On demand Web-client
technologies

This paper describes a comprehensive set of
technologies that enables rich interaction
paradigms for Web applications. These
technologies improve the richness of user
interfaces and the responsiveness of user
interactions. Furthermore, they support
disconnected or weakly connected modes of
operation. The technologies can be used in
conjunction with many Web browsers and
client platforms, interacting with a J2EE™
server. The approach is based on projecting
the server-side model-view-controller
paradigm onto the client. This approach is
firmly rooted in the Web paradigm and
proposes a series of incremental extensions.
Most of the described technologies have
been adopted by IBM server (WebSphere®)
and client products.

The World Wide Web has created an incredible
growth environment by making business applications
easy to deploy, manage, and access.! On the basis
of open standards and a ubiquitous browser, enter-
prises have been able to interface their back-end
databases and applications to the Web and create
an environment where employees and customers can
access a variety of applications from anywhere at any
time. The Web successfully promoted hyperlinked
documents, browsing, multimedia, and designer-
quality look and feel. At the same time, Web adop-
tion represented a step back from advanced desk-
top user interaction paradigms. It remained limited
to a request-response paradigm with page-oriented
documents and simple input forms, hindering the de-
velopment of advanced e-business applications. It
also remained limited to a fully connected mode of
operation.

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

0018-8670/04/$5.00 © 2004 IBM

by J. Ponzo R. Konuru
L. D. Hasson A. Purakayastha
J. George R. D. Johnson
G. Thomas J. Colson
O. Gruber R. A. Pollak

Today, customers for WebSphere* want the best of
both the desktop and the Web paradigms. They want
to retain the advantages of the Web, especially its
ubiquity, low total cost of ownership, and strong
back-end data integration. But they also want to re-
gain the pre-Web advantages of desktop applications,
such as rich and responsive user interfaces, standard
widget technologies, and local processing of data.

From its early days, the Web has been evolving to
address this concern. One can see an evolving trend
that utilizes software from the server with a client-
side model-view-controller (MvC) pattern. Orig-
inally, HyperText Markup Language (HTML)? was
simply a view. Rapidly, Dynamic HTML (DHTML)?
added a controller by adding scripting to the HTML
view. More recently, with a move toward eXtensible
Markup Language (XML),* the markup language
may contain not only the view and the controller but
also the model.

XML can be used to enhance the desktop paradigm.
It can endow native applications with the attributes
of Web applications such as back-end data integra-
tion. This approach is adopted by Microsoft Corpo-
ration, with XML underlying both its Internet Ex-
plorer and Office products. Internet Explorer fully
supports XML and scripting, but it actually represents
an extension to a native foundation. The foundation
is a component architecture called Component Ob-

©Copyright 2004 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

PONZO ET AL. 297

ject Model (COM)® combined with a visual embed-
ding framework called ActiveX**.° The Web
browser becomes simply a user-interface skin on an
embedded browser control. The browser control is
capable of rendering Web pages in any traditional
user interface (UI). Conversely, any Web page may
also contain a traditional UI through the ActiveX
framework.

XML can also be used to enhance the Web paradigm.
For example, it can endow Web pages with a page-
local MV C, which translates into richer and more re-
sponsive Uls. By extending the classic Web program-
ming model, such architectures can directly reuse
current infrastructures and tools to develop more ad-
vanced Web applications. Web developers can be-
gin to create Web pages that start to look and feel
like native applications.

Enhancing the desktop paradigm enables the exploi-
tation of the inherent native power of the client for
richer Uls and local operations, while preserving
back-end data integration. Conversely, enhancing the
Web paradigm incorporates such natural advantages
of the Web as low cost of management and good
back-end data integration, while improving user in-
teraction and allowing disconnected operations.

This paper presents a set of technologies that extends
the Web paradigm to enable rich interaction. These
technologies maintain affinity to the open
Web/12EE** (Java 2 Platform, Enterprise Edition)
programming model and leverage the application
and tool investments made in that model. One tech-
nology, which we call the Rich Browser Framework,
extends the J2EE programming model and allows pro-
jecting a page-local MVC into current Web brows-
ers, without requiring plug-ins or applets. Our ex-
tensions delivered from the server to the browser are
rooted in JavaServer Faces,’ truly making Web ap-
plications enjoy qualities of richness and responsive-
ness close to those of native desktop applications.
The Rich Browser Framework technology is now
available through 1BM WebSphere Portal Server and
associated tooling support in IBM WebSphere
Studio.®

For more demanding applications that need local ap-
plication logic or support for disconnection, our Rich
Browser Framework may still fall short because it
relies on markup and scripting technologies. One
possible solution would be to adopt Java** applets
as a client programming model; however, applets
have not been widely accepted in the community.

298 PONZO ET AL

Another possible solution would be to promote a
stand-alone client-server Java programming model
with a new set of application models and tools. In
fact, IBM Workplace Client Technology® was recently
announced. It is based upon the open-source Eclipse
framework and addresses customer requirements
that necessitate a client-side application platform.
The 1BM Workplace Client offers a manageable
client-side infrastructure and exports well-known cli-
ent programming models (based upon J2EE and
Eclipse) and associated tooling. The manageability
of this client at its core is also based upon an open
standard called Open Services Gateway Initiative
(0sGi). "

IBM delivers products, referred to as Extension Ser-
vices for WebSphere Everyplace, that leverage these
open standards in conjunction with the J2EE pro-
gramming model, enabling disconnectable business
logic. The corresponding programming model,
rooted in client-side servlet execution, is outlined in
Reference 11. Although it represents a step forward,
this approach does not yield the richness associated
with a portal-type programming model. Hence, we
propose and describe a technology—which we refer
to as the Disconnected Portal—that extends the ap-
proach. It preserves the server-side programming
model for the view and controller and allows inter-
action with parts of the server-side business logic and
data projected onto a client-side runtime container.
This approach not only results in improved respon-
siveness, but it also preserves the overall MVC pro-
gramming model.

In promoting different technologies to develop ad-
vanced Web applications, we made sure to retain a
seamless experience for end users of those technol-
ogies. Whether Web developers use the Rich
Browser Framework or the Disconnected Portal as
their technology of choice for one application or an-
other, end users still access all their Web applica-
tions through their Web browser, as they always did.
They remain unaware of crossing between different
technologies, except that they now enjoy rich, respon-
sive, and scalable applications.

In this paper, the next section provides an overview
of the MVC projection approach and introduces our
Rich Browser Framework and the Disconnected Por-
tal. The third section outlines the design of our Rich
Browser Framework as an extension to the J2EE pro-
gramming model and illustrates its power with an
example. The fourth section outlines the design and
architecture of the Disconnected Portal. The fifth

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

section discusses related work, followed by the
conclusion.

Overview

In recent years, the needs of Web users have been
evolving. Simple browsing of documents from desk-
top machines is no longer sufficient. Web users are
mobile and intermittently connected. Web applica-
tions are becoming more demanding in regard to the
end-user experience and the scalability or flexibility
of processing data sets. In this section, we introduce
a set of Web-centric technologies that can be added
to Web application servers, effectively moving the
Web experience forward.

Although all customers want a better Web experi-
ence, the price that they are willing to pay for that
experience varies widely. Customers have varied de-
ployment, security, resource, and application re-
quirements with different priorities. Some absolutely
do not want any additional client footprint because
of perceived increased management costs. Some may
tolerate a managed-client footprint but want to pre-
serve the Web application investment already made.
The technologies we discuss here offer a spectrum
of approaches, flexible and adaptable to different
environments.

This approach allows developers to adapt to thin or
thick clients, ranging from small pervasive devices
up to high-end desktops or laptops. We embrace and
extend the programming models of both the IBM
WebSphere Application Server'? and 1BM Web-
Sphere Portal Server,® thereby fully leveraging ex-
isting Web skills, tools, and infrastructures. Our ap-
proach combines server-side extensions with client-
side runtime support, allowing developers to choose
the appropriate degree of application partition be-
tween client and server sides. This degree of parti-
tion has two main components: the Rich Browser
Framework and the Disconnected Portal.

The Rich Browser Framework targets scenarios
where enhancing the existing Web browser experi-
ence is desirable, without requiring the installation
of amanaged client-side runtime. The impact of the
Rich Browser Framework on traditional Web appli-
cations is depicted in Figure 1. The top part of the
figure shows the current design of a Web applica-
tion in a portal server. When a user accesses a Web
page without the Rich Browser Framework, markup
from each portlet " configured for that Web page is

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

aggregated by the portal server and returned to the
browser. Unless advanced DHTML programming is
used by individual portlet developers, the user in-
teractions with the page results in round trips to the
server, especially if the page contains tables and
forms. Interactions such as sorting, input validation,
or incremental display of choices typically result in
round trips to the server.

As shown in the lower part of Figure 1, the Rich
Browser Framework allows a client-side page-local
MVC to be projected from the server, based on XML,
HTML, and JavaScript. This is a step forward from
straight DHTML, as DHTML was a step forward from
HTML. Although DHTML certainly allows a richer and
more responsive user experience, it remains a com-
plex technology and suffers from lack of a data model.
In the Rich Browser Framework, page markup con-
sists of a full browser-local MVC, containing a data
model for multiple page-local views and controllers
to render. Updates made to one view are instanta-
neously visible in other views. Furthermore, views
have APIs (application programming interfaces) and
may interoperate directly, offering, for instance, co-
ordinated navigation based on the current selection.

In order to make this approach an easy-to-use end-
to-end solution, the Rich Browser Framework en-
hances the server-side technology called JavaServer
Faces (JSF).” JSF can be thought of as a way to for-
malize known patterns that have existed for a while
in the JSP** (JavaServer Pages**) world and that in-
troduce a strong focus on the creation of solid and
maintainable Ul front ends. In particular, JSF defines
a component architecture and a true life cycle of
these components. Components export markup to
the client and import client data back to the server.
However, JSF does not define what type of markup
should be emitted, how the data coming back should
be packaged, or even what the data should contain.

The Rich Browser Framework extends JSF by defin-
ing a client-side page-local MVC. Technically, this ex-
tension only requires DHTML from the Web browser
and fits the overall JSP/JSF programming model. The
generated Web page is XML-based, leveraging
XHTML? rendering, XML data models, and advanced
JavaScript controllers. The solution is ubiquitous
across modern Web browsers and hosting plat-
forms—no browser plug-ins or Java applets are
needed.

But this approach can only go so far. Some custom-
ers may need enhanced function requiring client-side

PONZO ET AL. 299

Figure 1 Impact of the Rich Browser Framework. In A, almost all user actions result in server round trips. In B, many actions
are locally serviced with incremental data refresh.
A SERVLET PORTLET
REQUEST/ REQUEST/
RESPONSE RESPONSE
BROWSER
WITH NETWORK
ORDINARY HTTP REQUEST N . J CONNECTOR
MARKUP v PR g ¢ > N
" HTTP RESPONSE b TLET NETWORKED
OR BACK-END
DATA/PROCESS
WEB APPLICATION PORTAL
SERVER SERVER SERVER
B SERVLET PORTLET
REQUEST/ REQUEST/
RESPONSE RESPONSE
BROWSER
WITH RRGEEQUEST > NETWORK
PAGE- p — CONNECTOR
LOCAL " HTTP RESPONSE >
MVC -
< P NETWORKED
WEB SERVICES OR BACK-END
COMMUNICATION DATA/PROCESS
WEB APPLICATION PORTAL
SERVER SERVER SERVER

business logic and data. These customers are willing
to accept the need to download a managed client
platform. Furthermore, these customers want to use
the advanced programming model associated with
Web page aggregation while running this managed
client platform disconnected. The point is that Web
developers can continue to leverage their experience
and Web skills and continue using their familiar tools.
The Disconnected Portal technology addresses this
set of users. Disconnected Portal consists of a client-
side portal runtime container built as a component
on a client platform that supports a portlet program-
ming model with facilities for data caching and syn-
chronization. It further extends the server-side pro-
gramming model with client-side aggregation of Web
applications. The Disconnected Portal maintains a
low total cost of ownership by leveraging applica-
tion life-cycle management and synchronization
techniques defined by the 0OSGi alliance ' and oMA
DataSync' (formerly SyncML) respectively.

The impact of the Disconnected Portal is depicted

in Figure 2. End users still use their local browser
to access their aggregated Web applications. How-

300 PoNzo ET AL

ever, all or parts of those aggregated Web applica-
tions now run on their client machines, collocated
with their browsers. We have shortened the connec-
tion length and thereby improved response time.
Combined with the technology of the Rich Browser
Framework, truly rich and responsive applications
can be built. Additionally, because local portlets can
be deployed along with business data on the client
platform, the approach can support a richer discon-
nected mode of operation than that afforded by lo-
cal view or controller. The local business data are
a projection of the server-side business data. Ad-
vanced replication techniques are used.

Rich Browser Framework

The Rich Browser Framework extends the server-
side programming model. It leverages the emerging
JSF technology that is being widely adopted, extend-
ing it to allow the authoring of advanced Web pages
that provide a rich and responsive user experience.
In this section, we first discuss JSF technology and
then introduce our extensions to it, illustrated with
an example.

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

Figure 2 Impact of the Disconnected Portal. In A, today's portlets are shown. In B, tomorrow's disconnected portlets are

shown.
A SERVLET PORTLET
REQUEST/ REQUEST/
RESPONSE RESPONSE

HTTP REQUEST

A

NETWORK
> —) CONNECTOR
HTTP RESPONSE it -t
NETWORKED
BROWSER OR BACK-END
DATA/PROCESS

WEB APPLICATION PORTAL
SERVER SERVER SERVER
B DISCONNECTABLE
PORTLET
HTTP SERVLET PORTLET
REQUEST/ REQUEST/ REQUEST/ LOCAL DATA REMOTE
RESPONSE ~ RESPONSE RESPONSE MODEL DATA MODEL
LOCAL-STORAGE .
CONNECTOR
< :i — «—
A <+ o -
CACHED
BROWSER DATA
LOCAL LOCAL LOCAL
WEB APPLICATION ~ PORTAL SYNCHRONIZATION OF DATA MODELS SYNCHRONIEES
SERVER SERVER SERVER PLUG-INS

Extending JavaServer Faces. Most Web applica-
tions are form-based applications and are comprised
of one or more HTML pages. Typically, Web appli-
cations are structured around an MVC paradigm:
JSPs'® host view logic, and servlets provide control-
ler logic, whereas JavaBeans™* and Enterprise Java-
Beans™* (EJB**) contain the application data model.
JSps provide application developers with a program-
ming interface for in-lining and dynamically gener-
ating HTML markup via custom Java logic or via a
JSP custom tag library.

Although JSPs provide adequate support for dynam-
ically generating HTML markup, there is no server-
side infrastructure to help manage the states of UI
components. Indeed, JSPs dynamically generate and
emit markup without preserving the association be-
tween the markup and the code that produced it. This
generation enables a relatively simple and central-
ized programming model but exhibits non-optimal

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

(e.g., OVER SyncML)

responsiveness when compared with form-based
Web pages, where the state is actually posted back
to the server for validation and processing.

JSF addresses this problem and simplifies the build-
ing of user interfaces. JSF allows Web developers to
assemble reusable Ul components in a page, connect
these components to an application data source, and
connect client-generated events to server-side event
handlers. JSF remains a server-side technology, help-
ing to handle the complexity of the UI by introduc-
ing a server-side framework. JSF is most easily de-
ployed using a custom JSP tag library.

When a Web page with JSP tags is processed to an-
swer a page request, the JSF custom tags do two
things. First, like any custom tags, they generate
HTML markup within the outgoing Web page. Sec-
ond, they generate a tree of Ul components for that
page. The tree is built and stored server-side. The

PONZO ET AL. 301

tree retains the states of the UI components. For
form-based pages, the browser will post back the
form values (new or modified), and the JSF frame-
work will be able to remap those values to their cor-
responding UI components. Each component can
then validate its new value and accordingly update
the server-side application data model.

Although JSF facilitates the server-side handling of
complex Uls, it does not inherently improve the rich-
ness or the responsiveness of Web applications. Un-
der these circumstances the Rich Browser Frame-
work steps in. We introduce the simple idea of
projecting a page-local MVC to the Web browser, al-
lowing most of the interactions to remain local, and
thus avoiding round trips. First, this idea requires
the ability to define server-side a page-local data
model at the server that will be sent to the client side
along with the Web page. Second, this idea also re-
quires late-binding UI components that can bind on
the client side with the page-local model as opposed
to the server-side data model.

JSF is a perfect foundation for projecting a page-
local MvC. The page-local data model is introduced
through a custom UI component that is supported
by a custom tag in JSP. The tag refers to a model ex-
pressed at design time and a data source to which
it applies. In WebSphere Studio, the WebSphere
tooling platform, the Web developer creates a data
model using Service Data Objects (SDOs). ' SDOs use
a data access model based on the publicly available
eCore framework in Eclipse!” and follow an entity-
relationship paradigm. Through sSDOs, Web devel-
opers can access different data sources such as re-
lational databases, XML stores, or even JavaBeans.

Thus, when a Web page with JSF model custom tags
is processed, the model definition that appears in the
custom tag is applied to the referenced data source,
thereby generating the page-local data model. The
data model is inserted in the outgoing page markup
stream. The data model is emitted by producing
JavaScript code, which, when executed in the
browser, creates the data model as JavaScript ob-
jects. We have a JavaScript implementation of the
SDO API, called JavaScript Service Data Object
(JSDO), that allows JavaScript code in the page to
access and manipulate the created data model. The
JavaScript library for JSDO is very small, just over
100 KB. It is downloaded once and then cached by
the Web browser.

302 PONZO ET AL

JSDO is the API used by late-binding Ul components
to bind the client side to the data model. Normal JSF
UI components bind to the server-side data model
when the JsP is evaluated. Therefore, the emitted
HTML tags contain the value they render. For in-
stance, an HTML input tag would contain the actual
fragments of text (e.g. “45.00”) that the tag is ex-
pected to consume. Late-binding UI components in
contrast emit HTML tags containing only a reference
in the page-level data model. The emitted HTML tags
are associated with JavaScript logic called a binder.
That binder, hooking the Web browser on-data-
change event, will establish a “pub-sub” (i.e., publish-
subscribe) relationship between its HTML tag and the
data model through the JSDO APL

Updates to the data model are detected and recorded
through the JSDO API. Only the modified values are
sent back to the server. Through the normal JSF han-
dling of Web browser forms, the modified values
make their way back to the server-side UI compo-
nent that created the data model. The modified val-
ues are then processed on the server side, and the
application data model is updated accordingly. The
validation process follows the normal JSF steps, al-
lowing user-defined validations.

With this approach, programmers no longer need
to look at a model through individual UT components
and how they individually map to the server-side data
model. The data model is defined once, as a whole
for each page, at design time. The model is consis-
tent, and its consistency is enforced through the JISDO
API that enables the view logic to be applied, includ-
ing type-checking values, range-checking values, and
referential integrity for relationships between
entities.

Currently, all standard JSF UI components and reg-
ular HTML tags are supported. We also provide an
additional set of powerful UI components, such as
DataGrid, TreeView, WebService, Flash-Based
GraphDraw, and TabPanel. The power of late bind-
ing in a page-local data model can be illustrated
through the DataGrid component. Our data grid is
able to perform common operations, such as paging
or sorting, without round trips to the server to re-
fresh the page. Furthermore, because the data model
is page-local and therefore shared across UI com-
ponents, updates made through one UI component
are immediately visible in other UI components. In
other words, the end user experiences a seamless
MVC experience across Ul components in the page,
without round trips to refresh the page as a whole.

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

Figure 3 A portfolio example

Matket Price : 97.51
019 (-0.19%)
4371600

Change :

Volume :

S all Users i
= [Spierre Jackson Py])0111'0110 1
L ﬂ P1 portfolio 1
= [=wiliam Wenders
+] ww partfalio 1 [ttem][symbol || Quantity || PricePaid || Base ¥alue |[cumentPrice || Cument¥alue |[Gains/Losses |
W portfolio 2 u 18t 1,000 US$61.85 US$61,850.00 US$122.83 US$123,830.00 US$61,980,00
O SUNW 133 US$12.65 US$1,682.45 Us$5.61 Us$746.13 Us$-936.32
m] sUNW 400 US$1.95 Us$780.00 Us$s.61 US$2,244.00 US$1,464.00
| YHOO 175 Us$12.41 US$2,171.75 Us$49.91 Us$8,734.25 US$6,562,50
(| SUNW 100 Us$2.55 Us$255.00 Us$s.61 Us$561.00 US4$306.00
Page 1of 2 Ld|L]) Jump to page: EI
Stock Symbol : [IBM | —— .
Previous | |12 | [Finish |
Symbol: IBM

stocks

<4

M BM: $123830
SUNW: §746.13

0 SUNWY: $2244
YHOO: $8734.25

B SUNwWY: $561

W MSFT: $8637.5
YHOO: $14973

M BM:$61915
AMZN: §21675

Additionally, by defining a programmatic JavaScript
interface to these UI components, Web developers
can integrate different Ul components through page-
local events, again without any round trips.

The programmatic interfaces to these Ul components
also allow integrating components developed in var-
ious other technologies. In fact, any Web browser
technology that can call in JavaScript can easily be
made to participate in two ways: interoperating with
other UI components in the page or manipulating
the shared page-local data model. For instance, one
can write a Java applet, a Flash control, an SVG (scal-
able vector graphics) control, an ActiveX control,
or a browser plug-in and make it play in the page
as a first-class citizen.

Examples. Consider a stock portfolio application
(Figure 3) where the user can select one portfolio

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

from among several for display, select a stock, and
retrieve its current price by using a Web service. The
Ul for this application is also shown in Figure 3. (Note
that the names in the figures are fictitious. Any re-
semblance to names used in other contexts is coin-
cidental and not intended by the authors.)

When the user selects a portfolio using the TreeView,
the stock positions for that portfolio are displayed
in the DataGrid. When the user selects a position
in the DataGrid, the stock symbol is copied to the
details form. When the user clicks on the “Fetch
Info” button, a Web service is called, and the results
are populated as output text elements below the in-
put field. All of this happens without a page refresh
and without going back to the server (except for the
Web service call). The complete data set, all the con-
trols, and their full set of interactions have been pro-
jected on the client side in the Web browser, and

PONZO ET AL. 303

Figure 4 Data model for the portfolio example application

User
Root
- +_Users_ | [® got RefNum() : int +_U
TN 1 A g get_LastName() : String i
Root() ' .
- get_Id() : String
L ’ ’ A get_Portfolios() : ArrayList
+ U 1
Portfolio
0..n
& _Name : Strin
— 9 #_Portfolios
A Portfolio() Position
0..n
+ P 1 & _RefNum : Integer <>
0..n | @ _Price : Float
+_Positions | '@ Quantity : Integer
0..n
® Pposition()
Stock
@ _Symbol : String
@ _CurrentPrice : float
+_Stocks | |@ _Volume : long +8
¢ _Change : float
0..n 1
+_PlaceHolderStock N get(PropertyName : String) : String
A g set(PropertyName : String, PropertyValue : String)
T 11 stock()

are all managed autonomously by the client-side MVC
framework. The application is backed with the data
model shown in Figure 4. The root contains a list of
users and stocks and a placeholder stock object.
Users own portfolios, portfolios own positions, and
positions point to stocks.

All the UI components on the page (the TreeView,
the DataGrid, the individual input and output fields,
and the invisible Web service) are mapped in var-
ious ways to this model. The model is created on the
server side when the page is generated and popu-
lated within the browser as the page is displayed. For

304 PONZO ET AL

this example, we focus on how the various data el-
ements are bound between Ul components and how
events flow from one to the other.

Figure 5 shows the data model bindings for various
UI components for the portfolio example. The ar-
rows represent data model bindings. We show a set
of controls mapped to the data model, namely, the
inputs and outputs of the Web service, the input-text
and output-text fields of the form, and the high-
lighted row in the DataGrid control. Each control
is independently mapped to the model. This map-
ping provides a simple developer view of control-to-

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

Figure 5 Control-to-model relationships for the portfolio application

Model
Root: R
Stock: PlaceHolderStock
#l Long : Volume N
#l Float : Change B4
#l Float : Current Price M+
»M String: Symbol N

[Tree Panel Full Panel

DAl Users
© =t pienrs Jackson

William Wenders: WW poruolio 1

Symbol I

Price

1 Quantity

120.85

100

+ P portfolio 1
QL"LD portfolio “-PI\ ner... I

=

40.32

250

O YHOO N 1241 300
~,
~,
v N
v S
/7 ~Q
Y/ ~
,// 4 Precious Pigjsh |
4 ~. i
0 ~o Web Service
S/ SN I
-/ n:
3ri1ph Panel i ’/ S .
I |[WebServices Panel ’II / .. String: Symbol
—pEStock Symbol:| // ‘_____Eeﬁ:lll_nfo L > —
Pommmmre e NS SR i e e T I Out:

L >m Symbol: -- - - - ——— String: Symbol o——
le——p W Market Price: 0.0 <4— - - - - - Float : Current Price B——
e Change: 0 == - - - - - Float : Change —_—
L0 Volume: 0 4— - - - - - Long : Volume —_—

model relationships but affords a complex interac-
tion between controls. The model acts as a hub to
receive and dispatch data change events to subscrib-
ers. If a control makes a change to some data ele-
ment, immediately the model will forward this data-
change event to the other controls subscribing to the
same data element. Those control-to-data relation-
ships create virtual control-to-control relationships.
When a row is highlighted in the DataGrid, it ap-
pears as though a value was copied to the destina-
tion input text, output text, and Web service input
field. When the Web service is invoked, its output
values are copied into the output-text fields of the
form. Effectively, a virtual, programmatic drag and
drop occurs. The dashed red arrows indicate those
virtual relationships that exist implicitly based on sim-
ple control-to-model bindings.

Projecting a server-side MVC-based application onto
the browser and retaining the full formality of that
model once on the browser enables a new breed of
Web pages that contain more interactions and bet-
ter performance than traditional Web pages.

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

Disconnected Portal

The Disconnected Portal technology complements
the Rich Browser Framework. Whereas the Rich
Browser Framework promotes the concept of a page-
level MvC for Web applications, the Disconnected
Portal allows aggregation of local portlets that work
in conjunction with projections of the full server-side
MVC onto client machines. This aggregation is
achieved through deploying portlets and replicating
business data. We first discuss how to make the tran-
sition from a pure server-side architecture to a client-
server one. We then detail the programming model
and data synchronization framework. We finish with
an implementation summary and status.

Architecture and design. Most Web applications, in-
cluding portlets, use server-side business logic and
data. Upon a page request, the IBM WebSphere Por-
tal Server invokes individual portlets to generate
markup that it will aggregate into one HTML page.
To generate its markup, each portlet requests data
from various back ends using logical mediators. We
use the term mediator here to refer to a component

PONZO ET AL. 305

that communicates with a back end and exports a
potentially transformed data format or model that
may be different from that of the back-end data for-
mat. When a client is weakly connected or discon-
nected, this approach may be inadequate because
the server-side Web applications, depending on their
needs, can no longer be accessed from a Web
browser. Disconnected Portal allows the aggregation
of views in the context of autonomous and discon-
nected operations on client machines. It does so by
introducing a client-side Web (portal) container that
can aggregate local portlets. These portlets can in-
teract with local instances of the server-side MVC ap-
plication. Disconnected Portal can also utilize me-
diation mechanisms to synchronize the cached data
with back-end data sources. One key element of the
Disconnected Portal approach that contrasts with cli-
ent-centric approaches is its J2EE programming
model affinity. Ideally, local portlets in conjunction
with local business logic run in the client-side con-
tainer with little or no changes.

For instance, consider a simple e-mail portlet as a
candidate for disconnection. On the server side, the
portlet uses a JDBC** (Java Database Connectivity)
mediator to access its e-mail database. The code can
run as-is on Disconnected Portal, using a local da-
tabase into which the end-user e-mails have been rep-
licated. This assumes that the client machine has a
local database and a JDBC mediator.

The preceding example illustrates the best-case sce-
nario, in which the server-side business logic and cor-
responding portlets run as-is on the client. For many
reasons, the business logic and corresponding port-
lets may have to be somewhat modified to run lo-
cally. The local business logic and corresponding
portlet need to allow for flexible specification of the
local dataset as a configurable parameter. In addi-
tion, the portlet may have to interact with the user
in response to synchronization events such as fail-
ures or conflicts. Furthermore, sometimes the client-
side dataset will have a different (reduced) schema
or a slightly different mediator interface. Neverthe-
less, even if modifications are necessary, substantial
affinity is preserved. The same programming lan-
guage isused (Java), the same runtime container for
business logic (e.g., EJB) and view/controller pairs
(portlet containers) are used, substantial reuse of ap-
plication code is likely, similar mediators are likely,
and the overall data schema will bear many
similarities.

306 PoNzO ET AL

The above affinity principle led us to the architec-
ture depicted in Figure 6. The overall system works
in two modes for each Web application (portlet),
connected and disconnected. In the connected mode,
a Web application uses solely its server-side logic and
data, expressed as portlets leveraging mediators.
Portlet markups are aggregated on the server side.
In disconnected mode, a Web application solely uses
its client-side logic and data in conjunction with cor-
responding local business logic and data. The Web
browser is simply redirected to the local client por-
tal, where the client-side portlets execute the act of
accessing local data through local mediators. Port-
let markups are now aggregated on the client side.

The purpose of the rest of the infrastructure is to
effectively enable the notion of local portlets in con-
junction with local business logic and data and the
management thereof. The application management
system facilitates business logic, data, and portlet
code download and deployment. The base platform
management system facilitates updates to the under-
lying platform itself, which includes business logic
containers as well as the Disconnected Portal con-
tainer. The client and the server synchronization
agents coordinate to materialize and keep data syn-
chronized on each node. The synchronization agents
may also be used to manage replication of portal user
configuration data such as preferences and creden-
tials. Off-line operations such as transactions are sup-
ported by a local persistent message queue that is
coordinated with a message gateway interfacing to
various transactional back ends.

This client-server infrastructure has two major goals:
ease of management and deployment, and accom-
modation of data source heterogeneity. By extend-
ing the portlet programming model to clients and
by requiring a client-side footprint, however small
it may be, the relative zero-management attribute
of the Web paradigm is compromised. It is there-
fore critically important to base the client-side in-
frastructure on platforms amenable to overall ease
of management. The scope of management includes
life-cycle management of both platform and appli-
cation code, as well as management of configuration
data.

Accommodating data source heterogeneity is also
crucial because business logic and the correspond-
ing portlets could potentially obtain their data from
a multiplicity of data sources. These data sources
could include databases, Web services, files, and
many others. The data from these sources must be

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

Figure 6 The Disconnected Portal system architecture

Enterprise Portal Server

Network Back-end Specific Mediator

Connected Remote
Operations (HTTP
to Server)

Portlet N
I . l

Back-end

HTTP Client | Data and/
(e.g., browser) Business
Application Management User Management Logic
Systems and Configuration
»
Disconnected or Server
Locally Connected Synchronllzatlon <
Operations (HTTP to Portlet Download Intermediary Back-end Specific Connector
Portal Appliance) and Deployment
Synchronization Transactions
v and Configuration +
Managed Portal Appliance Updates
Base Platform
Local < Management
Portlet System
Local
Mediator
Local Transaction . Message
Dataand |4+ Queue > Gateway T
Business
Logi8 Client
<4— Synchronization g
Agent

hoarded, that is, prefetched in anticipation of their
use during disconnected operation. The hoarding in-
frastructure has to make it easy to create the data
that need to be replicated across heterogeneous
back-end data sources. One part of the challenge is
to target client portal containers with a limited set
of mediators. The following subsection discusses cer-
tain key aspects of the Disconnected Portal and cor-
responding data architecture, including the program-
ming model and data synchronization, and also
discusses user experience issues by means of an
example.

Programming model. The Disconnected Portal es-
pouses a distributed MVC model of programming
(Figure 7) in which the different MVC instances are
loosely coupled and only interact through changes
they introduce to external data. Consider the MVC

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

of the connected portlet. The view is often materi-
alized as JSPs; the controller is Java code (servlets)
that coordinates application flow. The model is of-
ten realized as JavaBeans or SDOs, providing a source-
independent abstract view of data. The actual back-
end business data for a portlet can be data sources
such as databases or Web services that are accessed
by mediators or connectors. The back-end data can
actually be further abstracted by business logic en-
capsulated in EJBs.

The disconnected MVC is the same as the connected
MVC, except that the client-side portlet uses a local
connector or mediator to access locally cached data
and corresponding business logic. If the API for the
local mediator is identical to the connected medi-
ator, then there is often no change to the portlet code.
In some cases, programming the local portlet is not

PONZO ET AL. 307

Figure 7 Loosely coupled MVC model disconnected portlets

The Disconnected Portlet

c2 V2 JSP
Create(), t
get() /set() get()/set()
M2
r' 3
(Bean or SDO)
v
Local
Connector
F 3
Data Store
Calls Only
v
Local Data
or Business

Logic

straightforward because the local mediator API may
have a different form and semantics than the con-
nected mediator (e.g., one for a Web service). When
the data in the connected mode assume existence of
a business logic layer such as an EJB, the data in the
local disconnected mode require a local EJB, which
in turn accesses local data such as a client-side da-
tabase. In addition, the portlet author may need to
implement a few additional functions, such as a spec-
ification of the actual data needed by the view layer
and a potential mechanism for resolution of conflicts
if that data (or the corresponding business data) can
be modified simultaneously somewhere else. For
many portlets though, this may be drastically sim-
plified by tooling or system policies.

The disconnected and connected instances of the
portlet are loosely coupled. They are not required
to be coordinated at the time of program execution.
The connected and disconnected versions may only
affect each other via the corresponding back-end bus-
iness data that are affected by their manipulation of
view data. Any changes that collide at the business
data layer may be reconciled through the synchro-

308 Ponzo ET AL

Synchronization
Framework

The Connected Portlet

c1 iVl JSP
(g:éfst?s(gt'() getllie
M1
a
(Bean or SDO)

v
Local or Network
Connector

' N

Data Store Calls,
Web Service Calls
or Application Calls
(e.g., SAP)

External Data,
Process, or Layers

Gl
of Business Logic

nization framework or by some other means, such
as a dominance policy whereby one node is consid-
ered a master and the other a slave. Other policies
can easily be imagined as well.

Data synchronization. One form of delivering data
for Disconnected Portal is data synchronization. A
challenging problem in synchronizing data is that of
data heterogeneity. Some synchronization solutions
exist for specific back-end data types such as rela-
tional, file, and calendar data. Employing individual
solutions for individual data types does not scale as
diversity in data types increases. Moreover, a num-
ber of existing solutions (e.g., DB2* Everyplace Sync
Server'® and Lotus Domino* ') are difficult to sim-
ply “plug in” because of various assumptions made,
such as schema-level data conformance, lack of pro-
grammatic control from applications, and relatively
high management overhead.

The synchronization architecture (Figure 8) is cen-
tered on the notion of structured data objects, which
abstract back-end data and are populated and main-
tained by means of disconnectable mediators. In turn,

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

Figure 8 Synchronization architecture for Disconnected Portal

DISCONNECTED CONNECTED
PORTLET PORTLET
FILE
S / SYSTEM
FILE
P — MEDIATOR
MEDIATOR WEB

/ SERVICES

SERVICE
DATA OBJECTS

SERVER / WEB

SYNCHRONIZATION
> GENT === SERVICES

CLIENT
SYNCHRONIZATION

F 3
y

AGENT MEDIATOR
- | 1 1 1 | /DATABASE
DATA BASE
MEDIATOR

>
OCAL
ACHE

S

APPLICATION
SYNCHRONIZATION

PLUG-INS

portlets create local data representations of these
structured data objects using local mediators. One
example of a structured data object is the SDO that
was referenced earlier. Portlets are able to register
synchronization plug-ins with a server synchroniza-
tion agent that executes the plug-ins to create a set
of structured data objects on the client. Disconnected
Portal uses either the same or a similar mediator API
to operate on locally cached SDOs. During replica-
tion, the modifications to SDOs are captured and rec-
onciled with changes made to the back end. The ap-
plication-supplied synchronization plug-in may again
be invoked for managing conflict resolution. Stan-
dard synchronization protocols such as OMA Data
Sync (formerly SyncML) can be used to encapsulate
and manage the exchange of SDOs between the server
and client agents.

Example. By facilitating portlet aggregation on the
client and by providing a first-class portlet container,
we were able to maintain the same look and feel of
the connected portlet view and the same function of
the connected portlet controller. In the general case
however, it is not possible to completely abstract the
distinction between connected and disconnected
modes. For instance, because the local data store may

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

have limitations, end users may perceive a lack of
data availability during disconnection.

The limitations of disconnected mode impose ad-
ditional demands on the users’ knowledge of discon-
nected operation and their ability to handle discon-
nection-related tasks; for example, some portlet
function may be disabled in the disconnected mode.
Furthermore, for some portlets we expect the user
to specify what data should be collected for use lo-
cally in preparation for disconnection because it is
impossible in the general case for the system to au-
tomate that task. In some cases, the user also has to
take explicit action to initiate disconnection of port-
lets and data before actually being disconnected. This
action has effects on how local data delivery, local
business logic, and local portlets operate because the
View/Controller ongoing replication can be user-di-
rected or transparent upon detection of network con-
nection. Another demand placed on the user is
caused by dealing with potential data synchroniza-
tion conflicts. Nevertheless, our approach, illustrated
by the following example, enables and promotes a
strong linkage between connected and disconnected
modes of operations.

PONZO ET AL. 309

Figure 9 Example of field worker portlet running on the server-side portal

Welcome !

WebSphere Portal ;5' P

Disconnectable Portlets | v

Disconnectable Page)

—

=l O Show Service Calls

[}

]

Replicate the page group

Welcome to the repairall company system

See Trafiic Alerts

Disconnectable Portlets \:J [Replicate]

Service Calls For Zip 10532

JobID Address Problem Disposition

4 Hawthorne Telephone system down in IBM huilding
1 Hawthore lab door is stuck
2 Elmsford ‘Wendys drive thru window broken

5§ Hawthome Doorto IBM building stuck , nobody can getin

The example entails an application, in which the user
is a mobile field worker who makes service calls in
a region defined by a zip code. Figure 9 is a screen
shot of the “disconnectable portlets” page group of
the connected portal. This page group has one page
with the application portlet and one system portlet.
When connected, the system portlet allows the user
to replicate portlets and portlet data pertaining to
a page group, which is an additional action and de-
mand placed on the user. The connected portlet
shows the job list at the beginning of the day. Note
that the “See Traffic Alerts” button is active in the
connected portlet.

Before leaving the office in the morning or while con-
nected to the portal server from home, the worker
replicates the job list data onto the Disconnected
Portal. This replication occurs by executing a me-
diator for the server-side business logic that extracts
the job list data and delivers it to the client. If the
client has no copy, then a local data copy is created.
If there is already a local copy, the mediator exe-
cutes the conflict resolution policies to ensure that
any updates made to the previous copy are handled
according to policy. During the course of the day,

310 PoNzO ET AL

the worker updates the job status and makes notes
about the jobs, all done while disconnected. Figure
10 is a screen shot from the disconnected portlet
on the client that reflects completion of one of
the jobs. Note that the “See Traffic Alerts” button
is not active, because this function is not available
while disconnected from the network (an example
of disconnection affecting function and user
experience).

The worker later reconnects to the network, at which
point the mediator delivers the local data back to
the server while simultaneously downloading any up-
dates made at the server. Just as before, if there are
conflicts, the conflict resolution mechanisms are in-
voked using the previously defined conflict resolu-
tion policy. The result is that new jobs are down-
loaded, job status is updated, and job status
completion that is recorded at both places is “rec-
onciled.” The screen shot in Figure 11 is from the
connected portlet after synchronization with the as-
sumption that no new jobs have been added to the
list. Note that the “See Traffic Alerts” button is ac-
tive. Because the list only shows incomplete jobs, Job
4 has been removed.

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

Figure 10

Example of disconnected portlet running on the client device

WebSphere Portal Welcome !
Disconnectable Portlets \:] Cﬁ @ ﬁ}b
Disconnectable Page
Replicate the page group = 0O Show Service Calls =0
Disconnectable Portlets |—v_| ["Repiicate_| Welcome to the repairll company system
Service Calls For Zip 10532
JobID Address Problem Disposition

4 Hawthorne Telephone system down in IBM building

1 Hawthorne lab door is stuck

2 Elmsford Wendys drive thru window broken

5 Hawthorne Duoorto IBM building stuck , nobody can getin

&

t] Local intranet

Implementation summary and status. The Discon-
nected Portal is an ongoing project at this time, but
certain milestones have been achieved. We chose to
implement the client-side portal container on top of
the 1BM Extension Services for WebSphere Every-
place (ESWE) platform® using the Java language.
This implementation enables the client-side portal
container to run on various client form factors rang-
ing from laptop-class to PDA (personal digital assis-
tant)-class devices. For laptop-class devices, the im-
plementation is a derivative of the server-side
WebSphere Portal Server. Currently the static foot-
printis less than 12 MB. Server-side WebSphere Por-
tal Server code has been carefully subset, and cer-
tain functions reimplemented to achieve an
appropriate footprint for laptops. For smaller devices
such as a PDA, the client portal container is based
on the emerging portlet API standard,® and currently
has a static footprint of less than 4 MB.

Both client portal containers (laptop and PDA) uti-
lize 0SGi life-cycle management for ease of deploy-
ment. The notion of bundles in 0SGi and its overall
service-oriented architecture afford a modular de-
sign of the portal and ease of incremental updates

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

and maintainability. By virtue of using the ESWE plat-
form, the client portal container supports the man-
agement and deployment of portlets (along with their
configuration), as well as replication for certain data

types.

The current focus areas of ongoing research include
realization of a more general synchronization frame-
work as has been described and more intelligent
means of data caching to reduce user involvement
in the overall process.

Related work

The overall on-demand client work presented here
relates to a number of efforts. The basic ideas of MvC
projections and distributed MVC have been studied
before. In the context of collaborative groupware,
Marsic,” and Krebs et al.** focus on coordinating
the MVC application state on heterogeneous ma-
chines. Graham et al.? focus on state coordination
across weak connection or disconnection. All of these
efforts are aimed at coordinating the in-memory ap-
plication state, and the MVC instances are tightly cou-
pled to each other. In contrast, we have a simpler

PONZO ET AL. 311

Figure 11 Example of network portlet after synchronization

WebSphere Portal

Disconnectable Poriets | v |

Welcome !

Disconnectable Page)

Disconnectable Portlets ‘L[[Replicate]

2 Elmsford

Replicate the page group =] 0 Show Service Calls (= |
Welcome to the repairAll company system
See Traffic Alerts
Service Calls For Zip 10532
JobID Address Problem Disposition

1 Hawthorne
Wendys drive thru window broken

o Hawthorne Door to IBM building stuck , nobody can get in

lab door is stuck

approach whereby state management across MVC in-
stances is not required. The Rich Browser Frame-
work simply projects a page-local MvC hosted by the
browser.

XForms* is a W3C specification that supports build-
ing presentation-level applications with explicit MVC
and the modeling of constraints. One of the moti-
vations behind this work is to offload server-side pro-
cessing so that the user has more responsive expe-
riences. Some of our ideas overlap with that of
XForms, except that we extend these ideas in the
context of Java and J2EE programming model and
tool availability.

The WinForms® technology offered by Microsoft
Corporation is conceptually similar to a Rich
Browser Framework. Microsoft provides a .NET-
based? programming model using the Microsoft
Common Language Runtime (CLR) and XML and
Web service?” technologies. The WinForms technol-
ogy attempts to provide off-line form data access, ap-
plication update and deployment, and a simple data
model called ADO.NET? that is comparable to SDOs. !¢

312 PONZO ET AL

Disconnected Portal employs a loosely coupled MvC
model in which the different MVC instances may only
affect each other through the external data that they
share. This approach inherently makes our system
simple because distributed state management and
consistency is a difficult problem and need not be
addressed for our domains. The Microsoft Win-
dows** DNA distributed MvC architecture® uses per-
sistent message queues to communicate between cli-
ent- and server-side system models. Again, in our
system the client- and server-side system models do
not necessarily communicate directly. We believe
that our loosely coupled model makes application
design and system operation simpler.

There are also other commercial systems, such as
Group Kit,* that let models drive different views.
This method is complementary to our work and can
be applied to our system as well.

One of the motivations for our work is to support
disconnected behavior for Web applications. A large
body of research and commercial work has been
done on disconnected operations. The Coda® and

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

Ficus*? systems explored replication of files between
clients and servers. The Bayou® system explored
peer-to-peer replication of objects. Commercial sys-
tems such as Puma Intellisync* and Starfish True-
Sync¥ allow systems to replicate personal informa-
tion such as calendar entries and e-mail. The 1BM
DB2 Everyplace Sync Server'® facilitates replication
of relational databases to mobile clients. The OMA
Datasync ' protocol is an interoperable message for-
mat and handshake protocol that can be used by a
generic replication system.

The requirement for disconnected operations in the
Disconnected Portal is unique and broader than all
of the systems mentioned above. First, Web appli-
cations such as portlets can access a variety of back-
end data systems, including files, calendars, relational
databases, and Web services. A robust replication
subsystem needs to be able to handle all the differ-
ent kinds of data. It also needs to work across ad-
ministrative boundaries and cannot assume a tight
coupling between the back-end data system and the
replication system as in Reference 18. It also has to
have a programmable hoarding component that is
driven by the Web application infrastructure and is
not a part of any of the above systems. The OMA
Datasync protocol however, can be incorporated as
the lower-layer format and handshake protocol in
our system. We take an approach where an appli-
cation is able to specify the data it wants by imple-
menting a particular class. The system invokes the
class to obtain the data. During synchronization, data
are represented in an XML/DOM (Document Object
Model) format to capture various heterogeneous
data types.

Many commercial systems offer off-line Web access.
The Internet Explorer browser has page caching and
off-line viewing support. Other systems such as Back-
web? offer further flexibility, such as refreshing the
cached client page as the server page changes. The
AvantGo®’ system goes beyond off-line HTML cach-
ing and actually caches data on the client. With use
of the AvantGo applications, the data can then be
viewed on the client. Disconnected Portal extends
the basic ESWE system in a manner distinct from the
above systems as it focuses on extending a portal-
based programming model in conjunction with the
same Java-based open programming model on the
server and the client with same or similar applica-
tion and business logic executing on the server and
the client.

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

Conclusion

In this paper, we have presented two technologies
involving projections of the server-side MVC pro-
gramming model and applications onto the client.
The Rich Browser Framework introduces the notion
of a page-local MVC associated with each Web page.
It allows client-side operations via scripting and al-
lows manipulation of a structured dataset associated
with a page. It improves Web application respon-
siveness without introducing any additional client
footprint by simply exploiting features of modern
browsers such as rich scripting support.

The Disconnected Portal project facilitates projec-
tion of the aggregation of local portlets to work in
conjunction with local instances of the full server-
side MvC application onto the client. We further ex-
tend the notion of disconnected operations for a col-
lection of Web applications by extending the base
platform to include local application data and cor-
responding replication along with store-and-forward
operations, including conflict detection and resolu-
tion. Potentially, fully functional server-side Web ap-
plications can execute in the client, thereby substan-
tially extending the reach of Web applications.
Furthermore, the Rich Browser Framework can be
juxtaposed with the Disconnected Portal on the cli-
ent to further enhance Web application responsive-
ness and function. Together, they take a step for-
ward in making the Web paradigm functionally
comparable with the client/server paradigm while
preserving the desirable characteristics of the Web
paradigm.

Acknowledgments

The authors wish to thank Stephen Brodsky, Martin
Nally, Jim Russell, John Schumacher, Brian White
Eagle and B. J. Hargrave for technical discussions
and their participation in helping shape the techni-
cal approach for this work. We also thank Joe Ku-
bik, Michael Moser, Veronique Perret, Bill Gengler,
Michael Burkhart, Dave Klein, Thomas Watson,
Daniela Bourges-Waldegg, Marcel Graf, Yann Du-
ponchel, Marion Blount, and Danny Yeh for their
participation in the design and development of the
Disconnected Portal client and data synchronization.

*Trademark or registered trademark of International Business
Machines Corporation.

“*Trademark or registered trademark of Microsoft Corporation
or Sun Microsystems, Inc.

PONZO ET AL.

313

Cited references

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

D.F. Ferguson and R. Kerth, “WebSphere as an E-business
Server,” IBM Systems Journal 40, No 1, 25-45 (2001).
“XHTML™ 1.0, The Extensible HyperText Markup Language,”
2nd Edition, W3C (August 2002), http://www.w3.org/TR/
xhtml1/.

. J. C. Teague, DHTML and CSS for the World Wide Web, 2nd

Edition, Visual QuickStart Guide, Peachpit Press, Berkeley,
CA (2001).

. E. T. Ray, Learning XML, O’Reilly, Sebastopol, CA (2001).
. J. Lowy, COM and .NET Component Services, O’Reilly, Se-

bastopol, CA (2001).

. D. Chappell, Understanding ActiveX and OLE, Microsoft

Press, Redmond, WA (1996).

. JavaServer Faces Specification, JSR127, Java Community Pro-

cess, at http://www.jcp.org/en/jsr/detail 7id=127.

. WebSphere Portal for Multiplatforms, IBM Corporation,

http://www.ibm.com/software/genservers/portal.

. IBM Workplace Client Technology, IBM Corporation, http://

www.ibm.com/software/swnews/swnews.nsf/n/jmae5vgqjl.
OSGi (Open Services Gateway Initiative) Alliance, San
Ramon, CA, http://www.osgi.org.

J. Colson, Diversity Dictates in Pervasive Computing, http://
www.eetimes.com/story/OEG20010122S0037.

WebSphere Application Server Enterprise Edition 4.0: A Pro-
grammer’s Guide, Redbook, IBM Corporation, http://www.
redbooks.ibm.com/abstracts/sg246504.html.

Portlet Specification, JSR 168, Java Community Process,
http://www.jcp.org/en/jsr/detail ?7id=168.

U. Hansmann, R. Mettala, A. Purakayastha, and P. Thomp-
son, SyncML: Synchronizing and Managing Your Mobile Data,
Prentical Hall, Inc., Upper Saddle River, NJ (2002).
Servlet and JSP Programming with IBM WebSphere Studio and
Visual Age for Java, WebSphere Domain, Redbook, IBM Corpo-
ration, http://www.redbooks.ibm.com/abstracts/sg245755.html.
Specifications: Service Data Objects, WorkManager, and Tim-
ers, IBM Corporation (November 2003), http://www.ibm.com/
developerworks/library/j-commonj-sdowmt/.

Eclipse Platform Technical Overview, Object Technology
International (February 2003), http://www.eclipse.org/
whitepapers/eclipse-overview.pdf.

DB2 Everyplace Sync Server, IBM Corporation, http://
www.ibm.com/software/data/db2/everyplace/sync-
server.html.

B. Hitchcock, Domino Off-Line Services: An Administrator’s
and Developer’s Guide, IBM Corporation (2001).
Extension Services for WebSphere Everyplace, IBM Corpo-
ration, http://www.ibm.com/software/pervasive/everyplace.
I. Marsic, “An Architecture for Heterogeneous Groupware
Applications,” Proceedings of the 23rd International Confer-
ence on Software Engineering (ICSE 2001), Toronto, Canada
(May 2001).

A. M. Krebs, M. Ionescu, B. Dorohonceanu, and I. Marsic,
“The DISCIPLE System for Collaboration over the Heter-
ogeneous Web,” Proceedings of the Hawaii International Con-
ference on System Sciences, Hawaii (January 2003).

T. C.N. Graham, T. Umes, and R. Nejabi, “Efficient Distrib-
uted Implementation of Semi-Replicated Synchronous
Groupware,” Proceedings ACM User Interface Software and
Technology (UIST 96), Seattle, WA (November 1996), pp. 1-10.
“XForms 1.0,” W3C Recommendation 14, W3C (October
2003), http://www.w3.org/TR/xforms/.

C. Payne, Teach Yourself NET Windows® Forms in 21 Days,
SAMS Publishing, Indianapolis, IN (2002).

314 PoNZO ET AL

26. A. Fedorov, A Programmer’s Guide to .NET, Addison Wes-
ley Publishing Co., Boston (2002).

27. Web Services Description Language (WSDL) 1.1, W3C Note,
W3C (March 2001), http://www.w3.org/TR/wsdl.

28. D. Sceppa, Microsoft ADO.NET (Core Reference), Microsoft
Press, Redmond, WA (2002).

29. Distributed MV C: An Architecture for Windows DNA Appli-
cations, Technical White Paper, Rogue Wave Software, Inc.,
Stingray Division (1999), http://www.roguewave.com/
products/whitepapers/mvewp.pdf.

30. GroupKit, http://www.groupkit.org/.

31. J. Kistler and M. Satyanarayanan, “Disconnected Operation
in the Coda File System,” ACM Transactions on Computer
Systems 10, No. 1, 3-25 (February 1992).

32. R. G. Guy, J. S. Heidemann, W. Mak, T. W. Page, Jr., G. J.
Popek, and D. Rothheimer, “Implementation of the Ficus
Replicated File System,” USENIX Conference Proceedings,
UCLA, Los Angeles (June 1990), pp. 63-71.

33. D.B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. I.
Spreitzer, and C. Hauser, “Managing Update Conflicts in
Bayou, a Weakly Connected Replicated Storage System,” Pro-
ceedings of the Fifteenth ACM Symposium on Operating Sys-
tems Principles, pp. 172-183.

34. Intellisync, PumaTech, http://www.pumatech.com.

35. Intellisync SyncML Server, Intellisync Corp., http://www.
truesync.com.

36. Backweb, The Offline Web Company, San Jose, CA, http://
www.backweb.com.

37. AvantGo, a service of iAnywhere Solutions, Dublin, CA,
http://www.avantgo.com.

Accepted for publication January 16, 2004.

John Ponzo IBM Research Division, ThomasJ. Watson Research
Center, 19 Skyline Drive, Hawthorne, New York 10532
(jponzo@us.ibm.com). Mr. Ponzo is a Senior Technical Staff Mem-
ber at the Watson Research Center. His major focus areas are
Web application runtimes, Web development tools, and desktop
client runtimes. He led several efforts at Research, including the
IBM XForms Processor, Eclipse Web technology integration, and
Sash projects. He made key technology contributions to Web-
Sphere Studio, Eclipse, WebSphere Application Server, and Lo-
tus Workplace. He received an M.S. degree in computer science
from Polytechnic University, and a B.S. degree in computer sci-
ence from Manhattan College.

Laurent D. Hasson IBM Research Division, Thomas J. Watson
Research Center, 19 Skyline Drive, Hawthorne, New York 10532
(ldhasson@us.ibm.com). Mr. Hasson is currently the lead archi-
tect for the Rich Client Browser Framework for the WebSphere
line of products, aiming at delivering more interactive and re-
sponsive Web applications to standard unaugmented browsers.
He joined IBM in 1996 in Toronto, where he spent two and a half
years as the lead developer and architect for Net.Commerce. He
moved to IBM Research in Hawthorne, New York in 1998, where
he continued his role in the WebSphere Commerce line of prod-
ucts as a key contributor. In 2000 and 2001, he acted as the lead
architect and development manager for WebSphere Commerce
Suite, Marketplace Edition, an advanced business-to-business
platform centered around hosted multiparty dynamic trading. Mr.
Hasson received an M.S. degree in computer science from Brown
University in 1994 and a B.A. in computer science and mathe-
matics from New York University in 1992.

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

JobiGeorge IBM Research Division, ThomasJ. Watson Research
Center, 19 Skyline Drive, Hawthorne, New York 10532
(jobi@us.ibm.com). Mr. George received a B.S. degree in com-
puter science from the National Institute of Technology (NIT)
at Surat, India in 1992 and an M.B.A. degree from New York
University in 2002. He joined IBM Research in 1997 and has been
working in the area of client technologies, Web application run-
times, and developer tooling. He was part of the team that de-
signed and shipped the Sash Web Applications Framework,
Xforms processor, WebSphere Studio script debugger, and Eclipse
Web Integration technology. He has made technological contri-
butions to IBM products such as WebSphere Studio, Eclipse, and
Lotus Workplace.

Gegi Thomas [BM Research Division, Thomas J. Watson Re-
search Center, 19 Skyline Drive, Hawthorne, New York 10532
(gegi@us.ibm.com). Mr. Thomas is a research staff engineer in
the E-Business Frameworks Department at the Watson Research
Center. He received a B.A. Sc. in systems design engineering and
aB.A.in economics from the University of Waterloo in 2002 and
2003, respectively. He subsequently joined IBM Research. He
has also worked in the Emerging Technologies Department in
the IBM Software Group (Raleigh), where he was a contributing
member of the IBM Web Services Toolkit.

Olivier Gruber IBM Research Division, Thomas J. Watson Re-
search Center, 19 Skyline Drive, Hawthorne, New York 10532
(ogruber@us.ibm.com). Dr. Gruber received his Ph.D. in the field
of object systems from the University Pierre et Marie Curie in
France in 1992. Until 1995, he led a European project on large-
scale persistent object systems at the French National Research
Institute for Computer Science (INRIA). He joined the IBM Al-
maden Research Center in 1995 and worked on data manage-
ment systems. In 1997, he transferred to the Watson Research
Center, where he led the kernel team of the first research exper-
iments around web application servers that changed into the
present WebSphere Application Server. Since 1999, he has been
involved with merging Java and Web client technologies, leading
the research aspects of a client-side Java platform with server-
side affinity. He started and led to success the synergy between
Eclipse and OSGi, available in Eclipse 3.0, thereby moving Eclipse
toward a Rich Client Platform (RCP). He is also very involved
with the Lotus Workplace effort.

Ravi B. Konuru IBM Research Division, Thomas J. Watson Re-
search Center, 19 Skyline Drive, Hawthorne, New York 10532
(rkonuru@us.ibm.com). Dr. Konuru is a research staff member
in the Systems and Software Department. His research interests
are in the areas of operating systems and distributed computing.
He joined IBM in 1995 after completing his Ph.D. at the Oregon
Graduate Institute of Science and Technology. He has worked
on and played key roles in many different areas, including a dy-
namic job scheduling and reconfiguration system for IBM SP2®,
Atlanta Olympics Infrastructure, WOM, a Web application server
framework which preceded WebSphere, Java Virtual Machine
and Java platform performance, a pervasive Java environment
experiment that eventually impacted the new OSGi-based Eclipse,
next generation portal and client technologies and WSRP-related
(Web Services for Remote Portlets-related) infrastructure and
standardization.

Apratim Purakayastha IBM Research Division, Thomas J.
Watson Research Center, 19 Skyline Drive, Hawthorne, New York
10532 (apu@us.ibm.com). Dr. Purakayastha is a research staff

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

member and manager in the Pervasive Computing Infrastructure
Department. He joined IBM in 1996 after completing his Ph.D.
from Duke University in computer science. His major focus area
has been mobile data management and synchronization. He was
afounding contributor of the SyncML data synchronization stan-
dard and contributed to the design and development of the IBM
DB2 Sync Server and Enterprise Sync Server. He also played key
roles in the development of IBM Notification and Context middle-
ware. He is an IBM master inventor and a member of the ACM
and the IEEE.

Robert D. Johnson IBM Research Division, Thomas J. Watson
Research Center, 19 Skyline Drive, Hawthorne, New York 10532
(robertdj@us.ibm.com). Dr. Johnson is a research staff member
and senior manager in the Systems and Software Department at
the Watson Research Center. He received his B.S. degree in phys-
ical chemistry from the University of Michigan in 1976, an M.S.
degree in physical chemistry from Oregon State University in 1980,
and a Ph.D. in physical chemistry in protein dynamics from the
University of California at Davis in 1983. He subsequently joined
IBM, where he has worked on advanced photolithography, disk
drive technology, production of nanotube and fullerene materi-
als, the Sash Web Applications Framework, the pre-J2EE WOM,
a Web application server framework which preceded WebSphere,
and tools for e-business application performance optimization.
Dr. Johnson has received IBM Outstanding Technical Achieve-
ment Awards for his work in the areas of Web application server
optimization, high-performance head/disk interface characteri-
zation, and in carbon-60 and metallofullerene nanotechnology.
He is a member of the IEEE and the ACM.

Jim Colson IBM Pervasive Computing Division, 11501 Burnet
Road, Austin, Texas 78758 (jccolson@us.ibm.com). Mr. Colson
received his B.S.M.E. (mechanical engineering) from the Uni-
versity of Michigan, Ann Arbor in 1980, and M.S.M.E. and M.S.
in computer science degrees from the University of Texas at Aus-
tin in 1985 and 1991, respectively. He is an IBM Distinguished
Engineer and is currently the chief architect for pervasive com-
puting and device software. Previously, he developed real-time,
multiprocessor control systems for robotics and computer vision
systems and solutions. This work led to his Masters Thesis on ro-
bot performance, which was subsequently adopted as an open
standard (ANSI/RIA R15.05-1-1990 - Point-to-Point and Static
Performance Characteristics). Mr. Colson is a member of the IBM
Academy of Technology and an IBM master inventor.

Roger A.Pollak IBM Research Division, ThomasJ. Watson Re-
search Center, 19 Skyline Drive, Hawthorne, New York 10532
(pollak@us.ibm.com). Dr. Pollak is a research staff member and
manager in the Systems and Software Department at the Watson
Research Center. He received his B.S. degree in physical chem-
istry from Polytechnic University in 1967, and M.S. and Ph.D.
degrees in physical chemistry from the University of California
at Berkeley in 1969 and 1973, respectively. He subsequently joined
IBM at the Watson Research Center, where he has worked on
the physics and chemistry of surfaces, electronic computer pack-
aging, and more recently on software technology. In 1994 he re-
ceived an IBM Outstanding Contribution Award for his work on
the design and implementation of the IBM RS/6000® Scalable
POWERparallel Systems® supercomputer. Dr. Pollak is a senior
member of the Institute of Electrical and Electronics Engineers.

PONZO ET AL.

315

