages and layouts, the administrator
may lock down some sections of the portal model
(prohibiting others from altering its content) and may
delegate management rights for remaining sections
of the portal model (such as pages or parts of pages)
to other administrators or even end users. In this way,
a company can centralize control of the content of
some pages or parts of a page, while delegating con-
trol of the content of other pages to regional admin-
istrators within the company. The central adminis-
trator, or any of the regional administrators, can
allow end users to customize pages or parts of pages
according to their own preferences. Finally, an ad-
ministrator or authorized user can specify the pages
or parts of pages that should appear on any given
device. In this way, information that is too “dense”
to display well on some pervasive devices is omitted
when the user accesses the portal from one of these
devices.

After the portal model is defined, further customi-
zation is supported at the portlet level through port-
let modes. WebSphere Portal defines four viewing
modes. The View mode, which is the default mode,
represents the typical view seen by users. The Edit
mode is the view used to set “instance data” for a
portlet instance. In our weather portlet, for exam-
ple, the instance data would be the list of cities for
which the portlet instance is to display the weather.
The Configure mode is the view used by adminis-
trators to set values such as data sources for a port-
let. Finally, the Help mode is the view for users to
receive help information.

Themes and skins. The J2EE JavaServer Pages**
(JSP**)3 technology helps separate the presentation
and the control functions of an application. Web-
Sphere Portal takes this a step further with themes
and skins, which isolate branding and look-and-feel
aspects of the user experience by using a well-de-
fined set of artifacts that include JSPs and CSS (Cas-
cading Style Sheet)4 style classes.

The theme is responsible for rendering all currently
visible parts of the portal model. It determines how
navigation links are to be rendered (for example, us-

WILL ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004422

ing nested tabs or using a tree that expands and col-
lapses), where the actual content of the page is to
be rendered, where logos and other commonly used
links and services (for example, search or book-
marks) are to be surfaced, and what fonts and col-
ors should be used. Skins are responsible for the dec-
oration around individual portlets. Skins can surface
controls for switching portlet modes or window states
and display portlet titles.

Themes and skins are referenced within the portal
model and used appropriately to produce the user
experience. The branding and overall look and feel
of the portal can be changed easily by simply replac-
ing the themes and skins referenced in the portal
model. Portlet programmers are expected to make
use of theme-defined CSS style classes within their
implementations. This allows independently devel-
oped portlets that are visible on the same page to
look as if they were developed by a single team.

Content and documents. Aside from providing ac-
cess to applications, access to content remains an im-
portant function of portals. WebSphere Portal pro-
vides a Web content management capability that
allows users to easily create structured content for
their portal. Structured content is separate from pre-
sentation (a database table row or XML [eXtensible
Markup Language] documents are good models of
structured content).

WebSphere Portal�s content publishing function al-
lows portal users to contribute structured content
by filling in forms and submitting the content. This
content is then stored in a relational database or DB2*
Content Manager5 and is displayed in one or more
portlets. WebSphere Portal provides a great deal of
flexibility as to the content that shows up in a port-
let. Typically each portlet implementation can use
a set of business rules to determine what content to
show within a given instance. For example, one port-
let might show news that is relevant to managers; at
the same time, that same portlet on another page
might show news that is of general interest. Web-
Sphere Portal provides advanced business rules that
allow fine-grained content targeting. For example,
a News portlet might show news targeted to the us-
er�s locality or job responsibility and experience level.

In addition to typical Web content, WebSphere Por-
tal also provides a portal document management ca-
pability. Portal document management provides the
foundation for portal users to collaborate on the pro-

duction and use of documents of various types. Sim-
ple document editors for popular document types
(such as rich text, spreadsheets, and presentations)
are also included with WebSphere Portal. These ed-
itors provide convenient access to basic functions and
are not meant to replace the more sophisticated
stand-alone products.

Another important content-related capability in any
portal is the ability to search for relevant informa-
tion. WebSphere Portal provides advanced search
capabilities, including automatic categorization and
summarization of portal content and documents. It
also allows for the integration of other search tech-
nologies in order to enable federated searches.

High-level architecture
Figure 2 illustrates the high-level architecture of
WebSphere Portal. The portal has two primary ac-
cess protocols: HTTP (HyperText Transfer Protocol)
for client browsers and SOAP (Simple Object Access
Protocol) for remote portlet clients via the Web Ser-
vices for Remote Portlets (WSRP) standard.6,7 For
secure access to the portal, the first step is to verify
the user�s identity. WebSphere Portal uses Web-
Sphere Application Server�s authentication services
to verify the user�s identity. The single sign-on sup-
port allows the user, after logging on, access to all
applications within the realm of the portal. For ap-
plications outside the single sign-on support, Web-
Sphere Portal includes a credential vault (e.g., Tivoli
credential vault) that can be used to store user
sign-on information.

The authorization component determines the per-
missible actions within the portal for an authenti-
cated portal user. It is the single control point within
the portal that controls access to all parts of the por-
tal model, such as pages or portlets. The authori-
zation component is used by various other portal
components—they allow actions on specific re-
sources only if these actions are allowed by the au-
thorization component. For example, the adminis-
trative components use it to determine the pages that
users may customize and the portlets that they may
use. Also, the aggregation module uses it to check
whether the requested content may actually be dis-
played for a given user.

The authorization component in WebSphere Por-
tal supports access control configuration of resource
hierarchies through the concept of permission inher-
itance. This concept reduces the administration ef-

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004 WILL ET AL. 423

fort when controlling access to a large number of
hierarchical portal resources. Inherited permissions
are automatically assembled into roles that can be
assigned to individual users and user groups, grant-
ing them access to entire sets of logically related por-
tal resources. The user-to-role assignments can be
managed within the portal or within external autho-
rization systems (e.g., Tivoli Access Manager).

The portal engine implements aggregation of port-
lets based on the underlying portal model and in-
formation such as security settings, user roles, cus-
tomization settings, and device capabilities. Within
the rendered page, the portal automatically gener-
ates the appropriate set of navigation elements based
on the portal model. Thus, there is no need for the
site administrator to maintain navigation elements
as the site changes and no chance for broken links.

The portal engine invokes portlets as and when re-
quired during the aggregation and uses caching to
reduce the number of requests made to portlets.
WebSphere Portal employs open standards such as
the Java Portlet API8 (application programming in-
terface). It also supports the use of the remote port-
let via the WSRP6,7 standard. The portal allows for
manipulation of requests and responses by support-
ing filters at two levels—servlet filters can be used to
modify requests and responses at the portal engine
level and portlet filters can be used to modify requests
and responses of individual portlets. Portlets run-
ning in the WebSphere Portal environment can uti-
lize a whole host of prebuilt portlet services as well
as custom-built portlet services (described later). For
example, the prebuilt property broker service (again,
described later) can be used for creating brokered
portlet integration.

Figure 2 High-level architecture of WebSphere Portal

Enterprise Data
and Applications

Application Server

EJB

Servlet/JSP

JDBC

JCA

JMS

Security/Caching

Portlet Container
and Services

Portlet API

Credential Vault

Property Broker

Search

Document Management

Content Access

Collaboration

Portal Engine -
Aggregation and
Navigation

Themes and Skins

JSP Tag Library

Authen-
tication

Desktop
and
Mobile
Browsers

Remote
Portlet
Clients

Authorization

HTTP

SOAP

WILL ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004424

The portlet container provides the runtime environ-
ment for portlets. Beyond the capabilities that a serv-
let container provides, such as life-cycle management
and request processing, the portlet container pro-
vides facilities for event handling, interportlet mes-
saging, access to portlet instance and configuration
data, among others. The portlet container is not a
stand-alone entity like the servlet container. As port-
lets are an extension of the servlet programming
model, the portlet container uses servlet container
functions and only adds portlet-specific functionality.

The Portlet API introduced by WebSphere Portal
served as a model for the recently standardized Java
Portlet API. It defines the interfaces and contracts
between the portlet container and portlets. IBM and
Sun Microsystems, Inc. were co-leads in the stan-
dardization of the Java Portlet API. Although many
advanced aspects of the WebSphere Portal Portlet
API are not yet part of the Java standard, it is ex-
pected that these will evolve into standards over time.
In the meantime, WebSphere Portal will support
both proprietary and standard portlet APIs and will
allow interoperability between portlets developed us-
ing either API.

Portlet services are a means of introducing common
functions that can be shared across portlets. Web-
Sphere Portal provides a set of prebuilt services such
as the content access service, the property broker ser-
vice, and the document management service. Addi-
tional custom portlet services can be defined and im-
plemented as necessary. In order to be properly
instantiated, these custom portlet services must be
registered with the portal. Portlet services are ini-
tialized only upon demand. Each portlet service im-
plements a custom interface that portlets can use to
access its function. Note that portlets call into port-
let services during the request processing cycle and
pass in appropriate context for the portlet service to
provide its function. Portlet services do not initiate
calls into portlets.

Advanced features
WebSphere Portal provides many advanced capa-
bilities that are unique in the marketplace. For ex-
ample, independently developed portlets can share
information via the property broker in WebSphere
Portal (described in more detail later). This allows
for low-cost integration in the front end, at the pre-
sentation tier. WebSphere Portal allows a portlet de-
veloper to specify the values that a particular port-
let can produce and the values that a particular

portlet can consume. For example, an application
can return shipping information for a given order,
whereas a second application can return order in-
formation for a given customer. Using tags, APIs, and
administrative functions, these applications can be
wired together so that the orders for a given customer
can be located, and the shipping information for
these orders can be automatically displayed.

Web services and WSRP. Although portlets can use
Web services to implement their function, this re-
quires a significant programming effort. The WSRP
standard simplifies integration of remote applica-
tions and content into a portal via Web services with-
out programming.6,7 WSRP standardizes Web services
at the presentation layer on top of the existing Web
services stack, builds on the existing Web services
standards, and will benefit from additional Web ser-
vices standards efforts (such as the security work now
underway) as they become available.

At its core, the WSRP standard defines pluggable, us-
er-facing, interactive Web services that implement
Web Services Description Language (WSDL)9 inter-
faces and a fixed protocol for processing user inter-
actions and providing presentation fragments suit-
able for mediation and aggregation by portals. WSRP
defines the conventions for publishing, finding, and
binding such services. WSRP permits any compliant
Web service to be plugged into any compliant por-
tal without requiring any service-specific adapters—a
single, generic adapter on the portal end is sufficient.

WebSphere Portal supports the WSRP standard both
from the consumer perspective and the producer per-
spective. In Figure 3, the red box on the right side
of the Internet cloud labeled WSRP depicts the con-
sumer perspective. Given that all WSRP services are
identical, a generic WSRP proxy portlet is used to con-
sume all WSRP services. This generic WSRP proxy
portlet is written to the Java Portlet API (depicted
by the red box labeled Portlet API) and runs in the
portlet container along with other portlets. Portal
administrators can publish any portlets (written to
the Java Portlet API) as WSRP services for use by other
portals, as depicted by the red box labeled WSRP on
the left side of the figure.

Brokered integration. As mentioned earlier, the
portlet container in WebSphere Portal supports in-
terportlet messaging. This can be used to achieve
“front-end” integration—user interactions with one
portlet on the page are reflected in others on the

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004 WILL ET AL. 425

page. For example, a user looks up a sales order in
one portlet. Using interportlet messaging, the cus-
tomer ID field from the sales order is sent to another
portlet on the page; the second portlet uses it to dis-
play customer information relevant to the sales or-
der. We point out, however, that using messaging
directly to achieve front-end integration requires
portlets to be developed using a collaborative de-
velopment process. Furthermore, future changes in
one portlet may cause unexpected behavior in the
other portlet, requiring a collaborative development
process for maintenance as well.

To overcome these drawbacks, we introduce the con-
cept of a brokered front-end integration mechanism
called the property broker. From a historic perspec-
tive, this development can be compared with back-
end integration. The first methods of back-end in-
tegration involved applications exchanging messages,
which meant that the integration logic resided in the
applications themselves and was therefore cumber-
some to track and maintain. Current methods of
back-end integration, however, involve a brokered
architecture where the broker contains all the inte-
gration logic; that is, the applications interact only
with the broker and not with each other.

The property broker relies on portlets being produc-
ers and consumers of typed properties. Portlets can
either register directly as consumers and producers

of properties or indirectly via specific actions that
consume and produce properties. The property
broker facilitates interactions between portlets ei-
ther by allowing the property produced by a portlet
to be consumed by another portlet or by allowing a
property produced by a portlet to trigger an action
on another portlet. The property broker uses the
types associated with properties to determine com-
patibility between properties belonging to different
portlets.

The property broker does not by itself orchestrate
the interactions between portlets. Instead, it allows
portal users to manually direct interactions by pre-
senting them with a means to trigger any of the valid
interactions (Click-To-Action). It also allows portal
administrators to specify the automatic triggering of
interactions with page definitions (cooperative
portlets).

WebSphere Portal Application Integrator. The Web-
Sphere Portal Application Integrator (WPAI)10 pro-
vides rapid integration of business data and associ-
ated functions from popular back-end applications
into WebSphere Portal. We use the term back-end
applications to denote any of the following:

● Enterprise application suites from Siebel, SAP,
PeopleSoft, and so forth.

Figure 3 Java Portlet API (JSR 168) and WSRP employed in WebSphere Portal

Portal

HTTP HTML
WML
VoiceXML
...

Portlet
API

Publish/Find Web Services (SOAP)

UDDI Registry

WSRP

Local
Portlets

WSRP
Services

Application and
Content Providers

Internet/
Intranet

WSRP

Generic
Portlet
Proxy

WILL ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004426

● Relational databases such as IBM DB2, Oracle Da-
tabase 10g, and Microsoft SQL Server.

● Business intelligence applications, such as IBM DB2
OLAP (On-line Analytical Processor) Server, and
SAP Business Warehouse.

● Other applications such as e-mail and Lotus Dom-
ino*, and enterprise solutions such as those pro-
vided by Ariba, Inc. and Documentum, Inc.

WPAI provides support for rapidly creating applica-
tion portlets for back-end applications by using a
template-driven approach. There are two key con-
cepts underlying this approach. The first concept is
the classification of models representing data from
back-end applications into model classes whose
members can be accessed via a common interface.
Model class adapters are created for various back-
end applications that utilize a back-end-specific in-
terface to implement the model-class-specific inter-
face. Examples of model classes are business objects
that correspond to business entities such as sales or-
ders, customer records, employee records, and per-
formance ratings. Other model classes are e-mail,
OLAP cubes, workflow processes, Domino forms and
views, structured content, and document reposito-
ries. The second concept is the development of user
interface templates that implement model-class-spe-
cific patterns of user interactions by using control-
lers and views developed to the associated model-
class interface. An example of a user interface
template is one that allows users to search and
browse through instances of a business object type
by following these steps:

● Use a search input view to enter some search cri-
teria appropriate to the business object type, and
press a button to perform the search.

● View the set of matching business object instances
with only a selected subset of information for each
instance being presented, and select a particular
instance of interest.

● View complete details of the selected business ob-
ject instance.

Application portlets for a model class are now cre-
ated by combining a desired user interface template
for the model class with a desired model obtained
from the appropriate model class adapter. For exam-
ple, an application portlet for the Business Objects
model class may be created by combining a search-
and-browse user interface template for the Business
Objects model class with the SAP sales-order busi-
ness object obtained by using a SAP business-object
adapter. This process is illustrated in Figure 4.

WPAI is shipped with WebSphere Portal and cur-
rently includes support for the business-object model
class (from SAP, Siebel, PeopleSoft, and various da-
tabases) and the Lotus Domino* forms-and-views
model class through appropriate adapters and user
interface templates. It also includes portlet-builder
tools that facilitate the assembly of user interfaces
and models from adapters into the application port-
let. Support for other model classes will be made
available in future versions of WebSphere Portal.

Future work
We discuss here three ideas that might be imple-
mented in future version of WebSphere Portal: dy-
namic assembly, virtual portal, and process portal.

Dynamic assembly. WebSphere Portal is based on
a flexible portal model that is currently set up stat-
ically (for example, by using the administrative func-
tions). In order to support scenarios in which the data
to be presented to the user is determined dynam-
ically (e.g., based on factors external to the system,
on personalization rules, on changing marketing
campaigns, or on user actions), WebSphere Portal
will support the concept of dynamic assembly.

Using this concept, administrators can attach dynam-
ic-assembly transformations to any element in the
portal model. When a dynamic element with an at-
tached transformation is encountered during the ren-
dering of the portal model, the transformation gets
triggered and can dynamically determine the section
of the portal model that lies beneath the dynamic
element. Transformations are provided with a user-
scoped section of the portal model that lies beneath
the dynamic element and may filter the model or add
nodes or entirely new sections. This is illustrated in
Figure 5. The large triangle represents the entire por-
tal model (depicted using a tree structure), and the
dark node in the tree represents a node with which
a dynamic-assembly transformation is associated.
When the node is encountered by the portal frame-
work during rendering, it invokes the associated
transformation, providing as input to the transfor-
mation the subtree at which the dark node is rooted
(depicted by the small triangle enclosed within the
large triangle). The transformation process itself can
choose to modify the subtree in whatever fashion is
deemed to be appropriate, and the modified subtree
is now used in place of the original subtree. This is
depicted in the figure by the three triangles above
the large triangle. For example, dynamic assembly
could be used to determine the set of pages that ap-

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004 WILL ET AL. 427

pear under a given page based on personalization
rules. This would allow the set of navigation options
and content to be tied to user attributes such as sex
or marital status.

Virtual portals. While companies have initially de-
ployed individual portals, the trend is towards con-
solidation of portal installations for better utiliza-
tion of the hardware running portals and for
increased operational efficiency. WebSphere Portal
intends to support virtual portals as first-class enti-
ties in the portal model, which means hosting mul-
tiple logical portals within a single physical portal
installation. Virtual portals enable on demand com-
puting by facilitating the addition and removal of por-
tals. Furthermore, adding portals merely results in
changing the portal model; it does not increase the
footprint of installed code and does not require ad-
ditional runtime resources.

Each virtual portal will have its own URLs (uniform
resource locators), its own subset of users registered
in the overall portal user registry, and its own con-
tent hierarchy and content. Portlets can be shared

Figure 4 Templates and adapters used for rapid creation of portlets

MODEL CLASS ADAPTER 1

MODEL 11

MODEL 1N

MODEL 12
BACK-END
APPLICATION 1

MODEL CLASS ADAPTER M

MODEL M1

MODEL MN

MODEL M2

MODEL M2

UI TEMPLATES FOR MODEL CLASS

UI TEMPLATE 1

UI TEMPLATE 2

UI TEMPLATE N

UI TEMPLATE 3

UI TEMPLATE 3

BACK-END
APPLICATION M

APPLICATION PORTLET = UI TEMPLATE X PLUS MODEL Y FROM ADAPTER Z

MODEL CLASS API

Figure 5 Dynamic assembly transformations

X =

Dynamic node

Dynamic assembly context

User specific topology model

WILL ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004428

between virtual portals. The delegated administra-
tion model described earlier will be extended to sup-
port virtual portals.

Process portal. The process portal capability is in-
tended to enhance the productivity of WebSphere
Portal users by providing support for carrying out
tasks assigned to them. Users will be alerted when
there are tasks waiting for their action via the most
appropriate means to ensure prompt attention. For
example, users may see a flashing alert when access-
ing the portal or receiving a text page. Users have
access to a consolidated list of tasks that are appro-
priately prioritized. On selecting a task, the portal
automatically navigates to the designated page for
performing that task, and users are able to launch
and deal with multiple tasks simultaneously.

With the process portal feature, the portal can be
the single point of interaction for users so they can
seamlessly initiate, monitor, and work with the bus-
iness processes for a given enterprise. When per-
forming nontrivial tasks, a user will often require ad-
ditional input to make decisions. This includes input
not only from other systems but also from other hu-
man beings. Because the portal is designed to be the
single point of access to either of these resources,
it presents an ideal environment for users to perform
process-related tasks.

Summary
WebSphere Portal is a powerful framework for pro-
viding users with a seamless and customized expe-
rience when accessing applications and content from
a wide and disparate set of sources. It supports in-
dustry standards, and through an advanced set of fea-
tures, it reduces the complexity of integrating appli-
cations and content. The WebSphere Portal team
continues to innovate in many areas, including bro-
kered front-end integration, process integration, vir-
tualization, and dynamic assembly.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Yahoo! Inc., Overture
Services, Inc, Microsoft Corporation, or Sun Microsystems, Inc.

Cited references

1. WebSphere Portal for Multiplatforms, IBM Corporation, http://
www.ibm.com/software/genservers/portal/.

2. Java 2 Platform, Enterprise Edition, Sun Microsystems, Inc.,
http://java.sun.com/j2ee).

3. JavaServer Pages Technology, Sun Microsystems, Inc., http://
java.sun.com/products/jsp.

4. Cascading Style Sheets, World Wide Web Consortium (W3C),
http://www.w3.org/Style/CSS).

5. IBM DB2 Content Manager, IBM Corporation, http://www.
ibm.com/software/data/cm.

6. T. Schaeck and R. Thompson, Enabling Interactive, Presen-
tation-Oriented Content Services Through the WSRP Standard,
Organization for the Advancement of Structured Informa-
tion Standards (OASIS) (2003), http://www.oasis-open.org/
committees/download.php/3657/WSRP_paper.html.

7. Web Services for Remote Portlets Specification, Organization
for the Advancement of Structured Information Standards
(OASIS) (2003), http://www.oasis-open.org/committees/
download.php/3343/oasis-200304-wsrp-specification-1.0.pdf.

8. Java Portlet API Specification (JSR 168), Java Community Pro-
cess (JCP), http://www.jcp.org/en/jsr/detail?id�168.

9. Web Services Description Language (WSDL) 1.1, World Wide
Web Consortium (W3C), http://www.w3.org/TR/wsdl.

10. IBM Application Portlet Builder (WPAI), IBM Corporation,
http://www.ibm.com/developerworks/websphere/zones/portal/
catalog/doc/appportletbuilder/ApplicationPortletBuilder_
v410_wsdd.html.

Accepted for publication February 2, 2004.

Robert Will IBM Corporation, 4205 S. Miami Blvd, Durham, NC
27703 (willrc@us.ibm.com). Rob Will, a Distinguished Engineer
in IBM�s Software Group (Lotus Division), is the chief architect
of WebSphere Portal. He received a B.S. degree and an M.S. de-
gree in mathematics from Auburn University in 1979 and 1981,
respectively. Rob has been a member of the WebSphere product
development team since the beginning and has worked also on
both WebSphere Application Server and WebSphere Studio. Most
recently Rob has been working on WebSphere Portal, Web Con-
tent Management, and Document Management. Before Web-
Sphere, Rob worked in software strategy, DCE development,
System/390� Client/Server development, and VM/ESA� devel-
opment.

Shankar Ramaswamy IBM Corporation, 4205 S. Miami Blvd,
Durham, NC 27703 (shankar4@us.ibm.com). Dr. Ramaswamy is
a Senior Technical Staff Member in IBM�s Software Group (Lo-
tus Division) working on WebSphere Portal architecture and de-
velopment tools. He received a B.Sc. degree in electronics from
the University of Delhi in 1987, an M.E. degree in electrical en-
gineering from the Indian Institute of Science in 1991, and a Ph.D.
in electrical and computer engineering from the University of Il-
linois at Urbana-Champaign in 1996. Since graduation, Dr. Ra-
maswamy has worked on several middleware products and tech-
nologies, including DCE/Encina� and WebSphere Application
Server. He is the author of several research papers and patents,
and he has won several academic and professional awards during
his career.

Thomas Schaeck IBM Research and Development Lab Boe-
blingen, Boeblingen, 71032 Germany (schaeck@de.ibm.com). Tho-
mas Schaeck, a Senior Technical Staff Member in Lotus Portal
Development, is the architect for the WebSphere Portal Foun-
dation. In parallel to working on the product architecture for Web-
Sphere Portal, he initiated the Java Portlet API and WSRP stan-
dards and the Apache Pluto and WSRP4J open-source projects
as reference implementations of these standards. He was the first
chair of the OASIS WSRP technical committee and now leads
portal standards activities in IBM.

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004 WILL ET AL. 429

