270 KLOPPMANN ET AL.

Business process
choreography in
WebSphere: Combining
the power of BPEL and
J2EE

Business processes not only play a key role
in business-to-business and enterprise
application integration scenarios by exposing
the appropriate invocation and interaction
patterns; they are also the fundamental basis
for building heterogeneous and distributed
applications (workflow-based applications).
Business Process Execution Language for
Web Services (BPEL4WS) provides the means
to specify business processes that are
composed of Web services as well as
exposed as Web services. Business
processes specified via BPELAWS are
portable; they can be carried out by every
BPEL4WS-compliant execution environment.
In this paper we show how the IBM J2EE™
application server, WebSphere® Application
Server provides such an environment, called
process choreographer environment, and how
the extension mechanism built into BPEL can
be used to leverage the additional capabilities
of J2EE and WebSphere.

Web services based on the service-oriented archi-
tecture framework serve as the foundation for mod-
ern distributed, heterogeneous applications by pro-
viding a virtual component model.! Not only can new
components be written as Web services, but existing
applications also can be provided as Web services
made available through a variety of formats and
protocols in a vendor-independent and language-
neutral form." Web services are perfectly suited as
the function layer of the two-level programming
model that is the characteristic of workflow-based
applications.?

0018-8670/04/$5.00 © 2004 IBM

by M. Kloppmann
D. Kénig
F. Leymann
G. Pfau
D. Roller

Workflow-based applications are composed of two
distinct pieces: a process model that describes the
sequence in which the different activities making
up the process model are being carried out (pro-
gramming in the large) and the individual compo-
nents that implement the various activities (pro-
gramming in the small). In the Web services envi-
ronment, process models are described using the
Business Process Execution Language for Web
services (BPEL4AWS), abbreviated as BPEL in the rest
of the paper.® The implementations of the activities
are specified as Web services; the actual implementa-
tion can be done in any language and programming
model. Particularly compelling is the fact that in
BPEL, business processes are exposed as Web ser-
vices, providing for a recursive aggregation model.*

The purpose of the process choreographer is to man-
age the life cycle of business processes, to navigate
through the associated process model, and to invoke
the appropriate Web services. Besides the naviga-
tion and invocation capabilities, the process chore-
ographer must provide the appropriate quality-of-
service (QoS) characteristics, such as maintaining a
certain response time or ensuring particular secur-
ity constraints.

The Java 2 Platform, Enterprise Edition (J2EE**)
environment, as implemented by IBM’s WebSphere *
Application Server, provides an environment for the

©Copyright 2004 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

deployment and execution of mission-critical, enter-
prise-level applications.

The support of Web services is now complemented
with the appropriate support for BPEL. In order to
run BPEL processes on a J2EE application server, BPEL
artifacts must be mapped to appropriate J2EE arti-
facts, for example, BPEL processes need to be ren-
dered as EJB* (Enterprise JavaBeans**) -based
components. A side effect of this mapping is the
capability of Java** applications to have native ac-
cess to business processes, which drives the demand
for additional Java capabilities to be exposed within
BPEL, such as the usage of Java as an expression
language besides XPath (XML Path Language), or
the ability of having Java types in addition to XML
(eXtensible Markup Language) types. The extension
mechanism built into BPEL can be used to add J2EE-
related constructs to BPEL. Furthermore, WebSphere
provides the support of people as a resource, a function
that is extremely helpful in business processes to
manage situations where human involvement is man-
datory. The extension mechanism built into BPEL is
also used to add WebSphere-related constructs.

In this paper, we describe the implementation of a
BPEL-compliant engine in the WebSphere environ-
ment and the extensions that have been defined to
address additional 12EE and WebSphere functions.
In the next section we present the basic features of
BPEL, focusing on the more advanced features of
BPEL, such as long-running business processes and
failure and compensation handling. In the third sec-
tion we present a programming model for the J2EE
and WebSphere environment that is based on BPEL.
It illustrates how BPEL processes are mapped to the
J2EE environment, how Java interfaces can be sup-
ported in addition to Web Services Description Lan-
guage (WSDL) port types, and how Java is used as
an expression language. Furthermore, it illustrates
how BPEL can be extended to accommodate the sup-
port of humans as resources in a business process.
In the fourth section we show how business processes
are developed and then deployed in the J2EE envi-
ronment. Last, in the fifth section we present the
WebSphere-based infrastructure for the execution
of business processes. We start with describing the
functional capabilities and then have a detailed look
at the QoS characteristics of the infrastructure.

Web services composition with BPEL

The BPEL specification was submitted in April 2003
to the Organization for the Advancement of Struc-

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

tured Information Standards (OASIS) for standard-
ization. The submitted specification has been cre-
ated jointly by IBM, Microsoft Corporation, BEA
Systems, Inc., SAP AG, Inc., and Siebel Systems, Inc.,
and the BPEL Technical Committee at OASIS includes
members from many infrastructure and application
vendors throughout the industry.

In this section we describe those features of BPEL
that are necessary to understand the running exam-
ple we use for illustrating the key features of our en-
gine. Comprehensive introductions to BPEL can be
found in a number of papers (e.g., Reference 5). Sub-
sequent sections continue to use that example, ex-
tend it, and map it into the J2EE world and onto the
IBM J2EE application server, WebSphere.

Invoking several Web services in a certain order—
control flow. The primary goal of BPEL is to specify
the sequence in which a number of services can be
invoked, where “sequence” includes parallel and
conditional branches. The invoked services are spec-
ified using WSDL.°

Suppose we want to create a business process that
describes the steps to book a simple journey at a
travel agent. We use a simplified example in which
only a trip to a single destination is possible. The
rough outline of such a business process is as fol-
lows: First, the customer data about the destination
has to be checked. Then, the appropriate flight seg-
ments to and from that destination are booked. Also,
a hotel at the destination is booked. Finally, payment
from the customer is obtained via credit card.

The outline of that business process is shown graph-
ically in Figure 1. The flights and the hotel are ac-
tually booked only if a check of the customer data
indicates that the data are satisfactory; otherwise,
there will be an error. Note that the operations for
booking the flights and the hotel can be performed
in parallel. An excerpt of the BPEL syntax rendering
that process is shown in Figure 2.

In BPEL, a step calling out to a Web service is ren-
dered as an invoke activity. An invoke activity spec-
ifies the Web service operation that is to be called
when the activity is reached during execution of the
process. The concrete syntax of the invoke activity
in BPEL is shown in Figure 2, line 11, where the book-
Flight operation provided by an external Web ser-
vice is called.

BPEL provides several ways to aggregate activities.
One very simple possibility is to use a sequence, which

KLOPPMANN ET AL. 271

Figure 1 Travel booking process
receive order
checkCustomer
okay ‘ n not okay
reply reply error
For all flight segments 1
bookFlight bookHotel
N

N

receive cancel billCreditCard

n
\
ey
\

v send schedule

performs all contained activities sequentially. In our
example, we have used a flow, which allows for the
parallel execution of its contained activities, and the
additional specification of ordering constraints us-
ing links. A link between two activities A; and A,
specifies that A, can start only when A, has been
completed. Links can have associated transition con-
ditions, predicates evaluated at runtime that deter-
mine whether a link is actually followed or not. In
our example, if the customer data were found to be
satisfactory, both the links to the steps for booking
the flight and the hotel are followed, whereas the
link to the error step is not (“dead-path elimina-
tion”—see Reference 7).

BPEL provides additional constructs to describe the
control flow of processes, such as switch activities for
a structured way of making decisions, and while ac-
tivities to perform iterations. The example uses a
while activity to iterate over all flight segments, as
shown in Figure 2, line 10.

Providing a composition as a Web service. A BPEL
process is made available to potential exploiters as
a Web service, too, implementing one or more op-

272 KLOPPMANN ET AL.

erations of one or more port types. In business-to-
business scenarios, entire conversations between par-
ticipating partners are driven by processes. BPEL
allows the capture of the signatures of the Web ser-
vices involved in such conversations by means of a
BPEL-provided WSDL extension: partner link types.
A partner link type describes the interaction between
two Web services by means of the roles each of the
partners is playing and the interfaces each of the part-
ners is providing.

The travel booking process interacts with a number
of Web services. Each interaction is described by a
partner link of a specific type. There is the interac-
tion with the traveler (line 2), where the process pro-
vides operations of a port type called TravelAgentPT
(book and cancel, not visible in the example), and
expects the traveler to provide operations contained
in the port type TravelerCallbackPT (with rcvTravel-
Data and rcvErrorData operations, again not visible).
Also, the process interacts with an airline reserva-
tion system to invoke operations of the flight res-
ervation port type (line 3).

On some occasions, one role of a partner link type
is empty because only one partner provides oper-
ations for the other one to call. No bilateral com-
munication can happen in such a case, only a simple
invocation (unilateral communication). In the exam-
ple, the partner link between the travel booking pro-
cess and the airline reservation system is of that na-
ture, where the latter only provides operations and
the former only invokes those operations. Thus, part-
ner links allow for a uniform rendering of all kinds
of interactions between two Web services, whether
they are inbound only, outbound only, or truly
bilateral.

A business process declares that it actually imple-
ments a Web service operation by means of a receive
activity that defines the port type and operation on
which the request is received from a specific part-
ner. If the implemented operation happens to be a
request-response operation, an associated reply ac-
tivity at a later point in the process is responsible for
delivering the result, which can also be a fault. In
the example in Figure 2, the section from line 6 to
line 9 shows how the travel booking process provides
the book operation, with its two possible outcomes
of a good or a fault result. On invocation of the book
operation, the request reaches the receive activity
in line 6. The createlnstance attribute in the receive
activity controls whether or not a new process in-
stance should be created upon receipt of that mes-

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

Figure 2 Travel booking process—BPEL example

1 <process name="TravelBookingProcess"

xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
xmlns:bpelp="http://www.ibm.com/websphere/v5.1/business-process/">

<partnerLinks>
2 <bpelp:partnerLink name="traveler">

<bpelp:myPortType name="TravelAgentPT"/>

<bpelp:partnerPortType name="TravelerCallbackPT"/>

</bpelp:partnerLink>

S <bpelp:partnerLink name="airlineReservationSystem">
<bpelp:partnerPortType name="FlightReservationPT"/>

</bpelp:partnerLink>

</partnerLinks>
4 <flow>
5 <links>...</links>
6 <receive partnerLink="traveller"

portType="travel:TravelAgentPT" operation="book"

createlnstance="yes" .../>
<assign>...</assign>

7 <invoke name="checkCustomer" partnerLink="internalServices"
portType="CheckOperationsPT" operation="checkCustomer".../>

<assign>...</assign>
8 <reply name="reply" partnerLink="traveller"

portType="travel:TravelAgentPT" operation="book" .../>

9 <reply name="replyFault" partnerLink="traveller"

portType="travel:TravelAgentPT"operation="book"

faultName="failure" .../>

10 <while condition="getVariableData('currentLegindex') <
getVariableData('input','flights','@noOflLegs')">
11 <invoke name="bookFlight" partnerLink="airlineReservationSystem"

portType="FlightReservationPT" operation="bookFlight" .../>

<assign>...</assign>
</while>

</flow>
</process>

sage. Following the receive activity, invocation of the
customer check takes place in line 7. Thereafter, the
reply to the book operation is sent, returning a good
result if the check succeeded (line 8) or a fault oth-
erwise (line 9). The final result of the process, the
travel schedule, is eventually delivered asynchro-
nously at a later time using a callback provided by
the traveler side, which the process calls using a stan-
dard invoke activity. (See the send schedule activity,
shown in Figure 1.)

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

As we have seen until now, besides ordering of ac-
tivities, the BPEL description of a business process
is only concerned with the signatures of the involved
services, that is, their port types, operations, and mes-
sage types, which are referenced through the notion
of partner links. Binding of actual services to those
partner links, described by their endpoint references®
is mostly outside the scope of BPEL. This binding can
be done during modeling of the business process, or
at deployment time, or even at runtime, for exam-

KLOPPMANN ET AL. 273

Figure 3 Data flow using variables and assigned activities

receive order = input

l

assign checkinput
checkCustomer checkOutput

okay not okay output
assign
1 failureData
reply
i assign
A
INs
1 ~\
1 [
4 4
reply error

ple, through lookups in a UDDI (Universal Descrip-
tion, Discovery, and Integration) directory.

There is one exception where endpoint references
can appear in BPEL. Given that resolution of a con-
crete partner link’s endpoint reference might be part
of the business logic, BPEL allows the dynamic com-
puting of such endpoint references and their assign-
ment to a partner link as part of the business pro-
cess model by means of assign activities (described
later). Endpoint references may also be exchanged
between business process instances by sending them
either explicitly as a message part or implicitly as mes-
sage context, for example, in a SOAP (Simple Object
Access Protocol) header.

Handling Web service messages— data flow. Data
are passed between BPEL activities using variables.
Variables are typed either by complete WSDL mes-
sages that allow for the storage of an entire input or
output message of a Web service operation, or by
XML schema types that allow for the storage of in-
dividual entities that are relevant for the business
process. Variables are scoped either by the business
process itself (providing for global variables) or by

274 KLOPPMANN ET AL.

a BPEL scope (a group of activities that forms an ac-
tivity in itself, providing for local variables).

When a process is instantiated through a receive ac-
tivity, the supplied data are stored in a variable. For
each invoke operation that is part of the process, the
input message of the invocation originates from a
variable, and the result of the invocation is written
back to another variable. Thus, data flows through
the process by writing and reading variables.

BPEL provides assign activities to update variables
from within a process. Through assign activities, re-
sults of one or more service invocations can be used
for the invocation of a subsequent service invoca-
tion by creating the input message it requires. Fig-
ure 3 shows the assign activities needed to prepare
data for the first few activities of the travel booking
process, and also shows the concrete data flow im-
plemented by the assign activity preparing the data
for the reply activity.

As a special case, assign activities can also be used
to assign partner link endpoint references to vari-
able fields and variable fields containing endpoint
references to partner links, providing the ability to
treat endpoint references as data where needed. In
the travel booking process, as part of the invocation
of the book operation, the traveler could pass an end-
point reference to a third party that should receive
the final schedule information, rather than the trav-
eler himself. An explicit assign step in the process
would then retrieve the message field containing the
endpoint reference and assign it to the appropriate
partner link through which the process sends out the
final schedule.

Long-running processes and correlation. An in-
stance of a business process represents the complete
course of action needed to perform a concrete set
of interactions with one or more partners in order
to satisfy a certain business event, such as booking
travel. These interactions can happen over a long pe-
riod of time, be it a number of days or even months
and years. For a certain request issued by a partner,
it is necessary to distinguish whether a new business
process is to be instantiated to satisfy that request,
or whether the request should be directed to an al-
ready existing instance, and if so, to which partic-
ular one.

BPEL allows identifying business process instances

by reusing existing identification information that is
already passed in existing business messages, such

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

Figure 4 Correlation set representation—A. WSDL example and B. BPEL example

1 <bpws:property name="confirmationNumber" type="xsd:integer"/>

2 <bpws:propertyAlias propertyName="travel:confirmationNumber"
messageType="travel:bookOutputMessage"
part="confirmationNo" query="/"/>

3 <bpws:propertyAlias propertyName="travel:confirmationNumber"
messageType="travel:cancellnputMessage"
part="confirmationNo" query="/"/>

4 <process name="TravelBookingProcess"...>

<correlationSets>
5 <correlationSet name="TravelBooking"

properties="travel:confirmationNumber"/>

</correlationSets>

<flow>
6 <reply partnerLink="traveller"
portType="travel:TravelAgentPT" operation="book"
variable="output">
7 <correlations>

<correlation set="TravelBooking" initiate="yes"/>

</correlations>
</reply>

8 <receive partnerLink="traveller"

portType="travel:TravelAgentPT" operation="cancel"

createlnstance="no" variable="cancellnput">

9 <correlations>

<correlation set="TravelBooking" initiate="no"/>

</correlations>
</receive>

</flow>
</process>

as customer IDs and order numbers. As part of a
WSDL extension defined by BPEL, correlation prop-
erties and their location within WSDL messages (prop-
erty aliases) can be specified. Multiple correlation
properties are then combined into correlation sets,
which effectively are keys for business process
instances.

Figure 4 shows the correlation set definition and its
usage for the travel booking process. We use a con-
firmation number to identify specific instances of the
process. In A, as part of the WSDL specifying the book
and cancel operations, we define a property “corre-
lationNumber” of type string in line 1, and two as-

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

sociated aliases, which identify the location of that
confirmation number in the output message of the
book operation (line 2) and the input message of the
cancel operation (line 3), the two places where the
confirmation number is actually used.

With these definitions in B, a BPEL correlation set
is defined as part of the travel booking process, con-
sisting solely of the confirmation number (line 5).
This correlation set is used in the reply activity from
the book operation of the travel booking process (line
7), and in the receive activity for the cancel oper-
ation (line 9).

KLOPPMANN ET AL. 275

Note that the correlation set is actually initiated by
the reply activity, effectively assigning the confirma-
tion number that is part of the outbound message
of the book operation as a key to the process instance.
In the inbound case of the cancel operation, the as-
sociated receive activity uses the already established
correlation set as the key to enable the business pro-
cess engine to locate the correct process instance.

In general, if an existing instance can be located for
a receive activity, the message is routed to that in-
stance. If no instance can be located, a new one is
created, provided the createlnstance attribute of the
receive activity allows that by having a value of yes.
If multiple instances qualify, then a runtime excep-
tion is raised, indicating an ambiguity caused by a
correlation set that is not specific enough.

A BPEL-based programming model for
J2EE and WebSphere

With BPEL, business processes can be specified in a
platform-independent manner. Intentionally, the
BPEL specification itself does not address mapping
of BPEL processes to any particular runtime platform,
be it standard (such as J2EE) or vendor-specific.

In order to actually run BPEL business processes on
a J2EE application server such as the WebSphere Ap-
plication Server, a mapping of BPEL artifacts to J2EE
artifacts is required. In this section we describe such
a mapping. In addition, we introduce a number of
extensions to BPEL that allow business processes to
directly exploit both 12EE standard features and Web-
Sphere-specific features on top of the standard.

We have seen how Web services define a virtual com-
ponent model for the usage of components, in a ven-
dor-neutral form. One obvious model of providing
such components is by implementing the components
that use the J2EE programming model, rendering
them as enterprise beans, and running them on a
compliant application server.

To run BPEL processes using a J2EE application
server, they are rendered in WebSphere as EJB-based
components. This rendering also allows native Java-
based applications to access and interact with those
business processes. In addition, EJB-based compo-
nents are available as Web services through the us-
age of rendering layers such as the Java API for XML-
based Remote Procedure Call’ (JAX-RPC) (for
SOAP/HTTP, that is, Simple Object Access Protocol
using HyperText Transfer Protocol), or message-

276 KLOPPMANN ET AL.

driven beans (for SOAP/JMS, that is, Simple Object
Access Protocol using Java Message Service, or other
JMSs-based protocols). As a consequence, business
processes rendered as enterprise beans become avail-
able in those formats and protocols, too.

After BPEL-based business processes have been em-
bedded into the J2EE environment, the potential need
to natively support other J2EE features arises. This
includes support for Java as an expression language
(in addition to XPath, as provided by standard BPEL),
or the ability to have BPEL variables defined by Java
types. This ability allows a developer familiar with
the Java language to use Java features seamlessly
from within business processes, eliminating the gap
between the Web services world and the Java world
and thus enhancing developer productivity. We use
the extensibility mechanism built into BPEL to add
new J2EE-related constructs in a compliant way.

Finally, the WebSphere Application Server provides
anumber of unique features that are beyond the J2EE
standard, such as support for directories containing
information about the people in the enterprise and
their organization, or support for extended transac-
tions including compensation support. To allow the
exploitation of these features by business processes,
we also define a number of WebSphere-specific ex-
tensions to BPEL.

For easier reference, the language resulting from
adding those extensions to the core BPEL language
is called BPEL+ in this paper. Obviously, using these
extensions makes a business process WebSphere-
specific—benefits and drawbacks of using any ex-
tended features must be carefully balanced. Al-
though on the one hand their use reduces portability
of a business process, on the other hand it allows for
a tighter integration with the underlying J2EE and
WebSphere platform and easy exploitation of its ca-
pabilities. This is the usual design trade-off when bal-
ancing standard against proprietary features.

The following sections describe the BPEL+ extensions
in more detail. First, we look at extensions that al-
low the incorporation of human tasks into business
processes. Then, we show how BPEL processes are
represented by enterprise beans, followed by exten-
sions to allow the direct use of Java interfaces, meth-
ods, beans, and expressions in processes. We com-
plete this section by describing the structure of
enterprise applications that contain processes.

Involvement of people in business processes. Al-
though the complete automation of business pro-

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

cesses is a very important goal, business processes
frequently involve humans. Either manual steps are
needed on the regular path of a business process
(such as an approval), or humans are needed to han-
dle exceptional situations if normal execution of the
business process fails.

In its current specification, BPEL does not allow the
definition of human-based activities, nor does it al-
low assigning humans to be responsible for the bus-
iness process as such. BPEL+ defines extensions to
do both.

Figure 5 shows an excerpt of the travel booking pro-
cess in which a manual step has been inserted to han-
dle the exceptional case where automatic billing via
the traveler’s credit card failed to work. The idea
here is that rather than canceling the process and
invoking compensation on all the already performed
bookings, it is more efficient to let a person actually
call the client and attempt to fix the problem with
the credit card.

From the point of view of the business process, a
human-based activity (also known as staff activity) is
a step in the process where the associated Web ser-
vice is not implemented by a piece of software, but
is “implemented” by an action performed by a hu-
man. This step requires different processing.

When a human-based activity is performed, work
items are created for it and distributed to all persons
eligible to perform it. Eventually, one of the eligible
users decides to work on the activity by claiming it.
Claiming the activity provides the user with unique
access to it. He or she can read the input data, per-
form whatever actions are needed (such as calling
the traveler), and create the resulting data of this
work as the output message (or a fault) of the ac-
tivity. That completes the activity, and navigation of
the business process continues.

Itis the business process modeler who decides which
users are assigned to perform a certain activity.
Rather than assigning users through their user IDs,
assignment queries against an organizational direc-
tory are used, involving properties such as group or
role membership, or more fine-grained responsibil-
ities. This approach allows the business process logic
to be separated from the organizational aspects of
the enterprise.

Syntactically, human-based activities in BPEL+ are
also treated as special invoke activities. In particu-

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

Figure 5 Travel booking process excerpt with manual step

1
1
< 1
1
1

Smm———
1

v
billCreditCard

ﬁnot okay
okay billManually ‘g

v

send schedule

lar, they have a signature defined by a port type and
operation, and they read an input and produce an
output variable (or fault). However, staft activities
do not refer to a partner link, but instead define a
set of potential owners by means of a staff assign-
ment verb. Actually, BPEL+ uses elements from the
staff support service of WebSphere to define those
verbs. The definition of the “billManually” activity
shown in Figure 6 (line 4) assigns all persons who
are members of both the “Accounting Clerk” role
and the “Travel Booking” role to the activity (line
6).

Users participating in business processes receive
work items for many activities from many business
processes. A very common user interface for inter-
acting with those work items and activities is by
means of a browser-based Web client based on a por-
tal, called the process portal. A central place is the
work item list: A user can query for all work items
that are currently assigned to him or her, applying
filters on the type of activity or its current state and
sorting work items by priority or age. From this list
of work items, the user then selects one to work with
the associated activity.

To interact with a selected activity, the minimal user
interface displays the input message of the activity
and allows the user to enter the resulting message
and press a “complete” button. In more typical cases,
however, customized user interfaces are associated
with an activity. For instance, a complete portal page
configuration can be specified as the user interface

KLOPPMANN ET AL. 277

Figure 6 People involvement in a process—BPEL* example

<process name="TravelBookingProcess"...>

1 <bpelp:administrator>

<staff:membersOfRole roleName="Travel Booking Seniors"/>

</bpelp:administrator>

<flow>

2 <invoke name="bookFlight" partnerLink="flights"
portType="FlightReservationPT" operation="bookFlight"
inputVariable="bookFlightlnput"
outputVariable="bookFlightOutput"

3. bpelp:continueOnError="no"/>

4 <invoke name="billManually" partnerLink="bpelp:null"

portType="TravelAgentPT" operation="billManually"

inputVariable="billManuallylnput"
outputVariable="billManuallyOutput">
B <bpelp:staff>
<bpelp:potentialOwner>

6 <staff:membersOfRole role1="Accounting Clerk"
role2="Travel Booking"/

</bpelp:potentialOwner>
</bpelp:staff>
</invoke>

</flow>
</process>

of an activity, providing the user not only with the
user interface for the activity itself, but also with sup-
port portlets required to effectively work on the
activity.

In addition to normal users who are involved in bus-
iness processes as participants, a second group, called
process administrators, can be assigned to business
processes. Process administrators are responsible for
the administration and successful execution of run-
ning processes. Business process instances, in par-
ticular those that are long-lived, represent impor-
tant assets of an enterprise. Being able to successfully
complete their execution, even in the presence of un-
expected faults, is thus an important goal. However,
in many cases, automatic handling of all possible
faults as part of the business process logic is not fea-
sible. To deal with those cases, BPEL+ allows assign-
ing process administrators to a process instance. This
is a person or a group of people who are notified if
anything goes wrong during execution of the pro-
cess. Rather than automatically terminating and
compensating the process, a process administrator

278 KLOPPMANN ET AL.

is given the chance to manually repair the origin of
the fault and then continue execution of the process.
Process administrators are assigned to a process by
means of a staff assignment expression based on
group or role membership or some other organiza-
tional criteria, identical to those for staff activities.

BPEL+ also introduces the ability of an activity to stop
processing and enter “manual repair mode.” When
this option is enabled for an activity, a fault that is
raised by the activity and not caught locally is not
propagated to the enclosing context. Rather, the ac-
tivity is put into an “in error” state, and the process
administrators receive a special work item for that
activity, informing them about the error state. Us-
ing that work item, a process administrator can then
inspect the failing activity. Repair is done by either
retrying the activity or manually completing it, pro-
viding its resulting data. In either case, execution of
the process can continue.

The example in Figure 6 shows the staff assignment
for the travel booking process (line 1) and the def-

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

inition of the bookFlight activity, with the option for
manual repair enabled (line 3), indicating that there
is no automatic continuation in case of an unhandled
fault (the default for this option is “yes,” the stan-
dard BPEL behavior).

Mapping BPEL processes to J2EE. In general, a
BPEL process is long-running, and its instances are
stateful, that is, their variables, partner links, and cor-
relation sets need to be stored persistently on disk,
such as in a database. Hence, a business process in
general is represented as an entity bean. Global var-
iables of the process become fields of that entity.
Likewise, partner links and correlation sets become
fields of the entity. For each correlation set, finder
methods are created on the home interface of the
entity. The finder methods can be used to locate a
particular instance of the entity based on the values
of a particular correlation set.

The representation of the business process instance
as an entity bean is completely transparent to its cli-
ents. The actual component a client uses to interact
with the process is an associated stateless session
bean, the facade session bean of the process. This
session bean provides methods for the union of all
operations that the BPEL process declares in its “my
role” specification of all its partner link types. The
facade session bean is responsible for managing the
associated entity instances, dispatching requests
based on the actual correlation set information. Fig-
ure 7 shows the facade session bean and the (poten-
tially many) process instance entity beans for the
travel booking process.

Actual execution of the business process is done by
a combination of compilation and interpretation
techniques, which are described in a later section of
this paper detailing the architecture of the process
execution infrastructure.

Using Java interfaces. BPEL+ makes a number of
Java features accessible directly from the business
process specification to simplify creating business
processes for people familiar with Java. Included is
the ability to directly use Java interfaces and meth-
ods. Rather than having to describe those interfaces
and methods by WSDL port types and operations ap-
plying a JAX-RPC mapping, they can be referenced
natively. This is true both for outbound calls (i.e.,
for invoke activities calling Java components) and
for inbound calls (i.e., for receive, reply, and pick
activities implementing Java methods).

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

Figure 7 Process facade session bean
and process instance entity bean

E;%ZZZS — __: Business
— Pr
(Session EJB) Process Instance 1 En%(i:rfzs

(Entity EJB)
book

cancel baok

cancel

findByCorrelationSet
TravelBooking

A typical example is the usage of an invoke activity
to call a method of an enterprise bean. With BPEL+,
the partner link type used in that invoke can make
use of the already existing Java interface imple-
mented by that enterprise bean, and the invoke ac-
tivity can directly invoke a method of that interface.
Figure 8 shows an example where the checkCustomer
operation is implemented in that way. As a conven-
tion, we introduce a special name space identified
by a java: prefix to designate Java artifacts. Note the
BPEL+ shortcut notation for partner links where one
of the roles is empty, which implicitly defines the ap-
propriate partner link type (Figure 8, line 2). The
partner link is mapped to a reference of the process
entity bean, that is, to an entry in java:comp/env. This
reference can then be bound to an actual “endpoint
reference,” which in the case of an enterprise bean
is its standard JNDI (Java Naming and Directory In-
terface) name. This allows a seamless integration of
J2EE components into BPEL+ processes. The invo-
cation of the method for the enterprise bean (Fig-
ure §, lines 4 and 5) is no different from that of a
Web service.

In addition to invoking Java components, BPEL+ also
allows a business process to provide its “my role”
interfaces using Java interfaces. Thus, a process can
natively implement a Java method, where its initi-
ating receive activity consumes the input parame-
ters and its final reply activity produces the output
parameters or throws a Java exception.

Java variables and Java code snippets. BPEL sup-
ports process variables typed by WSDL messages or
by XML schema types. Additionally, BPEL+ allows

KLOPPMANN ET AL. 279

Figure 8 Java extension for a process—BPEL+ example

1 <process name="TravelBookingProcess" xmlsns:java="..." ...>
<bpelp:partnerLink name="servicesEJB">
2 <bpelp:partnerPortType name="java:com.travelAgent.Services"/>
</bpelp:partnerLink>
3 <variable name="price" type="java:java.math.BigDecimal"/>
4 ;invoke name="checkCustomer" partnerLink="serviceseJB"

5 portType="java:com.travelAgent.Services"
operation="checkCustomer"
inputVariable="checkCustomerinput"
outputVariable="checkCustomerOutput">

<source linkName="check2reply">

6 <bpelp:transitionCondition language="Java">
return getCheckCustomerOutput() .isOkay() ;

</bpelp:transitionCondition>
</source>

<source linkName="check2fault">
7 <bpelp:transitionCondition>
<bpelp:otherwise/>
</bpelp:transitionCondition>
</source>

</invoke>

8 <invoke name="addPrice" ...>
<bpelp:script language="Java">
BigDecimal newPrice = getPrice() ;
newPrice.add(getHotelPrice()) ;
setPrice(newPrice) ;
</bpelp:script>
</invoke>

</process>

variables to be typed by Java classes. For practical
purposes, classes that are used as the variables of
a process should adhere to the Java bean coding
conventions. In particular, if they are used in long-
running processes, they must implement java.io.
Serializable, because they are persisted as part of the
process state.

A Javavariable is defined as any other variable, again
using the special name space reserved for Java ar-
tifacts. Figure 8 shows an example for the definition
of the price variable in the travel booking process
(line 3).

For Java variables in particular, but also for other
variables, a form of the standard assign activity is in-

280 KLOPPMANN ET AL.

troduced by BPEL+ that allows the actual assignments
to be coded in Java. This type of activity is called a
Java snippet. Java snippets contain pieces of Java
code that run inline with the execution of the bus-
iness process, under the control of the process ex-
ecution infrastructure. As such, Java snippets have
access to the entire process context; for example, they
can read and update arbitrary variables or partner
links.

Java snippets actually run inside the J2EE context of
the entity bean representing the process instance.
Therefore, they have access to the variables of the
process by accessing the fields of that entity, using
standard get and set operations. Although Java snip-
pets typically are used similarly to assign activities,

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

they are not limited to reading and writing variables.
Any code that is allowed to run inside an enterprise
bean can also run in a Java snippet, so a Java snip-
pet might actually do more advanced things, such as
obtaining a value from a database or sending out a
mail message.

Java snippets are syntactically rendered as an exten-
sion of invoke activities. They are bodies of implied
methods that neither take nor return arguments, but
might raise an exception in a form that can be caught
by a BPEL fault handler as usual. Figure 8 has an ex-
ample of a Java snippet that increases the value of
the price variable (line 8).

An advantage of treating a Java snippet as a special
case of an invoke activity is that both fault handlers
and compensation handlers can be added to it. BPEL
requires the specification of partner link, port type,
and operation: because they are not needed for Java
snippets, they are specified with dummy values.

Conditions appear in a number of places in business
processes: as transition conditions on control links
of a flow, as join conditions on activities that are the
target of links, and in switch and while activities. The
BPEL default language for these conditions is XPath.
As an extension, BPEL+ again allows the specifica-
tion of conditions in Java. Actually, Java conditions
are very similar to Java snippets in regard to their
context, and hence, their programming model is the
same as for Java snippets. Java conditions do differ
from Java snippets, however, because conditions are
bodies of methods that take no parameters, return
a boolean value, and are not allowed to raise an
exception.

As an example of a Java condition, consider the tran-
sition condition of the control link from the check-
Customer activity to the reply activity in Figure §, line
6. This link must be followed if and only if the cus-
tomer check was successful.

Figure 8 also shows another BPEL+ extension, namely
the ability to specify “otherwise” transition condi-
tions, which evaluate to true if and only if all of the
explicit conditions originating from the same activ-
ity evaluated to false (line 7).

Enterprise applications with business process com-
ponents. A business process itself is only one part
of an application. Artifacts are also needed to spec-
ify the actual components that the process invokes,
either by referencing an existing application or ser-

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

Figure 9 Enterprise application archive with
business process

TravelBooking.EAR

TravelBookingProcess.JAR EJB Module

(JAR)
TravelBooking.bpel

TravelBooking.wsdl
Java Classes

TravelBooking.wcdl (JAR)

Adapter Module
> (RAR)
ComponentWiring.wcdl

vice (e.g., via an adapter that complies with Java Con-
nector Architecture or via an endpoint WSDL), or by
providing an implementation (e.g., as a session bean
or Java class). As part of our mapping of BPEL pro-
cesses to J2EE, we thus also have to describe how pro-
cesses can be integrated into the packaging model.

The J2EE packaging model for applications is the En-
terprise Application Archive (EAR) file. An EAR file
contains Java archive (JAR) files for all the involved
components of the application. WebSphere extends
the notion of a JAR file so it can contain not only
Java files but also BPEL+ files, as shown in Figure
9 and discussed in more detail in the section “De-
veloping business processes.”

There are a number of other artifacts in the EAR file
that are worth mentioning. The TravelBooking-
Process module not only contains the BPEL+ file with
the specification of the process. It also contains an
associated WSDL file that contains the definitions for
all messages, port types, operations, correlation prop-
erties, and partner link types used by that process.
Also, there is a component description file (WCDL, for
WebSphere Component Description Language),
which can be viewed as a generalized deployment
descriptor for components such as business processes.

Such a component description specifies a component
in terms of the interfaces that it provides (expressed
either as Java interfaces or as WSDL port types), the
references to other components that it needs (again,
typed by either Java interfaces or WSDL port types),
the references to other artifacts such as data sources

KLOPPMANN ET AL. 281

that it needs, the quality of service properties that
should be provided for it by the WebSphere run-time
environment (such as transactions, compensation
spheres, or method authorizations), and finally, its ac-
tual implementation (such as a BPEL+ process, an en-
terprise bean, or an adapter to a backend application).

Typically, an enterprise application contains multi-
ples of those components that reference each other.
A component wiring file, which is also shown later in
Figure 14, captures the dependencies between com-
ponents by connecting references to components.

Developing business processes

BPEL business processes are composite Web services
that are assembled from other Web services. Con-
ditions, representing business rules, define the or-
der in which services are offered to or used from the
outside world. WSDL port types are used to specify
the interface of the services that are provided or con-
sumed by a business process.

As discussed earlier, Web services provide a virtu-
alization layer over many kinds of different imple-
mentations, for example, Java programs or Enter-
prise JavaBeans, and can therefore be considered a
virtual component model. Composite and elemental
Web services form a two-level programming para-
digm. The business process level provides a flexible
means for aggregating Web services and describing
the interactions between them, including business-
to-business protocols. The elemental services are im-
plemented using standard programming languages
such as Java, and hosted in application server plat-
forms such as WebSphere.

The tools for workflow-based applications therefore
include Java editors to develop low-level artifacts as
well as editors to develop process artifacts. Which
types of operations the process provides or consumes
is specified on the business-process level. In the pro-
cess model, the actual service endpoints that offer
a service and the corresponding binding to their im-
plementation infrastructure are not determined. It
is the responsibility of the business process deployer
to provide the binding between the service interfaces
and their concrete WSDL or Java endpoints before
a process becomes executable.

Business process modeling. Tools for the develop-
ment of BPEL process models are provided by IBM
and other vendors, both on a business process mod-
eling level and on a technical level. In this paper, we

282 KLOPPMANN ET AL.

focus on the latter, including the support for IBM ex-
tensions for the BPEL language, that is, BPEL+, which
has been described in previous sections.

BPEL+ business processes are developed with Web-
Sphere Studio.'” The business process editor pro-
vided by WebSphere Studio is well-integrated with
other editors like those for Java, I2EE, Web services,
XML, XML schema, and so forth.

WebSphere Studio follows the two-level program-
ming paradigm described previously. The user de-
velops J2EE components with a Java editor. The 12EE
components can then be offered as Web services and
composed into business processes that represent
higher-level services. Both J2EE components and bus-
iness processes can be tested and debugged in the
WebSphere Studio Unit Test Environment (UTE),
which is in itself a complete J2EE environment.

Within the graphical WebSphere Studio process ed-
itor, the developer can drag and drop different kinds
of BPEL+ activities into the process model canvas.
Web services, called via invoke activities, can be com-
bined with other types of BPEL or BPEL+ activities,
and control links and conditions can be applied to
control the order of Web service invocations.

For each invoke, receive, reply, and pick-onMessage
activity, the process modeler specifies which part-
ner link is associated with the activity. The name of
each partner link is later associated with a partic-
ular Web service or Java endpoint. The resolved end-
point is either used to invoke a Web or Java service
or to provide a Web or Java service to the outside
world.

Business process data are represented by BPEL or
BPEL+ variables, which can be defined with wSDL
messages, XML schema types, or Java types. After
the process variables have been defined, the BPEL
activities can use the variables, for example, as re-
quest or response messages of invoke activities.

Business process deployment. When BPEL+ bus-
iness processes are deployed into the WebSphere
Application Server runtime infrastructure, the pro-
cess model constructs are mapped to J2EE compo-
nents as described previously. Mapping rules based
on those defined by JAX-RPC® are applied when J2EE
artifacts are created from corresponding BPEL+ lan-
guage elements. Table 1 gives a detailed overview
of this mapping for the various constructs involved.
BPEL+ constructs such as custom properties are ex-

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

Table 1

Mapping of BPEL and BPEL+ language constructs to J2EE artifacts

BPEL or BPEL+ Construct

J2EE or Java Artifact

Process name space

Process model

Synchronous process interface
Asynchronous process interface
Receive or pick-onMessage activity
Message with parts

Variable

Correlation set property
Correlation set

Partner link

BPEL+ inline Java activity
BPEL+ Java condition
BPEL+ custom properties

Enterprise bean package name

Entity bean

Stateless session bean facade

Message-driven bean facade

Enterprise bean method

Enterprise bean method signature, parameters
Entity bean field

Entity bean field, used by finder methods
Entity bean finder method

Local (java:comp/env) JNDI name for dynamic endpoint lookup
Enterprise bean method

Enterprise bean method

Enterprise bean environment entries

plained below. Names for generated enterprise bean
interfaces and methods are derived from BPEL pro-
cess names, WSDL port type names, and WSDL op-
eration names. Names of enterprise bean fields are
derived from BPEL variable and property names. Ad-
ditional enterprise bean methods are generated from
BPEL+ inline Java code.

For all business processes, a facade stateless session
bean is created that represents the intended inter-
face for all EJB applications interacting with the pro-
cess (see Figure 10, line 1). For each receive or pick-
onMessage activity, a method on the facade session
bean is generated (line 2).

For business processes that are executed as long-run-
ning, interruptible processes, an entity bean is cre-
ated that holds the process instance state (see Fig-
ure 11, line 1). Variables of the business process hold
the runtime data of a process instance. The entity
bean has the same methods as the facade session
bean (line 2). In addition, getter and setter methods
for variables are available for use by Java script ac-
tivities or Java conditions. BPEL properties that are
used in correlation sets are mapped to individual
fields on the entity bean (lines 3 and 4).

As a consequence, the extraction of a correlation set
for a received message is performed by simply call-
ing a finder method on the entity bean home inter-
face (see Figure 12). The session bean methods in-
voke entity bean finder methods (line 4) and,
optionally, the create methods (line 2) if no process
instance is found and createlnstance="yes” is spec-
ified for the BPEL activity. This approach completely
hides the process instance correlation and instance

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

creation from the partner that is sending a message
to a process, which is in line with the BPEL paradigm
of implicit instance creation.

Finally, this mapping to standard enterprise bean
find/create methods also caters to process models
with multiple receive createlnstance=*“yes” activities
(message rendezvous). Multiple messages correlated
to the same process instance may arrive in any or-
der, and, regardless of the arrival order, only the first
arriving message must lead to the creation of a new
process instance. The messages subsequently arriv-
ing must “join” the existing process instance.

BPEL+ processes are deployed into the WebSphere
Application Server runtime platform in order to ex-
ploit platform-provided QoS attributes for their ex-
ecution. At the same time, the IBM extensions for
the BPEL language provide capabilities to easily in-
tegrate business processes with existing Java and J2EE
applications. As was discussed earlier, the BPEL+ pro-
cess modeler may specify Java interfaces for invoked
or provided operations instead of WSDL port types.
In addition, Java code may be inserted directly into
the process model for simple calculations or data
transformations. Furthermore, the modeler can spec-
ify conditions for the process logic in Java. Both Java
activities and Java conditions are deployed as enter-
prise bean methods. This approach provides a well-
defined runtime environment for the inline Java
code. The Java programmer can exploit all J2EE plat-
form capabilities in the same way as for every other
EJB application. This includes all options provided
for EIB deployment, such as those for transactional
behavior or security.

KLOPPMANN ET AL. 283

Figure 10 Generated process session EJB (remote interface)

package travelBooking;
import ...;

1 public class TravelBookingSessionBean
implements javax.ejb.SessionBean {

2 public OperationResult book(WSDLMessage input) { ...
public void cancel(WSDLMessage cancellnput) { ... }

Figure 11 Generated process entity EJB (remote interface)

package travelBooking;
import ...;

1 public class TravelBookingBean
implements javax.ejb.EntityBean {

2 public OperationResult book(WSDLMessage input) { ... }
public void cancel(WSDLMessage cancellnput) { ...}

3 public abstract java.lang.String

getCorrelationSetTravelBookingPropertyConfirmationNumber() ;

4 public abstract void

setCorrelationSetTravelBookingPropertyConfirmationNumber(

java.lang.Integer newConfirmationNumber) ;

Custom properties can be used to parameterize a
business process. They allow a process modeler to
add attributes to processes. Although the value for
BPEL properties can only be derived from messages,
the value of custom properties can also be set in the
process model, during deployment of processes, or
at runtime, for example, by Java snippet activities.
Custom properties can, for example, be used as
configuration properties to customize the behav-
ior of ready-made processes when they are de-
ployed or to assign characteristics, such as impor-
tance or high business value, that have a default
value set at modeling time that is overridden for
particular process instances at runtime when a cer-
tain condition is met. Custom properties are

284 KLOPPMANN ET AL.

mapped to environment entries on the EJB deploy-
ment descriptor, they can be overridden by the pro-
cess deployer, and they may be accessed by inline
Java code in the business process. If the inline code
requires access to separately managed resources,
the corresponding resource references can be
added to the deployment descriptor of the gen-
erated business-process enterprise bean (business
process bean). Note that the deployment descrip-
tor is generated from corresponding specifications
in the WCDL component declaration. It is not in-
tended that the deployment descriptor be changed
later. Figure 13 shows a sample snippet of a gen-
erated EIB deployment descriptor for a business
process bean.

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

Figure 12 Generated process entity EJB (remote home interface)

package travelBooking;
import ...;

1 public classTravelBookingHome
implements javax.ejb.EJBHome {

2 public TravelBooking create (PIID piid)
throws EJBCreateException;

3 public TravelBooking findByPrimaryKey(PIID piid)
throws EJBFinderException;

4 public java.util.Collection
findByCorrelationSetTravelBooking (
java.lang.Integer confirmationNumber)
throws EJBFinderException;

As mentioned earlier, BPEL+ processes are deployed
as part of standard J2EE applications. Figure 14 de-
tails the involved artifacts that are relevant during
deployment. During deployment, new J2EE artifacts
are generated and are put into the same EJB-JAR file
that already contains the BPEL and WSDL (and po-
tentially XML schema type) artifacts. During deploy-
ment, code generators map the process model to en-
terprise bean interfaces and classes, and to EJB
deployment descriptors. This phase of the process
deployment operates similarly to a build environ-
ment that takes source code artifacts and produces
the executable application. This archive may contain
multiple processes, together with all the other well-
known parts of an EJB application, EJB client, or Web
client.

In addition to the code generation, the process de-
ployment binds BPEL partner link specifications to
concrete service endpoints in order to enable the run-
time to execute invoke activities referring to these
partner links. Before instances of the business pro-
cess can be created and executed, it has to be de-
termined how and when the partner link binding is
going to happen. This may happen at different points
in time, such as:

1. Static binding. The service endpoint may already
be well-known when the process model is created.
In this case, the WSDL definitions with the service
endpoints are provided together with the BPEL
process definition in the enterprise application ar-

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

chive, and a separate component wiring file con-
stitutes the static relationship between the BPEL
partner link and the WSDL port.

2. Deployment-time binding. The endpoint statically
associated with a particular partner link (see 1)
may be overridden at deployment time.

3. Runtime binding via locator. As an alternative to
a relationship with a fixed endpoint, a locator
expression can be deployed that is evaluated at
runtime, for example, a UDDI query expression.

4. Runtime binding via assignment. The service end-
point address is sent to the process instance as an
endpoint reference (see Reference 8) and
mapped to the BPEL partner link with an explicit
assign activity.

The service endpoint or locator is made known to
the runtime by adding it to the global JNDI name
space. When a process instance is executed, the bus-
iness process engine resolves the partner link via a
JNDI lookup. This approach provides flexibility for
changing the association without complete redeploy-
ment of the process, which is important if process
instances may run for a very long time. The lookup
returns a Java representation of the WSDL definition
with the service endpoint address and the binding
used for the invocation.

Besides endpoints used by the process to invoke Web
services, the deployed process also provides a Web
service (or Java) endpoint. Each inbound receive,
receive-reply, or pick-onMessage activity of a de-

KLOPPMANN ET AL. 285

Figure 13 Generated process entity-bean deployment descriptor

<entity id= "TravelBooking">
<ejb-name>TravelBooking</ejb-name>

<local-home>TravelBooking.TravelBookinglLocalHome</local-home>

<local>TravelBooking.TravelBookinglLocal</local>

<ejb-class>TravelBooking.TravelBookingBean</ejb-class>

<persistence-type>Container</persistence-type>
<prim-key-class>java.lang.Integer</prim-key-class>
<reentrant>true</reentrant>
<cmp-version>2.x</cmp-version>

<abstract-schema-name>TravelBooking</abstract-schema-name>

<cmp-field id="CMPAttribute_1044271092444">

<field-name>correlationSetTravelBookingPropertyConfirmationNumber

</field-name>
</cmp-field>
<primkey-field>piid</primkey-field>
<resource-ref id="ResourceRef BPEL">
<description/>
<res-ref-name>jdbc/BPEL</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>
<res-sharing-scope>Shareable</res-sharing-scope>
</resource-ref>
<query>
<description/>
<query-method>

<method-name>findByCorrelationSetTravelBooking</method-name>

<method-params>

<method-param>java.lang.Integer</method-param>

</method-params>
</query-method>
<ejb-gl>select object(o) from TravelBooking o

where o.correlationSetTravelBookingPropertyConfirmationNumber=?1

</ejb-ql>
</query>
</entity>

ployed process represents a service endpoint that can
be consumed by a client or business partner. If a pro-
cess model contains multiple asynchronous interac-
tions with different business partners, it is sometimes
necessary to dynamically determine the service end-
point that a business partner should use for the next
interaction. Different partners may issue callbacks
to the process via different endpoints. If the partner
is local to the enterprise in which the process is run-
ning, the interaction may be performed with an end-
point that is only known locally and may have dif-
ferent QoS attributes than an endpoint used for
business-to-business interactions. For this purpose,
the runtime infrastructure determines the endpoint
address of the process itself, which is intended to be
used by a particular partner.

286 KLOPPMANN ET AL.

The process may use an assign activity to map its own
address that is supposed to be used by a particular
partner to a variable and then send the address to
that partner. The format for callback addresses is
an endpoint reference or a global INDI name in the
case of a Java service. Similar to the lookup for in-
voked Web services discussed earlier, the process
runtime infrastructure does a INDI lookup for its own
endpoint, which is wired to a partner link during pro-
cess deployment.

When all artifacts in the enterprise application ar-
chive have been created, the standard WebSphere
application installation process is initiated. The gen-
erated process beans are installed, and correspond-
ing configuration repository entries are created. At

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

Figure 14 Enterprise application archive with generated process artifacts

TravelBookingApplication.ear

TravelBooking.jar

TravelBooking.wsdl

interfaces, properties
partner link types

GENERATE
ENTERPRISE
BEANS

TravelBookingSession TravelBookingMDB

stateless session bean message-driven bean entity bean

TravelBookingUtility.jar TravelBookingClient.war

- TravelBookingData TravelBookingClient

Java class Java class

the same time, the process model itself is translated
into an executable process template and persisted
into the business process engine database. The pro-
cess template contains serialized objects optimized
for the business process engine. Note that the same
runtime representation is created from processes that
have been modeled with the previous Version 5.0 of
WebSphere Studio, which provides an upgrade path
for existing installations of the business process
engine.

The complete sequence of artifact generation, de-
ployment, and installation tasks can be performed
either with or without human interaction. A typical
scenario for an interactive process deployment would
include manual steps for binding resource references
to actual resources.

A process can be deployed into the application server
runtime in one unattended step, that is, without user

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

TravelBooking.bpel TravelBooking.wcdl Wiring.wcdl
business process process component component
definition declaration wiring
GENERATE GENERATE
EJB DD BINDING
TravelBooking TravelBookingBase ejb-jar.xml *-bnd.xmi
Java class EJB DD EJB binding
TravelBookingClient.jar *.rar

TravelBookingClient resource

Java class

interaction, if all required service endpoints and the
corresponding binding information are provided.
This unattended deployment step may be initiated
by a program. Automatic and unattended deploy-
ment is required for several e-business on demand*
computing scenarios,'’ where processes have to be
dynamically created, deployed, installed, executed,
and de-installed.

Execution infrastructure for business
processes

The previous sections described the programming
model of BPEL and the extensions introduced by
BPEL+, as well as the development and deployment
of workflow-based applications. This section takes
a look at the execution of business processes within
the infrastructure provided by the process engine in-
tegrated in WebSphere. It first explains the archi-
tecture of the process engine and the application pro-

KLOPPMANN ET AL. 287

Figure 15 Business process engine architecture

BUSINESS PROCESS ENGINE

CLIENT CLIENT API

PEOFPLE
INTERACTION

I

STAFF REPOSITORY

gramming interface (API) it offers. Next, it talks about
the different types of business processes that the en-
gine supports and their respective characteristics. Af-
ter having explained how the invocation of services
is supported, the focus for the rest of the section is
on the QoS aspects of workflow-based applications
and the appropriate support by the WebSphere in-
frastructure. Performance, workload balancing, se-
curity, and high availability are the topics being dis-
cussed. The section closes with a subsection on
business process engine topologies, summarizing the
most important aspects of this section.

Architecture. We first look at the business process
engine, which has been implemented as a special con-
tainer, called the business process container. Figure
15 provides an overview of the business process en-
gine that shows the major building blocks of the pro-
cess engine and the major components with which
it interacts.

The business process engine consists of the follow-
ing building blocks:

* The client API used by client applications to start
business processes and to interact with running
business processes

» The process navigation component that navigates
through the BPEL+ business process and decides
which activities are to be executed in which order

e The human interaction component that interacts
with external staff repositories to identify those
who should work on a particular staff activity of
a BPEL+ business process, and that provides the

288 KLOPPMANN ET AL.

PROCESS NAVIGATION

SERVICE MONITORING
INVOCATION
WEB SERVICES BUSINESS AUDIT LOG
AND JAVA ACTIVITY
SERVICES MONITOR

interfaces by which clients such as a process por-
tal can work with the activities

* The service invocation component to invoke Web
services or Java services

* The monitoring component that provides infor-
mation for business activity monitoring tools or
audit logs

Not shown are infrastructure components that are
used by the process engine for its operation, such as
the database that stores business process models and
runtime information or the message queuing system
that handles asynchronous messages.

Application programming interface. Clients typically
interact with business processes using the enterprise
bean facade interface specifically generated for each
business process. As pointed out earlier, these spe-
cific interfaces are generated according to the port
type or Java interface specifications of the business
process and its partners.

An alternative way of accessing business processes
is through a set of generic API verbs provided by the
business process engine. Examples of those APIverbs
are call to start a process, query to retrieve a list of
work items, or claim to start working on a staff ac-
tivity (see Reference 12 for details). Enterprise bean
as well as message rendering is provided for each of
the different API verbs. The enterprise bean render-
ing, for example, is used by the Web client provided
as part of the business process support in Web-
Sphere. The Web client allows humans to start bus-

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

iness processes and to interact with business process
instances and activities.

Business process types. We use the transactional
capabilities and process behavior that a business pro-
cess exhibits as a means for identifying different types
of business processes. The different transactional ca-
pabilities and process behaviors manifest themselves
as different QoS characteristics of the appropriate
workflow-based application.

Noninterruptible business process. The first type of
business process is a noninterruptible business pro-
cess. Noninterruptible means that the business pro-
cess runs on one physical thread from start to end
without interruptions. Noninterruptible business
processes are also known as microflows or micro script
streams." As the name suggests, microflows are small
in footprint and fast in execution. Microflows can
have different transactional capabilities. A microflow
can run within a distributed transaction, it can run
as part of an activity session (see Reference 14, chap-
ter 9), or it may not use transactions at all.

Microflows that run within a distributed transaction
are a special case of atomic spheres.'® They are not
as restricted as atomic spheres in that they can also
contain nontransactional activities. The global trans-
action ensures that all transactional activities of the
microflow either succeed or are rolled back. Non-
transactional activities do not participate in the global
transaction; to preserve integrity they have to be un-
done using compensation.

Compensation support in WebSphere is integrated
with transaction management. The WebSphere trans-
action log is used to store information required to
undo activities, such as the name of the undo op-
eration and the associated data. If a transaction is
rolled back, then compensation is run as part of the
rollback processing of the transaction manager.

Examples of nontransactional activities are activi-
ties that perform operations such as writing to a (non-
transactional) file system, sending messages via SMTP
(Simple Mail Transfer Protocol), J2EE connector op-
erations where either the connector or the back-end
system does not support transactional integration,
or SOAP-based Web services (the latter will become
transactional once the upcoming standard for Web
services transactions'>'® is broadly adopted).

Activity sessions provide an alternative unit-of-work
scope to that provided by global transactions. An ac-

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

tivity session can be longer-lived than a global trans-
action and can encapsulate global transactions. Ac-
tivity sessions are used to scope or coordinate local
transactions. They are used for microflows when it
is not possible to use a global transaction, for exam-
ple, when the microflow uses more than one resource
that only supports one-phase-commit. Activity ses-
sions provide a solution by coordinating the one-
phase commit process. If an activity session rolls
back, changes are undone.

Interruptible business processes. The second type of
business process is an interruptible (or long-running)
business process. Classic workflow systems have pro-
vided support for interruptible business processes for
quite some time. A business process becomes inter-
ruptible when each step of the process is processed
within its own physical transaction'’ (see Reference
13, chapter 4.7).

Navigation processing for an activity starts when the
business process engine receives a navigation mes-
sage in its navigation input queue. Each navigation
message represents an incoming connector for an
activity and carries the truth value for the connector
indicating whether the connector has been evaluated
to be true or false. The first action the process en-
gine performs is to start a transaction; all subsequent
actions are carried out under control of this trans-
action. Next, the process engine reads the message
from the navigation queue. Then, the process en-
gine reads the activity state from the database and
checks whether all incoming connectors for the ac-
tivity have been evaluated yet. If not, the activity state
is updated with the truth value of the message, and
the transaction ends. If all incoming connectors have
been evaluated, the process engine evaluates the start
condition of the activity. If the start condition eval-
uates to be true, the activity is executed. When the
activity finishes, the truth value of all outgoing con-
nectors is set to true (if the activity completes suc-
cessfully) or false (if the activity completes in error),
and a message is sent for each connector. Finally,
the activity state is written to the database, and the
transaction is ended. If the start condition of the ac-
tivity evaluates to be false, processing depends on
the setting of the suppressJoinFailure property of the
activity. Standard processing as defined in BPEL? is
to raise a fault. Changing the default to “handle join
faults automatically” is achieved by setting suppress-
JoinFailure to true. In that case, the activity is skipped,
and all outgoing connectors are assigned a truth value
of false. If an activity is skipped, dead path elimi-

nation®" is initiated; that means the truth value of

KLOPPMANN ET AL. 289

false is propagated transitively along entire paths
formed by consecutive links until a join condition is
reached that evaluates to be true.

If a system error occurs, such as a deadlock in the
database, the navigation transaction fails so that the
original message remains in the navigation input
queue, all database changes are undone, and the re-
try count is incremented. Aborting the navigation
transaction and retrying the navigation transaction
is carried out until either the message can be suc-
cessfully processed or the retry count exceeds a con-
figurable maximum number. If the retry count is ex-
ceeded, the message is moved into a hold queue. It
will be up to an administrator to decide how to deal
with the message. If the message is poisoned, that
is, it contains invalid data that always result in an
error condition when processed, the administrator
can change the contents of the message and resub-
mit it to the navigation queue for processing.

Business processes need to be interruptible if they
must wait for external stimuli or if they involve hu-
mans. Examples of external stimuli are events sent
by another business process in a business-to-business
interaction, responses to asynchronous invocations,
or the completion of a staff activity. In these scenar-
ios, running interruptible business processes is al-
most mandatory because the process engine cannot
tie up resources waiting for the arrival of the exter-
nal stimuli or the completion of the staff activity.

Service invocation. Activities in business processes
interact with the outside world by receiving messages,
sending messages, or by performing synchronous re-
quest-response operations on Web services and Java
services. The business process references these ser-
vices via partner links. At runtime, the partner links
are used to find the associated services and then to
invoke them.

A business process typically finds the services as de-
scribed in the earlier subsection “Business process
deployment.” Alternatively, partner links can be
bound to a service endpoint using an endpoint ref-
erence as defined by the Web Services Addressing
specification.® For example, a partner has provided
an endpoint reference as part of a request to the bus-
iness process. The business process could then use
this endpoint reference to send a message back to
the partner or could even send the endpoint refer-
ence to another partner who could then use the end-
point reference to respond back to the original
partner.

290 KLOPPMANN ET AL.

A business process invokes a service by exploiting
the functions offered by a service invocation infra-
structure. Examples of service invocation infrastruc-
tures are the Web Services Invocation Framework
(WSIF), ' JAX-RPC, or Java invocation. Using these
infrastructures, the business process engine can in-
voke almost any kind of service. Concrete examples
for services natively supported by WebSphere are
Web services with a SOAP binding, enterprise ser-
vices accessible through a suitable J2EE connector
such as the connectors for Information Management
System (1Ms™*), Customer Information Control Sys-
tem (CICS*), and SAP**, services with a message-
based interface (JMS, IBM WebSphere MQSeries?,
Java methods, or methods of an enterprise bean.

The incorporation of services not supported natively
can be achieved by “wrappering” the services with
a mechanism that is supported natively. Examples
of those services are executables, native code librar-
ies written in arbitrary programming languages, or
database-stored procedures. Typically one would de-
fine those services as Web services using WSDL and
then write the appropriate wrapper code.

Performance. The business process engine is built
using the J2EE artifacts offered by the application
server. It directly benefits from the performance
characteristics of enterprise beans, message-driven
beans, servlets, Java Database Connectivity (JDBC**)
connections, and JMS connections.

Throughput and response time of a workflow-based
application depend on the following factors:

* The type of business process used: Navigation costs
of a noninterruptible business process (micro-
flows) are much cheaper compared to interrupt-
ible business processes.

e The structure of the business process, such as the
number of structured activities, the number of
loops, the performance of services invoked by ac-
tivities, and the amount of parallelism.

* The performance of components used by the pro-
cess engine: Database and message-queuing sys-
tems with good performance characteristics have
an immediate impact on the performance of work-
flow-based applications, particularly for interrupt-
ible business processes.

The performance of interruptible processes can be
improved by giving hints to the process engine on
how it can optimize the transactional behavior of bus-
iness processes. Without any further optimization,

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

each activity in an interruptible business process runs
within its own physical transaction. By providing a
transaction hint for an activity, the engine can select
more flexible transaction boundaries, for example,
by combining multiple activity invocations into one
transaction. This reduces the navigation effort, re-
sulting in better response time and throughput. A
possible disadvantage of combining activities into
one transaction is the increase in recovery costs; more
work needs to be undone should an error occur. An-
other possible disadvantage is reduced concurrency
because the larger transactions require resource
locks to be held longer. Careful design decisions have
to be made on the part of the modeler when spec-
ifying transaction hints.

To improve the response time of some business pro-
cesses at the expense of others, a priority can be as-
signed with a business process template. The prior-
ity can be overridden at runtime for the individual
business process instance, based on actual data with
which the business process operates (such as
“amount > 1M$”) or by administrative action. The
business process engine uses the priority as a hint
to find out which business processes it should prefer
during navigation.

Compiling business process definitions into execut-
able code can further optimize the execution speed
of business processes, even compared to the execu-
tion in a highly efficient business process engine, by
reducing the number of instructions required for nav-
igation. A compiled business process reduces the in-
volvement of the process engine, in some cases even
to the point where only a Java Virtual Machine
(JvM*) is needed.

The performance advantages of compiling business
processes are to some extent outweighed by reduced
manageability and program maintenance, requiring
substantially more administrative support. Despite
these additional efforts, mainly for long-running pro-
cesses, compilation works quite well for microflows.
It reduces the overall number of instructions of the
microflow so significantly that its performance comes
close to hand-written Java code. This is less impor-
tant for a microflow that invokes many remote ser-
vices and performs extensive data mappings and cal-
culations—the number of instructions required for
navigation is small compared to the overall amount
of instructions consumed. A more noticeable effect
can be observed for microflows that script together
Java operations and local EJB calls, in particular, if
not only the business process is compiled but also

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

the service invocations. Doing that ensures that sim-
ple service invocations such as a Java method call
are performed inline in the compiled business pro-
cess code instead of using an invocation framework
such as WSIF.

For interruptible processes the disadvantages of
compilation by far outweigh the benefits. Therefore,
only streams within an interruptible process that are
executed within one transaction are considered for
compilation.

Workload balancing. Workload balancing is a core
capability of the WebSphere Application Server. It
ensures that incoming work requests are distributed
to the application servers, enterprise beans, servlets,
and so forth that can most effectively process the re-
quests. Workload balancing occurs on stand-alone
application servers and on application server clus-
ters. Workload balancing is performed in several sit-
uations. For example, it occurs between application
servers when a client sends an HTTP request from a
Web-based client and when a request is sent to the
enterprise bean, or it occurs between instances within
one application server when an API message is sent
to the message-driven bean API and when an inter-
nal message is received by the business process en-
gine. Additional workload-balancing capabilities can
be added to workflow-based applications by choos-
ing an application topology that combines Web-
Sphere clustering with clustered message queues.
When clustered queues are used, workload balanc-
ing between application servers also occurs when
sending messages to a message queue; we show an
application topology that combines both WebSphere
clustering and clustered message queues later in this

paper.

Dispatching each activity of an interruptible busi-
ness process to an arbitrary server is good from a
workload-balancing point of view. It slightly increases
navigation costs, though. A business process running
within one application server is said to have server
affinity. Affinity to an application server in Web-
Sphere means affinity to a JVvM process. If the bus-
iness process engine can assume affinity, it can op-
timize execution of business processes by using
advanced caching strategies to reduce the number
of database operations; this improves performance
of a particular process instance at the expense of re-
ducing workload balancing. When one is to be pre-
ferred over the other depends on the requirements
of the business scenario. The business process en-

KLOPPMANN ET AL. 201

gine in WebSphere supports both goals by provid-
ing the appropriate tuning parameters.

Security. A critical QoS property is security, in par-
ticular for workflow-based applications where secur-
ity not only means authentication of users and au-
thorization of user requests accessing methods of a
business process, but also resolution of staff queries
to authorize users to work with an activity in a bus-
iness process instance. Staff queries are defined by
the modeler of the business process and executed at
runtime to determine which persons are candidates
for working on a particular staff activity. The result of
a staff query is a set of persons. As a side effect of this
mechanism, we obtain instance-based authorization.

If we assume that WebSphere uses the local oper-
ating system as its registry, this registry is used to
authenticate client requests. When a business pro-
cess client (Web client) connects to WebSphere,
WebSphere enforces authentication of the client.
The credentials entered by the client are checked
against the entries of the WebSphere user registry,
and if authentication succeeds, the client request is
authenticated. The process engine stores both the
caller principal name and the security context used
to initiate the process as part of the persistent state
of the business process instance. The caller princi-
pal is stored because the process starter has special
rights when accessing a running business process. The
security context is stored to allow enforcement of
the same security constraints for subsequent activ-
ities running in separate transactions from the ones
that applied to the process starter. This action ef-
fectively results in all activities of the process instance
running on behalf of the process starter, even though
they are invoked in separate transactions. Seamless
and secure operation can only be ensured by reus-
ing the proper security context.

To avoid manual synchronization of principals, the
same repository should be used for staff queries and
WebSphere user management. To support other
than trivial staff queries (e.g., “is manager of””) a rich-
enough repository is required. WebSphere provides
out-of-the-box support for Lightweight Directory Ac-
cess Protocol (LDAP); other (maybe company-spe-
cific) repositories can be integrated using the respec-
tive plug-in points of WebSphere.

High availability. Making a WebSphere workflow-
based application highly available!'® requires high
availability (HA) support for all components involved:
network dispatchers, HTTP servers, application serv-

292 KLOPPMANN ET AL.

ers, messaging system (see References 19 and 20),
database (see References 21 and 22), and so forth.
That means every component must be redundant,
monitored for failure, and, in case of a failure, must
no longer receive any requests. WebSphere work-
load management (WLM) provides out-of-the-box ca-
pabilities that improve application availability by sup-
porting failover between application servers in a
WebSphere cluster. If combined with HA software
such as z0s* Parallel Sysplex,?** High Availability
Cluster Multiprocessing (HACMP) on the AIX* op-
erating system,” Microsoft Cluster Server (MSCS) on
the Windows™* operating system, or Sun Cluster on
the Solaris** operating system, a WebSphere sys-
tem can be made highly available.

Performance degradation as a result of component
failures can be minimized by using appropriate HA
software such as HACMP on AIX. HACMP not only
takes over the IP (Internet Protocol) address (re-
quired to establish new network connections) to the
backup system but also the MAC (Media Access Con-
trol) address of the failing system (thus keeping ex-
isting connections alive). As a consequence, pooled
connections in WebSphere do not become stale, and
workflow-based applications continue without per-
formance degradation.

Business process engine topologies. We now take
a look at some concrete topologies and analyze the
capabilities that a particular topology offers for a
workflow-based application. It should be noted that
all of the following topologies can run the same in-
terruptible and noninterruptible business processes.
The only difference in topologies is the QoS that they
are offering. The simple topology (see Figure 16)
shows how the business process engine is integrated
into WebSphere. The scenario uses a browser-based
client interacting with a simple, nonclustered work-
flow-based application running in WebSphere. The
business process engine uses the embedded message-
queuing support provided by WebSphere and a data-
base on a separate database server. The simple topol-
ogy is used for smaller workflow-based applications
with low throughput requirements. It provides sim-
ple load balancing within the application server. To
further simplify the topology, clients, WebSphere,
and database are run on one physical computer.
WebSphere Studio uses this topology in its test
environment.

The simple topology does not scale sufficiently for

business process scenarios requiring higher through-
put; a cluster topology using a stand-alone messag-

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

Figure 16 Simple topology

WEBSPHERE ENTERPRISE SERVER

Figure 17 WebSphere Application Server cluster topology with stand-alone messaging server

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004 KLOPPMANN ET AL. 293

Figure 18 High-performance topology

ing server, as shown in Figure 17, is a better choice.
Compared to the simple topology, the following
changes have been made: A network dispatcher has
been added to route requests to a set of HTTP serv-
ers that use a WebSphere Enterprise cluster. The
business process engine is clustered as part of the
application servers; that means the workload is
shared by the various process engines. Because dif-
ferent process engines may be involved in handling
aprocess instance, process instance information must
be shared between the different process engines.
Sharing is achieved by maintaining a remote data-
base and a remote queue manager. Note that the
clients sending the requests to the network dispatcher
are omitted from the figure for simplicity.

The advantages of the cluster topology with a stand-
alone messaging server are higher throughput and
good workload balancing. The topology is scalable
by adding WebSphere nodes to the cluster or by con-
figuring additional servers with business process con-

294 KLOPPMANN ET AL.

tainers on existing nodes. Use of the latter is sug-
gested on a powerful computer when the available
resources are not sufficiently used by one server. Us-
ing a single remote queue manager makes getting
and putting messages more expensive; also, the bus-
iness process engine cannot ensure server affinity for
a business process because there is no local queue
manager assigned to each application server. There-
fore, performance optimizations based on server af-
finity are not possible. The cluster topology for high
performance as shown in Figure 18 defines what ul-
timately can be done to achieve maximum perfor-
mance and scalability. Instead of a single messaging
server, an MQSeries cluster is used that is interwo-
ven with the WebSphere cluster.

The primary advantage of this topology is its excel-
lent scalability. It also provides configurable work-
load balancing for running business processes. This
is achieved by using MQSeries clustering. Each bus-
iness process engine has a local queue manager with

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

local queues assigned, allowing for more efficient
reads. If a business process is running with server
affinity, the process engine also uses the local queue
for sending messages. If optimized workload balanc-
ing is required instead, a second queue manager is
used. This queue manager has no local queues de-
fined. It forms a cluster with all other queue man-
agers. When the queue manager receives a message,
it routes this message to a suitable queue in the clus-
ter, and the associated business process engine reads
the message from that queue.

For mission-critical applications, the processing of
messages in a queue on a failing node should not be
delayed until the node has been brought up again.
To solve that problem, support for HA must be added
to the individual components. To simplify the HA
scope it is a good idea to separate the queue man-
agers from the application servers as indicated by
the dotted line in Figure 18. As long as there is still
one queue manager for distributing messages and
one for local access assigned to each application
server, this has no impact on the tuning capabilities
of the overall system, except that access to all queue
managers uses the remote interface instead of local
bindings, resulting in a slight performance penalty.
Note that extending the above topology by using a
database cluster instead of a single database is usu-
ally not required for workflow-based applications.
The amount of data stored on behalf of the business
process container even in large workflow-based ap-
plications can be handled easily by a single database
server. A detailed discussion of this theme can be
seen in Reference 13.

Summary

We have discussed how WebSphere provides pro-
cess choreography support that is compliant with
BPEL. We first showed how BPEL can be extended to
provide for support of J2EE and WebSphere con-
structs; this enables developers familiar with the Java
language to use Java features seamlessly within bus-
iness processes, eliminating the gap between the Java
world and the Web services world in the choreog-
raphy space and thus enhancing developer produc-
tivity. Next, we described how business processes are
developed using WebSphere Studio and how they
are deployed into the WebSphere Application Server
runtime infrastructure. Then, we presented the ar-
chitecture of the business process engine and how
it manifests itself to the outside world. We discussed
in particular the QoS properties of the infrastruc-
ture, such as performance, high availability, and se-

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

curity. Finally, we presented some internal aspects
of the business process engine.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.,
Microsoft Corporation, or SAP AG.

Cited references

1. F.Leymann, “Web Services—Distributed Applications with-
out Limits,” Proceedings of Database Systems for Business,
Technology and Web BTW 2003, Leipzig, Germany (Febru-
ary 26-28, 2003).

2. F.Leymann and D. Roller, “Workflow-Based Applications,”
IBM Systems Journal, 36, No. 1,102-123 (1997); also at http://
researchweb.watson.ibm.com/journal/sj/361/leymann.html.

3. Specification: Business Process Execution Language for Web
Services (BPEL4WS) Version 1.1 (May 2003), http://www.
ibm.com/developerworks/library/ws-bpel/.

4. R.Khalaf and F. Leymann, “On Web Services Aggregation,”
Fourth VLDB Workshop on Technologies for E-Services,
Proceedings of the 29th International Conference on Very Large
Data Bases (VLDB 2003), Berlin (September 2003).

5. F. Leymann and D. Roller, Business Processes in a Web Ser-
vices World, 1IBM Corporation, http://www.ibm.com/
developerworks/webservices/library/ws-bpelwp/.

6. Web Services Definition Language (WSDL) 1.1, W3C Note
(March 2001), http://www.w3.org/TR/wsdl.

7. F. Curbera, R. Khalaf, F. Leymann, and S. Weerawarana,
“Exception Handling in the BPELAWS Language,” Proceed-
ings of the International Conference on Business Process Man-
agement (BPM 2003), Lecture Notes in Computer Science 2678,
Springer-Verlag, Heidelberg (2003), http://tmitwww.tm.tue.nl/
bpm?2003/paper_curbera.htm.

8. Specification: Web Services Addressing (WS-Addressing) (March
2003), http:/www.ibm.com/developerworks/webservices/library/
ws-add/.

9. Java APIs for XML-based RPC (JAX-RPC), JSR 101, Java
Community Process, Sun Microsystems, Inc. (2003), http://
jep.org/en/jst/detail2id=101.

10. F. Budinsky, G. DeCandio, R. Earle, T. Francis, J. Jones, J.
Li, M. Nally, C. Nelin, Y. Popescu, S. Rich, A. Ryman, and
T. Wilson, “WebSphere Studio Overview,” IBM Systems Jour-
nal, 43, No. 2, 384-419 (2004, this issue).

11. Living in an On Demand World, White Paper, On Demand
Business Literature, IBM Corporation (October 2002), http://
www.ibm.com/e-business/doc/content/literature/literature_
ebusiness.html.

12. M. Kloppmann and G. Pfau, WebSphere Application Server
Enterprise Process Choreographer—Concepts and Architec-
ture, IBM Corporation (December 2002), http://www.
software.ibm.com/wsdd/library/techarticles /wasid/ WPC_
Concepts/WPC_Concepts.html.

13. F. Leymann and D. Roller, Production Workflow, Prentice
Hall, Inc., Upper Saddle River, NJ (2000).

14. R. High, E. Herness, K. Rochat, T. Francis, C. Vignola, and
J. Knutson, Professional IBM WebSphere 5.0 Application Server,
Wrox Press, Hoboken, NJ (2002).

15. Specification: Web Services Transaction (WS-Transaction), (Au-
gust 2002), http://www.ibm.com/developerworks/webservices/
library/ws-transpec/.

KLOPPMANN ET AL. 295

16. Web Services Coordination (WS-Coordination), IBM, Micro-
soft, BEA (September 2003), http://www.ibm.com/
developerworks/library/ws-coor/.

17. F.Leymann, “Transaction Support for Workflows,” (in Ger-
man), Informatik in Forschung & Entwicklung 12,No. 1, (1997).

18. D. Konig, M. Kloppmann, F. Leymann, G. Pfau, and D.
Roller, “Web Services Invocation Framework: A Step towards
Virtualization,” XMIDX 2003, pp. 33—44.

19. G. Wallis, “MQSeries and High Availability, Part 1,” Main-
frame Week, Issue 20 (May 22, 2002), http:/www.
mainframeweek.com/journals/articles/0020/MQSeries+and +
high+availability%2C+part+1.

20. G. Wallis, “MQSeries and High Availability, Part 2,”
Mainframe Week, Issue 21 (May 29, 2002), http://www.
mainframeweek.com/journals/articles/0021/MQSeries+and +
high +availability, +part+2.

21. M. Wright, An Overview of High Availability and Disaster Re-
covery for DB2 UDB, IBM Corporation (April 2003). http://
www.ibm.com/developerworks/db2/library/techarticle/
0304wright/0304wright.html?ca=dnp-215.

22. M. Rao, IBM DB2 Universal Database Clustering—High
Auvailability with WebSphere Edge Server, IBM Corporation
(May 2002), http://www.ibm.com/developerworks/ibm/library/
i-cluster/?dwzone=ibm.

23. J. M. Nick, B. B. Moore, J.-Y. Chung, and N. S. Bowen,
“S/390 Cluster Technology: Parallel Sysplex,” IBM Systems
Journal 36, No. 2, 172-201 (1997), http://www.research.ibm.
com/journal/sj/362/nick.html.

24. N.S. Bowen, J. Antognini, R. D. Regan, and N. C. Matsakis,
“Availability in Parallel Systems: Automatic Process Restart,”
IBM Systems Journal 36, No. 2, 284-300 (1997), http://www.
research.ibm.com/journal/sj/362/antognini.html.

25. High Availability Cluster Multi-Processing for AILX, Concepts
and Facilities Guide, SC23-4864, IBM Corporation (2003),
http://publibfp.boulder.ibm.com/epubs/pdf/c2348640.pdf.

Accepted for publication December 1, 2003.

Matthias Kloppmann [BM Deutschland Entwicklung GmbH,
Schonaicher Strasse 220, 71032 Boblingen, Germany (Matthias-
Kloppmann@de.ibm.com). Mr. Kloppmann is a Senior Technical
Staff Member with IBM Software Group’s laboratory in Boeblin-
gen. He is the lead architect for the Process Choreographer com-
ponent in WebSphere. Since he joined IBM in 1986, he has worked
on a variety of projects, focusing on the architecture of workflow
systems and Web services. Mr. Kloppmann holds an M.Sc. degree
in computer science and electrical engineering from the University
of Stuttgart.

Dieter Kénig IBM Deutschland Entwicklung GmbH, Schon-
aicher Strasse 220, 71032 Boblingen (dieterkoenig@de.ibm.com).
Mr. Konig is a software architect for workflow systems at the IBM
Germany Development Laboratory. He joined the laboratory in
1988 and has worked on the Resource Measurement Facility for
z/OS®, MQSeries® Workflow, and WebSphere Process Chore-
ographer. Mr. Konig holds a master’s degree (Dipl. inform.) in
computer science from the University of Bonn, Germany.

Frank Leymann [BM Deutschland Entwicklung GmbH, Sché-
naicher Strasse 220, 71032 Boblingen, Germany (leyl @de.ibm.com).
Dr. Leymann is an IBM Distinguished Engineer and a member
of the IBM Academy of Technology. He is the chief architect and
strategist of IBM’s workflow technology. As a member of the Soft-
ware Group Architecture Board, he contributes to setting the di-

296 KLOPPMANN ET AL.

rection of IBM’s middleware. In addition, he is the co-leader of
the team that is in charge of IBM’s Web Services Architecture
and is the technical lead of the Software Group Architecture
Board for the architectural middleware aspects of on demand com-
puting.

Gerhard Pfau IBM Software Group, Schonaicher Strasse 220,
71032 Boblingen, Germany (gpfau@de.ibm.com). Mr. Pfau is the
chairman of the Technical Expert Council EMEA CR and a mem-
ber of the WebSphere Foundation Architecture Board. He has
worked on the architecture of WebSphere Application Server Pro-
cess Choreographer since its inception and contributes to bus-
iness process standardization efforts in the Java community. Mr.
Pfau has published many articles and has given talks at various
conferences about workflow, Java server technology, enterprise
application integration, and other topics. Before working on bus-
iness process architecture, he was the lead architect for IBM’s
SAP J2EE Connector.

Dieter Roller IBM Deutschland Entwicklung GmbH, Schon-
aicher Strasse 220, 71032 Boblingen, Germany (rol@de.ibm.com).
Mr. Roller is an IBM Senior Technical Staff Member and a mem-
ber of the IBM Academy of Technology. He joined IBM in 1974
as a junior programmer and has held several technical and man-
agement positions in his IBM career. He is a member of the work-
flow architecture team. His current focus is on BPEL4WS as a
co-author of the specifications as well as a member of the ap-
propriate OASIS Technical Committee. Mr. Roller is the co-au-
thor of a textbook about workflow systems. He is a part-time lec-
turer at the University of Cooperative Education, Stuttgart.

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

