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The establishment of the Web application as
a successful application model may be
attributed to its adherence to open standards,
to the powerful J2EE™ application framework
for the execution of business and process logic,
and to its integration with heterogeneous
external systems, transactional processes,
and Web technologies. In addition, effective tool
support has enabled rapid development and
deployment, powerful processes composed
from components, and access to a steadily
increasing range of function. Many Web
applications are designed for high performance,
scalability, and highly reliable utilization and are
capable of extending modes of usage and
growing throughput. Successful application
development in these environments involves
bridging the gap between exercising available
programming specifications and the proper
design, coding, and life-cycle management of
the application. This paper addresses issues,
transactional and nontransactional, in
application development that are important for
the successful deployment and execution of
enterprise Web applications in production
environments. These issues are based on
experience with deployments of Web
applications in various customer environments
and are not new, but are either fundamental to
previous transactional systems or have
appeared in other classes of applications.
Understanding these issues is essential both to
building effective tooling to support the runtimes
and to the evolution and definition of the
runtimes themselves.

The advent of the Internet revolution has given rise
to a new form of enterprise applications known as
enterprise Web applications. The main feature that
differentiates enterprise Web applications from their
predecessors is the ability to seamlessly integrate
multiple disparate systems. However, at their core,
enterprise Web applications differ very little from
past incarnations of transactional processing systems.
Over the past several years, as more and more bus-
inesses have automated and integrated business pro-
cesses, the result has been that the number of in-
dividuals developing enterprise applications has
grown dramatically. In the past, developers build-
ing enterprise applications formed a relatively small
community with specialized skills to develop high-
throughput, reliable transactional systems. As the
number of developers building enterprise applica-
tions has grown, more and more general software
developers have moved into the development of en-
terprise applications. In this context it is useful to
examine the issues facing the platforms on which en-
terprise Web applications are built.

At their most basic level, enterprise Web applica-
tions are used for transaction processing. Therefore,
it stands to reason that the well-known issues from
the rich history of transaction processing apply
equally well to enterprise Web applications as to past
transactional processing systems. The main issues
that must be dealt with in the development of trans-
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actional systems include: resource management and
utilization, concurrency and parallelism, failure man-
agement, persistence of data, and configuration man-
agement. Since enterprise Web applications do more
than just transaction processing, other issues must
be examined in addition to the characteristic trans-
action processing (TP) issues. These nontransaction
processing (non-TP) issues include memory leaks, the
efficiency at which data flows through the layers of
the application and underlying frameworks, and
overly generalized application components and
frameworks. An understanding of both the charac-
teristic transaction processing issues and the non-
transaction processing issues is not only necessary
to develop and deploy successful enterprise Web ap-
plications, but is also necessary in looking to the fu-
ture of the platforms that support these applications.
Similar to the spirit of the article “Hints for Com-
puter System Design,”1 which illustrated the issues
in the development of operating systems, this paper
shows the issues in the development of transactional
Web applications.

The next section gives a brief introduction to the to-
pology of the environment in which transactional
Web applications execute. The intent of this section
is not a tutorial on how these applications can be
configured; rather it is to describe the distributed na-
ture and the complexity of the environment in which
these applications run. We then discuss the TP is-
sues in the third section. The fourth section discusses
the non-TP issues, and the last section concludes the
paper.

Topology of Web applications

Figure 1 shows an example of a topology for a Web
application, taken from the WebSphere* 5.0 hand-
book.2 This topology is not meant to be repre-
sentative, but rather just a simple example to illus-
trate the concepts in the layout of Web applications.3

Real topologies are typically much more complex
when the goal of the deployment is integration of
disparate sources of data or functionality. In this to-
pology, a Web server node sits between the appli-
cation servers and the Internet. The Web server ser-
vices static content (such as HyperText Markup
Language, or HTML, pages). Any requests that re-
quire dynamic content, that is, processing by serv-
lets, JavaServer Pages** (JSP**), Enterprise JavaBeans
(EJB**), back-end data, and so forth are sent to the
application server node.

There can be multiple application servers (multiple
Java Virtual Machines each running an application
server) on a single machine or multiple hardware
platforms running application servers. When a sin-
gle hardware platform (application server node) runs
multiple application servers, the scaling of applica-
tion servers is referred to as vertical scaling. When
multiple physical application server nodes exist in
the picture, the scaling is referred to as horizontal
scaling. Multiple application servers can run the same
individual units of work in the Web application. For
example, in one scenario, two application server
nodes can exist, each running one application server.
On one node, the application server may be execut-
ing the presentation layer of the application, and on
another node, the application server may be execut-

Figure 1 Example of a topology for a Web application
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ing the business logic layer. The business logic ap-
plication server will be mostly interacting with the
database server.

In this topology, the Web server sits between two
firewalls, increasing the levels of protection. On one
side, the Web server links to the outside Internet us-
ing the protocol firewall, and on the other side, the
application server nodes are protected still further
by the domain firewall. The directory services back
end (Lightweight Directory Access Protocol, or
LDAP) typically provides other security services for
users of the Web application—password, user name,
authentication, authorization, and so forth. Finally,
the database servers provide persistent storage for
retrieval and storage of user data related to the bus-
iness transactions.

Characteristic issues in TP application
design
In this section, we discuss transactional processing
issues.

Transactional servers are different from clients. The
vast majority of application programmers begin their
careers writing applications for clients. Beginning in
this way is only natural, because the vast majority of
humans begin their experience with computers by
using client applications. Those programmers who
are experienced with using shared computing re-
sources rarely write transactional applications. As a
result, application programmers approach their work
with the point of view of client-side, interactive ap-
plications on machines where CPU and other resource
utilization is not a problem, where concurrency is
minimal (since eventually everything is bounded by
user-interaction rates), using a particular set of ap-
plication libraries (e.g., windowing toolkits based on
graphical user interfaces, or GUIs, and event-based
programming paradigms), and, when using shared
resources, with the assumptions of time-sharing
systems.

None of these habits, libraries, and patterns serve
the programmer writing server-side applications well,
for reasons which we will expand upon in this and
the following subsections. First, and most important,
are issues of resources, scheduling, and concurrency.
On a transactional server, unlike on a client, a unit
of work has the following properties:

● It almost invariably executes with only its initial
input from the user.

● Its output is not complete (and often not even
transmitted) until the unit of work is completed.

● Unlike on a time-shared system, every unit of work
that actually starts executing must be completed, un-
less it is aborted, in which case it never is completed.

● The concurrency model that is almost always pre-
sented to the programmer is of fully serialized ex-
ecution semantics,4 in which no other unit of work
is also executing while the unit of work is execut-
ing. To the extent that this model is violated, the
programmer must exercise greater and greater dis-
cipline and knowledge of the underpinnings of the
system.

● A transactional server, the context in which the
“unit of work” executes, is intended to run forever.
In contrast, client-side programs operate for the
most part under the assumption of at least infre-
quent (and often frequent) restart; most programs
are not designed to run forever, and if they are
run in that manner, will eventually display various
anomalies. As a researcher once remarked, “Ex-
it(2) is a wonderful garbage collector.”5

● As implied by the term “unit of work,” there is a
notion of requests and responses, as well as a no-
tion of the work required on receipt of a request,
to construct the desired response. Transactional
servers are systems designed to process units of
work in a smooth and steady manner.

These constraints yield some surprising (from a cli-
ent platform point of view) rules that must be fol-
lowed in order to achieve best results. These rules
also provide the following insights as to where tool-
ing and platform support can be enhanced to most
effectively help the developer:

● Many client-side and native libraries are simply
not usable, because either they are not designed
to be re-entrant or they depend on the use of mul-
tiple threads, which is ill-advised in a transactional
environment.

● As described later, applications and infrastructure
must adhere to the two-phase resource-acquisition
discipline.6

● The developers of such applications must be able
to compute (or at least understand) the “budget”
of CPU, memory, I/O, and locking required for each
transaction.

● Concurrency should be avoided when at all pos-
sible. Multithreaded code is difficult to reason
about, difficult to code, and difficult to debug. In
addition, typical problems with multithreaded code
are difficult to diagnose and remedy. Given the dif-
ficulty in writing correct multithreaded compo-
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nents, it is best if threads are not created dynam-
ically within such applications.

● The legitimate uses of multithreading that remain
are almost all for the sake of creating requests to
multiple back-end systems in order to achieve
overlap of the latencies involved.

● Errors and failures which, on a client, would war-
rant retries, time-outs, or other measures to re-
cover, almost invariably should not be retried on
a server. There is an important exception to this
rule: when performing operations on some back-
end system such as a database, a retry is warranted
if the first operation fails because the connection
handle might be “stale,” but otherwise, no such
retry should ever be attempted.

Resource management and utilization. It is not an
overstatement to say that the distinctive property of
transaction-processing systems that sets them apart
from other systems is their unique approach to re-
source management. There are at least three aspects
to resource management from a TP perspective that
we feel are absolutely critical and that programmers
routinely get wrong. As in the rest of this paper, the
rules and provisos we enumerate are in fact described
elsewhere, for example, in Reference 7 and other
classic texts.

The first important proviso of resource management
is that important shared resources, such as database
connections, threads, and network connections to re-
mote servers, must be pooled so that they are not
created, used, and deleted during each transaction.
Although it is obvious to pool database connections,
we routinely find both customer code and applica-
tion code libraries (again, designed for running on
clients where this is not a problem) that do not pool
or reuse threads. Since Java** threads (or, for that
matter, threads in C or C��) have a native mem-
ory component, not pooling them, but instead cre-
ating, using, and destroying them, causes churn in
the native memory allocator, which, under even the
least stressful of situations, will eventually fragment
native memory, resulting in a progressive increase
in the size of the native heap. We have observed the
same problems with database access libraries that
were written in C, and we conjecture that this is a
problem in general for Java server applications ac-
cessing native code.

The second important proviso of resource manage-
ment is that, generally, application programmers
must consider the true resource consumption of their
code. In client applications, to a first approximation,

programmers care about the response time of their
programs and about the overall size of their pro-
grams. Assumptions are made that most applications
will run alone on a client machine, and it is not ter-
ribly important whether their code consumes use of
the entire machine while it is processing or merely
a tiny fraction; what matters, again, is response time.
In stark contrast, on a transaction processing system,
especially a busy system, it is assumed that at all
times, all critical shared resources (memory, CPU,
disk I/O) are fully utilized, and hence, the require-
ments for each transaction must be understood at
some level of detail at least.

Simply put, for each transaction, the application pro-
grammer should be able to summarize the CPU bud-
get (number of CPU seconds), the number of data-
base operations, their complexity, their read and
write requirements on the database, the scope and
duration of locks held, and so forth. This summa-
rization is actually critically important because, for
instance, if even a small number of CPU-intensive
units of work enter the system, they can monopolize
the CPU, rendering the entire system unresponsive
for all users.

The third important proviso of resource manage-
ment, a critically important property of transactions,
is that they should adhere to the two-phase resource-
management discipline.6 This proviso applies to both
traditionally shared resources, such as database con-
nections, as well as to the CPU, the network, and other
resources that are not normally thought of as shared.
The following two anecdotes from the real world il-
lustrate this point.

In the first anecdote, a customer followed a com-
mon design pattern, which is to encapsulate the logic
of database access in various functions, as for in-
stance, a function that would take a (retail) stock-
keeping unit (SKU) and return its descriptive infor-
mation, looking it up in a database. Each such
function call would take the SKU as a parameter and
would acquire a database connection, run the query,
release the connection, and return the result. When
used in an environment where hundreds of SKUs had
to be mapped to descriptive information, hundreds
of queries would be run, but, worse, connections
would be acquired and released hundreds of times
during the same transaction. This activity is not a
problem as long as the number of threads desiring
connections is fewer than the number of available
connections. However, if the number of threads ever
exceeds the number of connections, then the first
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thread will be able to perform its last query only af-
ter the last thread has been able to perform its next-
to-last query. When the number of threads is greater
than the number of connections, the rate of progress
made on an individual thread is governed by its abil-
ity to acquire a connection, not by any property of
the work being done. This rate is a catastrophic deg-
radation in response time because we would expect
that the time the first thread would take to perform
its last query should be independent of how many
other threads are waiting to use connections.

In the second anecdote, another customer code had
the same coding pattern, but sometimes a function
(which was running a query and, hence, had a con-
nection to the database) would invoke a different
function, which would itself request a (different) con-
nection, running other queries. The application
would deadlock because of an insufficient number
of (pooled) connections, but there was also the pos-
sibility of deadlocking the two connections against
each other. (Indeed, there were even more than two
connections in some situations.)

A common problem here is a lack of understanding
as to which resources are being used by the trans-
action, where, and in what number. In the first case,
the application repeatedly allocated and then re-
leased the same resource. Under any sort of serious
load, the response time of the application would de-
grade catastrophically. This problem is essentially (in
a technically precise sense) a version of thrashing
derived from operating systems8—the catastrophic
degradation of response time under even a modest
overcommitment of resources. In the second case,
the application, not understanding its resource needs,
actually allocated more than one of the desired re-
source, risking the possibility of:

● Resource exhaustion and resource-related dead-
lock: If the application already had a connection
and needed a connection when no other connec-
tions were free, it could end up waiting for a con-
nection, and if all other threads were doing the
same, they would all wait forever.

● Classic database deadlock: Because of the same
thread performing operations on two different con-
nections that, if they were run on one connection,
would be perfectly serializable (by definition, since
they were run on one connection) but run on two
connections, were in fact nonserializable.

As described above, classic CPU thrashing is a ver-
sion of this problem that is subtly related to the use

of general-purpose time-sharing operating system
principles, rather than special-purpose transaction-
processing operating system principles. In the first
example, we posited a resource (database connec-
tions) of which the application needed only one, but
for a large number of operations. The application
acquired, used, and released that resource repeat-
edly. Consider any transaction that requires a non-
trivial amount of CPU processing. If the application
is not able to finish any particular run of CPU-inten-
sive instructions within a scheduling quantum, then
it will also be subject to the same problem as in our
first example above: the last thread waiting for the
CPU will finish its next-to-last unit of CPU-intensive
work immediately before the first thread can begin
its last unit of CPU-intensive work. In short, the CPU
itself has become over-committed, and threads spend
their time cycling through the queue, waiting to ac-
quire the CPU.

The solution to this sort of problem is invariably the
same and is referred to as the two-phase resource-
acquisition discipline: After having acquired a unit
of a particular resource, do not release it until such
time as the resource will no longer be required for
the remainder of the transaction. Likewise, having
acquired a resource, store it in such a manner that
any other subprogram of the transaction that requires
that resource can immediately discover the already
allocated unit in a well-known place.

Concurrency and parallelism. On client machines,
there is often no real exploitable parallelism. Aside
from periodic events (like timers), and background
tasks (like MP3 players), the applications themselves
are designed to respond to user input and to wait
until such input is provided. Although client GUI ap-
plications are written in a multithreaded fashion, in
fact, the threading is merely a mechanism for express-
ing concurrency. As Ousterhout9 has observed, they
could have been written using events, and there con-
tinues to be a significant debate as to which style of
program structure is “better” either from the stand-
point of programmer understanding or efficiency.
Regardless of which model is chosen for structuring
the GUI application, though, by and large the actual
code is not truly re-entrant under parallel execution
conditions. Because there really is, at any moment,
at most one unit of work to execute, application pro-
grammers make implicit assumptions about the non-
interruptibility of their code; that is, adjacent instruc-
tions will not be separated by a context switch. They
do not intend to make these assumptions, but with-
out an effective way of testing their systems under
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truly concurrent load, it is well-nigh impossible to
find latent examples of such bad practice in their
code.

In a server, in stark contrast to a client, one must
assume that there will always be many independent
units of work to execute, and that, hence, any two
instructions will eventually be separated by a con-
text switch. This assumption causes two different but
related problems:

1. As described above, the intricacies of concurrency
make it difficult to understand the behavior of
code that manipulates a concurrently shared state.
As a result, it is more or less a rule that program-
mers should never explicitly manage shared state;
that instead, they should use external data man-
agers to do this, so that they can write their own
code in the model of fully serializable execution.

2. A specific problem occurs when programmers
must write code that manipulates shared state in
the context of pooling resources. In our experi-
ence with commercial transactional applications,
the task of writing custom-written database con-
nection pools and custom-written thread pools is
an error-prone task. In addition to it being error-
prone, the types of errors that result are extremely
difficult to diagnose and remedy. Given the dif-
ficulty and risk of implementing these structures,
we would strongly recommend that programmers
avoid attempting the task whenever possible.

A second class of issues is related to concurrency,
surrounding contended objects, locking, and hot
locks. Transactional applications often manipulate
shared state in databases and, as we have described,
sometimes do so in server memory. When this shared
state is very frequently accessed, and the locks used
to enforce mutual exclusion are held for long peri-
ods, there is contention among many threads for ac-
cess to the lock-protected state. The literature on
transaction processing is rich in methods for convert-
ing algorithms using such shared contended varia-
bles into algorithms that do not require such locking.4

We will mention only one such classic problem: the
“serial number problem.” Consider a shopping Web
site which, when a browser visits the site for the first
time, generates a cookie that is sent back to the
browser to identify the browser session. The gener-
ation of the cookie could be done by a number of
schemes, but a standard one is to use a counter to
count upwards, giving each consecutively visiting
browser a consecutively numbered cookie. In es-

sence, the browsers are given “serially numbered
cookies.” If other operations need to occur after the
cookie is generated and before the response can be
sent back to the browser, the read/write lock on the
counter must be held until those operations are com-
plete (and hence will not fail). This can result in con-
tention for the serial-number-counter lock. There are
standard solutions to this problem to be found in the
literature,7 depending on how much the consecutive-
serial-number criterion can be relaxed.

In a high-concurrency system, lock duration is a crit-
ical factor that can affect the throughput of a sys-
tem. The duration for which locks are held obviously
is affected by the number of threads contending for
the CPU, the disks, and so forth. It is difficult to pre-
dict the interactions among the many kinds of shared
variables in an application, and due care must be
taken to carefully understand that shared state and
the behavior of transactions that will be accessing it.
Even a small percentage of misbehaving transactions
can dramatically worsen performance and stability
by holding locks for too long.

Failure management. When client applications expe-
rience failures, usually the following three actions
can be taken:

● Automatically retry
● Communicate with the user to determine correc-

tive action
● Exit, crash, or otherwise cancel or stop

Because transactional applications are always run in
a mode where user interaction is impossible, and be-
cause the equivalent of crashing is to return an error
page,applicationswilloftenattempt toretryoperations,
for instance, closing and re-opening connections, and
rerunning database queries. There are many reasons
why this coding pattern can be problematic. First and
most important, it is difficult to know whether fail-
ures are persistent or transient or whether retries
will or will not aggravate some more complex situ-
ation that is still in the process of falling apart. Sec-
ond, although retrying some operations may be safe,
other operations may be impossible to retry because
of the failure of semantics required of the transac-
tion as a whole. Thus, for instance, if two-phase com-
mit semantics is expected across two databases, and
the connection to one of them fails halfway through
the transaction, the only valid course of action may
be to fail completely.
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In general, it is important for application program-
mers to consider simply aborting their transactions
and allowing some higher-level management to deal
with retrying. Even when retries are necessary, it is
important to attempt to unwind whatever compu-
tation and side effects have occurred to some out-
ermost or earliest point in the code of the transac-
tion and then retry from there, so that any side effects
are only committed in the course of a transaction
that does not experience any failures.

The second area in which applications tend to in-
adequately deal with failure is in the handling of ex-
ceptions and exceptional conditions.10 Although it
is important to properly treat exceptions in client-
side applications, the importance of the following
cannot be overemphasized:

● Properly and faithfully recording exceptional con-
dition information in log files before attempting
any possible remedial action

● Never catching one exception and raising a new
one, without either wrapping the original excep-
tion in the new one or logging the original
exception

● Never employing high-level services, such as da-
tabases and publish/subscribe or messaging trans-
ports, to log or deal with exceptions

It is common for applications to “swallow” excep-
tions (never logging them), invoking possibly excep-
tion-raising code between the catching of an excep-
tion and logging it, or to log exceptions to databases
or messaging systems. Such practices in production
environments make problem determination in fail-
ure situations dramatically more difficult because the
relevant exception information will be lost if the da-
tabase or messaging system is the subsystem that is
actually malfunctioning. Another important aspect
of dealing with failure is to minimize the number of
“moving parts,” or number of components or inter-
actions involved, and the complexity of the config-
urations being used. Many applications are divided
into multiple servers, for instance, a “business logic”
server and a “presentation logic” server, ostensibly
to “separate concerns.” Such a design can be a prob-
lem because independent failures in the various ad-
dress spaces, all of which are involved in a single
transaction, will significantly increase the chance that
transactions will hang or fail in mysterious ways. In
general, the failure management discipline described
here is known as “fail fast.”11

Persistent data management. Database-backed ap-
plications, unlike client-side GUI applications, have
always needed to deal with the fact that the data on
which they operate are of two sorts: data that are
persistent, stored in database tables, and data that
are not persistent, perhaps because such data are de-
rived from persistent data, from user input, or are
in a memory-only pseudo-conversational state. Hid-
ing the details of what data are persisted and how
the data are persisted makes it simpler to write dis-
tributed transactional applications, but these hidden
details come with a cost. Although here persistence
is described in terms of a database application, ap-
plications that use other persistent store techniques
suffer from the same issues. In addition, the same
issues that apply to the management of persistent
data apply to data that are communicated between
processes via serialization.

The delineation between persistent and nonpersis-
tent data has significant implications for application
design as follows:

● The cost of transferring data to and from persist-
ent storage can be prohibitive.

● The cost of converting data to and from the per-
sistent form can be prohibitive.

● Data legitimately pointed to by legitimately per-
sistent data, but which is not itself legitimately per-
sistent, can inadvertently end up being persisted.
A common example is a container such as a hash
table containing various translation data. The le-
gitimately persistent data may point to the trans-
lation data, but the translation data should not it-
self be persisted because it is derived information.

● Data (as a subcase of the previous item) that were
never even meant to be persistent, but somehow
have been made persistent because of program-
mer error. For example, items such as a database
connection or a socket should never be persisted,
and if these items are persisted, it is most likely
the result of programmer error.

● Applications that depend on the identity of cer-
tain objects can be confused when those objects
are persisted, then brought back into memory, per-
haps while their original versions are still in mem-
ory. For example, persisting a singleton will cause
problems if the singleton is reactivated while the
original singleton is still a live object.

Because database application designers must be
aware of the entity-relationship structure of their per-
sistent data at a detailed level, they have been, for
the most part, only prey to the first two problems—
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that of transport and conversion. It is difficult to
imagine a database application that unintentionally
duplicated records, unless it was literally a signifi-
cant programmer error.

In general, high-level frameworks and development
platforms, including J2EE** (Java 2 Platform, En-
terprise Edition),12 shield the application program-
mer from the required level of detail, in at least the
following two important places:

● Container-managed persistence frees application
programmers from worry about the details of ex-
actly how their data will be converted to persist-
ent form, but at the cost of persisting more infor-
mation than they intended.

● Automatic HTTP session persistence, combined
with a tendency (by application programmers) to
store far too much information in the HTTP ses-
sion object, can result in the persistence of both ar-
bitrarily large data objects and even objects that are
illegitimate to persist (e.g., database connections).

In our experience, we have seen the following three
problems arise when hiding the details of persistence:

● Being unaware of the actual sizes of objects se-
rialized by Java Object Serialization13 and, hence,
of the extent of CPU, disk, and memory usage
caused by such serialization

● Using session state as a convenient “bag” in which
to store all sorts of transient objects, which end
up being persisted, again with catastrophic con-
sequences for performance

● Objects sometimes not even safely persistable (or
worse, their reactivation may cause errors or even
crashes), for example, Java objects with native
memory or network components

Even after such errors are eliminated, the use of con-
tainer-managed persistence means that program-
mers are not aware of the actual database operations
that will occur on behalf of their application; often
the rate and size of updates can be surprising. In ad-
dition, what might have been a simple join in the da-
tabase may turn into nesting that causes hundreds
of database operations. Although this discussion was
framed around container-managed persistence, this
issue is even more problematic for HTTP session per-
sistence where there is no structure around the data
being persisted.

This litany of issues is not new, and, at some level,
it is only to be expected. Higher levels of abstraction

such as hiding the details of persistence come with
a cost of which developers must be aware. Although
the details of persistence may be able to be abstracted
and hidden from developers for small, relatively sim-
ple applications, this abstraction becomes proble-
matic as the complexity and scaling of the applica-
tion increases. In these larger applications, it is
critical that some small core of the application pro-
grammers understand what data will be persisted,
the size of that data, and the read and update op-
erations that will occur on that data in the course
of each of the transactions making up the application.

Configuration: Deployment and update. Deploy-
ment is an important role in the life cycle of enter-
prise Web applications. Deployment consists of in-
stalling or updating the configuration of a Web
application. The configuration of a Web application
is stored in a complex data store, which in Gray and
Reuter7 is referred to as the “repository.” In a sense,
we can view the administration of a Web applica-
tion system—a distributed system—as the consistent
creation, update, and, in general, management of this
configuration data as it resides in the various nodes
of the distributed system.

Different runtime platforms typically have different
mechanisms for storing and propagating this infor-
mation. Some versions store the information in a cen-
tral database from which some subset is cached lo-
cally in “administration servers” on each node. Live
update of the configuration data is possible, as is put-
ting into effect some amount of the changed param-
eters. In some versions, this information is stored
on each node separately, using a shared-nothing ap-
proach, with lazy file replication as a means of mov-
ing information from centralized master servers to
(possibly distributed) slaves. Most configuration
changes require address space restarts, but some con-
figuration changes (e.g., updates to JSP files) will oc-
cur much more rapidly (controlled by a timeout).

The key point to understand in deployment is that
neither of these methods ensures an “atomic” up-
date across a distributed system, and that neither re-
ally ensures any sort of true atomicity for single-node
updates.

In neither model above is a complex update going
to be reflected in the configuration information
atomically, and in neither model is there any assur-
ance that operations in flight might not see an in-
consistent configuration state. Moreover, in neither
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model is there the ability to roll back or undo con-
figuration operations. As elsewhere in this paper,
these considerations are not new. It has been the case
in the database world that many sorts of database
configuration change simply do not take effect ex-
cept for new connections or when the database server
is restarted. Database administrators accept these
as facts of life.

Even among the sorts of configuration change that
database administrators can effect on-line, almost all
are known to be unwise to attempt in any sort of pro-
duction environment. For instance, changing the
contents of stored procedures (which sometimes re-
quires recompilation) or altering data-definition lan-
guage (tables, views, and so forth) are operations that
database administrators well understand are simply
not done during production hours.

In the Web-application world, though, we have seen
applications that have:

● Updated configuration parameters during high-
load periods

● Updated program files, for example, JSP, during
high-load periods

● Performed other sorts of configuration in an in-
teractive manner, relying on operator verification
that the appropriate changes were made

These activities are all significant causes of both in-
stability and of paradoxical, almost-impossible-to-re-
produce errors, and as such, are almost impossible
to trace. It is an important rule that:

● All configuration operations on Web application
server systems, to whatever extent possible, occur
during nonload times, and as much as possible with
systems removed from service, for example, in ser-
vice windows.

● In order to minimize such service windows, it is
critical that any configuration operations are ef-
fected using scripts, rather than by manual oper-
ator interaction, and that, to whatever extent pos-
sible, a new, modified version of an application is
deployed, rather than modifying an already in-
stalled version.

Let us put these restrictions into a theoretical frame-
work: the distributed configuration of a TP system
is in fact a complex distributed database. The ad-
ministration application that manages that data en-
forces various consistency constraints, but the fol-

lowing are either extremely difficult or impossible
to do:

● Ensure that the running application reflects, at ev-
ery moment, the configuration in the database.

● Allow any arbitrary series of updates to the con-
figuration to be atomically reflected in the running
application configuration.

● Allow arbitrary rollback of changes, again auto-
matically reflected in the running application
configuration.

In fact, there is a way to achieve this level of ato-
micity: to always effect changes by (automatically)
building a new version of the application, and hot-
swapping in the application. It may be impossible to
hot-swap the persistent application data, but certainly
for the entirety of the running code, it should be
possible.

Such a method of ensuring atomicity is onerous. Not
only is it difficult to do full configurations, but the
extra hardware required is almost certainly unattain-
able. A less onerous method, with fewer and less iron-
clad assurances, is to always use automated scripts
to both apply and undo upgrades. This method of
applying changes can be combined with backups to
achieve, in most circumstances, the desired atomicity.

In either of the two methods just described, users
of a system who are in the process of completing mul-
tistage (pseudo-conversational) transactions may no-
tice that an upgrade has occurred and may even see
erroneous behavior. Hence, it is important that in
both cases a service window is used to ensure that
no application traffic is being served during the up-
grade period.

Thus from purely theoretical considerations, we can
see that these restrictions on administration meth-
ods and policies are forced by the requirements of
atomicity, consistency, and undoability (the ability
to back out) of administration operations.

Characteristically non-TP-related issues in
TP application design
In addition to examining the characteristic issues in
TP application design, it is worthwhile to look at the
most serious non-TP-related issues that affect the de-
velopment of TP applications. Considering the his-
tory of transaction processing, it is not surprising that
many issues from normal programming arise in TP
application design, development, and debugging.
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What is interesting is not the issues themselves, but
their appearance in a special class of runtimes, where
there is little tooling support for their resolution.

Consider the following classic set of issues:

● Native memory leaks: In C or C�� applications,
memory may be allocated and never freed. Like-
wise, native memory allocators may allocate and
then reclaim memory in such a manner as to frag-
ment the free memory into chunks so small as to
be unusable.

● Garbage-collected memory leaks: In the Java lan-
guage or other garbage-collected languages, mem-
ory may be allocated, made reachable from some
long-lived object, and then never disconnected, for
example, a hash table containing all the HTTP ses-
sion objects ever created, where session objects
never expire (at which point they would be re-
moved). Equally, the expiration time may be set
far in the future.

● Recomputation of temporary values: Repeated
computation of some time-consuming expression
(perhaps requiring database access) or merely re-
quiring significant resources.

● Inadequate reuse of complex intermediate values
or buffers: Caching and reuse of buffers, format-
ters, and various other sorts of objects within a
transaction and across transactions.

● Overly general and factorized frameworks: The
prevalence of object-oriented design methodolo-
gies has resulted in the tendency to add unnec-
essary and inappropriate layers of interfaces to ap-
plication designs. These layers simply add bloat
and path length.

These issues are endemic to all sorts of program-
ming, and no particular area has a monopoly. It is
best if these problems are avoided during applica-
tion development, especially in the transaction-pro-
cessing world because of the difficulty in discover-
ing these sorts of anomalies in high-stress, high-
concurrency, high-throughput environments, and
especially in production environments. Several tools
that perform very well in the context of client-side
applications or single-user applications are typically
difficult to use on transactional servers because of
the performance cost they impose, the difficulty in
starting and stopping transactional servers in pro-
duction environments, and the distributed nature of
these transactional systems.

Conclusion
Enterprise Web applications are significantly differ-
ent from client-side applications. The transactional
nature of these applications typically requires very
skilled application programmers to develop them.
The issues related to the complexity of these appli-
cations are not new and have been studied in depth
in earlier transactional systems.

However, what is new is the development challenges
that these applications impose on application pro-
grammers who are highly skilled in client-side ap-
plication development and typically do not have the
expertise in issues such as concurrency management,
resource management, failure management in highly
distributed environments, persistent data manage-
ment, and configuration management. Although
frameworks such as J2EE allow the application pro-
grammer not to worry about the details of such issues,
completely neglecting these issues during develop-
ment can be catastrophic to application performance,
stability, and correctness, particularly in high-stress
situations. In this paper, we have discussed the above-
mentioned issues related to transaction processing.
In addition, we also discussed issues that are com-
mon to TP and non-TP applications. However, these
issues can have more adverse effects in TP systems
under high-load (high-stress) situations.
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