316 FONTES, NORDSTROM, AND SUTTER

WebSphere connector
architecture
evolution

The ability of applications to communicate
with resources that are outside of the
application server process and to use those
resources efficiently has always been an
important requirement for application
developers. Equally important is the ability for
vendors to plug in their own solutions for
connecting to and using their resources.
These capabilities have evolved over time in
the IBM WebSphere Application Server, from
the JDBC™ application programming
interface to the Common Connector
Framework and later to the J2EE™ Connector
Architecture, the latter providing functions
such as application server inbound
communications, life cycle management, and
work management. In this paper, the
evolution of the WebSphere Application
Server implementation of these architectures,
their benefits, and their trade-offs are
discussed. A preview of an important new
architecture, the WebSphere Channel
Framework Architecture (a logical extension to
the J2EE Connector Architecture) is also
presented.

Applications need access to many types of resources.
A resource may be located on the same machine as
the application or on a remote machine and may have
no restrictions on its access or a multitude of restric-
tions. Access to a resource starts with a connection,
which is simply a path from an application to a re-
source that it wants to use (see Figure 1). The pro-
cess of establishing a connection may be as simple
as opening a file descriptor for a file that is located
on the same machine as the application, or it can be
as complicated as accessing databases that are lo-

0018-8670/04/$5.00 © 2004 IBM

S. M. Fontes
C. J. Nordstrom
K. W. Sutter

by

cated on remote machines. The path to the resource
may involve going through a number of protocols
before finally reaching the resource.

The design and implementation of code that accesses
resources can be a complicated and time-consum-
ing task. It makes sense to move as much of the man-
agement of connections as possible outside of the
application so that application developers can focus
on business logic instead of connection logic. The
technology for making and using connections has
evolved to make getting a connection easier and to
improve the performance, security, and robustness
of the connection itself.

The following considerations are common to all con-
nections.

1. Creating a connection can be expensive.

Setting up a connection can take much time when
compared to the amount of time the connection
is actually used.

2. Connections often need to be secure.

Securing the connection is often a joint effort be-
tween the application and the server working with
the resource.

3. Connections need to perform well.

Connection performance can be critical to the suc-
cess of an application and is a function of appli-

©Copyright 2004 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

cation server performance and resource
performance.

4. Connections need to be monitorable and have good
diagnostics.
The quality of the diagnostics for a connection
depends on information regarding server status
and resource status.

5. Methods for connecting to and working with a re-
source generally vary for each type of resource.

For example, relational databases such as DB2*
are accessed via SQL (structured query language),
whereas hierarchical databases such as IMS* (In-
formation Management System) are accessed via
transactional procedures.

6. Access to a resource might require a certain quality
of service.

For example, the application might want the ACID
(atomicity, consistency, isolation, and durability)
properties that can be obtained when using data
in the management of a transaction.

Connection technology has evolved based on two
types of access that applications have historically uti-
lized: client application access to Web-server- or
application-server-managed resources, and server-
managed component access to enterprise legacy
resources.

Client access to server-managed resources. As-
sume a client application wants to connect with a re-
source that is being managed by a server process that
is most likely running on a different machine. The
resource might be a Web page that is managed by
a Web server process or acomponent, such as a serv-
let or an Enterprise JavaBean** (EJB),' that is man-
aged by an application server process. These are rel-
atively new types of resources that have emerged with
the development of the Internet and are expected
to be readily available, a reflection of the Internet
environment they were developed for. They are of-
ten available to the general public, such as the home
page of a business, which is usually available and eas-
ily located by anyone.

Some resources may contain all the data and logic
that the application needs to access. Other resources
may contain business logic that the client wants to
execute, and as part of that execution, the resource
may need to access data in an Enterprise Informa-
tion System (EIS).” An EIS is a system running in its
own set of processes that exists outside of the ap-
plication server process.

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

Figure 1 Path from application to resource

— APPLICATION

NETWORK

\ RESOURCE

Some examples of server-managed resources are
HTML (HyperText Markup Language) documents,
cGI (Common Gateway Interface) scripts, applets,
servlets, JavaServer Pages™* (JSP**), and EJBs (such
as session beans, Container Managed Persistence
[cMP] beans, and message-driven beans).

Component access to enterprise resources. Enter-
prise resources are often legacy resources that were
developed over time by a business and are external
to the application server process. Each type of re-
source has its own connection protocol and a pro-
prietary set of interfaces to the resource. This means
that the resource has to be adapted to be accessible
from a JvM**-based (Java Virtual Machine-based)
process such as an application server. The resource
is usually important to the business and is protected
from unauthorized access by strict rules governing
how it is used.

In the following subsection, we present a brief re-
view of connector architectures and their evolution.

A brief history of connecting. In early connector ar-
chitectures, a client machine, using a Web browser,
could connect to anything it wanted on the Internet
as long as it was a Web page. While this was very
useful, there was a need to access resources that ex-
isted outside of the Web page. CGI scripts became
a popular way to provide some of this access but had
limited capabilities and were not an object-based so-
lution. A designer of CGI scripts had to be careful
not to introduce means for the user to intentionally
or unintentionally initiate actions beyond that which

FONTES, NORDSTROM, AND SUTTER 317

Figure 2 Simple client access to resources

CLIENT

/ CONNECT TO THE SERVER!
HTTP

HTTP SERVER PROCESS EIS RESOURCE

HTML

NO!
APPLET ¥
DOCUMENT

CAUTION!
YOU'RE ON YOUR
OWN HERE FOR
CONNECTING!

CGI SCRIPT

the script intended. Some of these “holes” were not
always immediately apparent until a clever (or un-
fortunate) user discovered them.

Applets constituted an object-based solution that
provided a better way to execute code in a Web page,
eliminating security exposures by not allowing ac-
cess to resources outside of the machine on which
the application was running (see Figure 2). Despite
these advantages, a solution that would allow access
to enterprise assets that was secure, easy to develop,
and easy to deploy was needed.

With the advent of the servlet, an object-oriented
way to execute code that could access external re-
sources became available. The servlet could be used
to access resources managed by a server, such as EJBs,
or it could be used to access enterprise resources di-
rectly. Java Database Connectivity (JDBC?) provided
astandardized way to access relational databases (see
Figure 3). JIDBC** functions were supplemented and
enhanced by the Common Connector Framework
(CCF) and later by the J2EE** Connector Architec-
ture (J2CA). The remainder of this paper describes
the implementations of these technologies in the con-
text of WebSphere, their benefits, and their trade-
offs, and presents the WebSphere Channel Frame-
work Architecture.

Access to relational databases

The introduction of JDBC offered new capabilities
in accessing relational databases. In the WebSphere

318 FONTES, NORDSTROM, AND SUTTER

Application Server, JDBC calls are intercepted by the
WebSphere Connection Manager (CM), as shown in
Figure 4. CM provides a layer between the JDBC calls
and the JDBC drivers. This layer provides a common
dynamic connection pool scheme regardless of which
database is being used, connection cleanup at the
end of a transaction, an easy way to configure driv-
ers and connection information, configured connec-
tion testing, common prepared statement caching,
and common exception handling for “stale”
connections.

The common dynamic connection pool ensures that
connection pooling is available regardless of whether
the JDBC driver provides it. Configuration options
for pooling provide a great deal of control to admin-
istrators. Administrators can control the minimum
and maximum number of connections in the pool,
how long connections can be inactive in the pool be-
fore they are discarded, how long an application can
keep open a connection that is inactive before it is
discarded, and how long to wait to get a connection
before the attempt is abandoned. Stale connection
handling provides an easy way for applications to find
out that a connection is no longer usable and im-
plement a strategy for handling this type of situa-
tion without having to interpret each error code from
the specific IDBC vendor for this condition. Custom-
ers can add more error codes to the list of stale con-
nection exceptions to improve stale connection
detection.

The use of JDBC directly by the servlet required the
application developer to learn JDBC. An alternative
to direct JDBC use, EJBs provided a better access
model with the “bean” providing a way to access data
that takes care of data caching, security, transactions,
and persistence scenarios. BMPs (bean-managed per-
sistence beans) could be written by bean developers
to encapsulate the JDBC calls. Application develop-
ers could then use the BMP to access the data with-
out having to learn how to write JDBC code.

Using beans for data access was an advantage over
using JDBC directly because this model could later
be used to access other types of resources as well as
relational databases, when the appropriate beans be-
came available. For bean providers, CMPs provided
an even greater advantage, as the tools embedded
the JDBC calls into the bean; therefore, the bean pro-
vider no longer had to learn a specific resource’s API
(application programming interface). Additionally,
the EJB container took over the handling of security

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

Figure 3 Client access to resources via servlets

RELATIONAL
DATABASE

OTHER
EIS RESOURCES

Figure 4 Using EJBs for database access via WebSphere Connection Manager in WebSphere Application Server Version 3.5

and transactions for BMPs and CMPs and data isola-
tion for CMPs. The Web container also provided some
transaction and security capabilities.

Access to procedural and hierarchical
resources

JDBC provided a standardized way to access relational
databases, but there was still a need for a way to con-

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

RELATIONAL
DATABASE

OTHER
RESOURCE TYPES

nect to other types of resources, such as transaction-
based systems and hierarchical database systems.
These resources contained data that had evolved
over time with businesses, and many “legacy” appli-
cations depended on these data structures. It was not
always possible to move functions out of the legacy
systems to places that might be more readily avail-
able to object-oriented systems. The logical approach
was to provide a solution similar to that which JDBC

FONTES, NORDSTROM, AND SUTTER 319

Figure 5 CCF standardized interface for resource access in WebSphere Application Server Version 3.5

provided; that is, a standardized interface including
acommon API and a way for vendors to develop driv-
ers that could be used to access resources.

CCF*was introduced by IBM to provide this standard-
ized interface. CCF provides a non-managed inter-
face to systems such as CICS* (Customer Informa-
tion Control System), IMS, and SAP, as shown in
Figure 5. It provides a common client programming
model for connectors but can only be used in a non-
managed environment, and so does not allow the
provider to interact with the server for services such
as security and transactions. VisualAge™* for Java
(VAJ) provided support for CCF by providing a “com-
mand” bean that could be used with CCF. The con-
cepts introduced by CCF later evolved into the J2EE
Connector Architecture 1.0 specification.

J2EE Connector Architecture

The following section describes the evolution of the
J2EE Connector Architecture, from its technology
preview in WebSphere Application Server Version
4.0, to Version 1.0 which appeared in WebSphere
Application Server Version 5.0, and Version 1.5,
which will accompany WebSphere Application
Server Version 6.0.

The 12EE Connector Architecture expanded upon the
essential concepts embodied by JDBC and CCF and
brought them together to provide support that would
allow a client to access many types of EIS systems via
resource adapters provided by vendors for their EIS

320 FONTES, NORDSTROM, AND SUTTER

systems. Some types of EIS resources are relational
databases such as DB2, hierarchical databases such
as IMS, procedural systems such as CICS, messaging
systems such as WebSphere MQ Series*, and enter-
prise resources such as SAP resources.

Along with JDBC and CCF, a technology preview of
J2EE Connector Architecture first appeared in Web-
Sphere Application Server Version 4.0> (see Fig-
ure 6). The technology preview of J2EE Connector
Architecture provided the following features:

* Managed access to EIS resources when used with

the EJB container

Connection pooling

Limited connection cleanup support

Mandatory connection sharing

No connection association—that is, getting a con-

nection and using and closing it should be con-

tained within a transaction

e Limited security support—only component
sign-on supported; no container managed sign-on

e Security permissions not processed—resource
adapters manage all permissions

* Limited local transaction support—application re-
sponsible for transaction cleanup

* Limited XA’ transaction support (XA recovery not
supported)

* Packaging and deployment of stand-alone (not em-
bedded) resource adapters

The production version of the J2EE Connector Ar-
chitecture® (see Figure 7) was shipped in WebSphere

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

Figure 6 J2EE Connector Architecture (preview) in WebSphere Application Server Version 4.0

Figure 7 J2EE Connector Architecture (Version 1.0) in WebSphere Application Server Version 5.0

Application Server Version 5.0 and provided many
functions that were missing in the technology pre-
view, such as:

 Fulllocal transaction and XA transaction support,
including transaction cleanup

* Both shareable and unshareable connection
support

* Connection association

e A common connection manager (In WebSphere
Application Server Version 4.0, the JDBC CM and

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

RELATIONAL
DATABASES

the J2EE Connector Architecture CM were
separate.)

¢ Container-managed sign-on

e Security permissions processed

Embedded resource adapters

* XA recovery

The J2EE Connector Architecture defines both a
Common Client Interface (CCI) and a resource
adapter/server set of contracts provided as service
provider interfaces (SPIs). 2EE Connector Architec-

FONTES, NORDSTROM, AND SUTTER 321

Figure 8 J2EE Connector Architecture (Version 1.5) in WebSphere Application Server Version 6.0

INBOUND

OUTBOUND

ture 1.0 allowed resource adapters to be designed
and implemented for any resource. Two resource
adapters were developed for use within WebSphere:
the relational resource adapter (RRA) and the
adapter for the Java Message Service (JMS),’ which
provides messaging support. IBM also developed re-
source adapters that are shipped separately from
WebSphere, including adapters for CICS, IMS, Host
On Demand (HOD), MySAP.com, J.D. Edwards,
PeopleSoft Inc., and Oracle Corporation’s Financial
Services.

In addition to new resource adapters, a new connec-
tion manager was created to be used by all resource
adapters. This CM has all of the benefits of the ear-
lier cM, such as taking care of connection pooling
for all adapters and providing additional connection
management functionality as defined by the J2EE
Connector Architecture. (The previous CM was re-
tained in WebSphere Application Server Version 5.0
to support existing EJBs and servlets from prior
releases.)

In 12EE Connector Architecture Version 1.0, the con-
nection support was “outbound” only. This means
that connections flowed from the application server
to resources outside of the server. J2EE Connector
Architecture Version 1.5" has added “inbound” sup-
port for both connections and transactions. Inbound
support allows an EIS to interact with a resource
adapter on a server, which in turn can pass on mes-
sages to “endpoints” that are installed on the server.

322 FONTES, NORDSTROM, AND SUTTER

Inbound transactions can be passed on to the Work
Manager defined in the Version 1.5 architecture,
which can then pass on the message to the endpoint.
The Lifecycle Manager defined in Version 1.5 allows
for the orderly deployment, startup, and shutdown
of resource adapters on an application server. J2EE
Connector Architecture Version 1.5, which is illus-
trated in Figure 8, provides a complete solution for
many outbound and inbound connection scenarios.

Beyond the J2EE Connector Architecture

Despite the evolution of the I2EE Connector Archi-
tecture (and other related architectures), being able
to configure a system with any communication pro-
tocol and any EIS resource still presents a challenge.
Defining, setting up, and using a connection to a re-
source is only part of the story. Setting up and using
a complete communication path from client appli-
cation or EIS to the server machine and then to a
resource external to the server process is a much
larger issue. There are also challenges involved in
handling the information that is passed along as part
of the communication.

The 12EE Connector Architecture provides an ab-
straction for accessing legacy resources, but each re-
source adapter is tightly coupled with the protocol
used to communicate with both the client and the
server. As new, more efficient mechanisms are de-
veloped for performing network communications, we
would like to be able to take advantage of these

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

mechanisms without modifying the adapter abstrac-
tion logic. The J2EE Connector Architecture allows
third-party extensions at an abstraction level asso-
ciated with accessing legacy resources. It would be
useful to allow third-party extensions at abstractions
both above and below this level.

What is needed is a way to plug in new protocols,
new resources, and new extensions as they become
available, without having to rework logic that is al-
ready proven and working. One should be able to
do this seamlessly without stopping applications that
are currently running. IBM is designing a new archi-
tecture, the Channel Framework Architecture, that will
expand connection design and plugability capabil-
ities while allowing the continued use of the J2EE
Connector Architecture for connector design. This
architecture will go beyond solving connector issues
to connection handling and information handling in
general.

Channel Framework Architecture

The Channel Framework Architecture (CFA) pro-
vides common networking services, protocols, and
1/0 operations for the WebSphere Application
Server. The CFA extends the concept of a network-
ing protocol stack to the WebSphere runtime. This
architecture provides extended plugability along the
entire chain of events involved in handling commu-
nication with the server and processing of the con-
tent of the communication at various steps in the
server. This plugability is upwardly compatible with
the J12EE Connector Architecture in that J2EE con-
nectors could eventually be included as components
in the CFA.

The CFA defines a set of interfaces that can be used
to implement two main types of objects, channels and
channel chains. Channels (see Figure 9) are used to
transport data between the network and a Web-
Sphere server component. Channels are an encap-
sulation of the logic for processing some part of a
data stream or for interfacing with a component. The
data stream may be part of an inbound request to
an application server or an outbound request from
an application server. Channel chains (see Figure 10)
consist of a set of channels that are linked together
and used to transport data from the network to a
component or from a component to the network.

Currently, there are many implementations of net-

work services in WebSphere. For example, each type
of container implements a complete set of functions

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

Figure 9 Channel Framework Architecture

COMPONENT

REQUEST RESPONSE

INBOUND CHANNEL CHAIN

Channel Framework User with channel chains

Figure 10

NEL CHAIN

N
E

NEL CHAIN NEL CHAIN

for reading and writing to the network. Without com-
mon networking services, new server components
have to re-implement a complete set of network ser-
vice functions. Not only is this inefficient, but this
re-implementation also makes it difficult to add en-
hancements to networking services that are used by
everyone. For example, Java Version 1.4 provides
new nonblocking 1/0 network calls. Without common

FONTES, NORDSTROM, AND SUTTER 323

Figure 11 CCF channel types

CFU

v

APPLICATION CHANNEL
rF s

v

PROTOCOL CHANNEL

rF s

v

CONNECTOR CHANNEL

network services, each existing and new implemen-
tation of network services has to add this function
to its unique implementation.

In addition to providing common networking ser-
vices, protocols, and I/O operations, the CFA will pro-
vide a standard architecture and infrastructure for
encapsulating network logic into channels. By de-
fining a standard mechanism for combining chan-
nels, it becomes possible to plug in custom channels
that support requirements unique to a particular cus-
tomer or environment. Additionally, the CFA will de-
fine a common point in the message flow through
the channels where future enhancements for work-
load classification and thread dispatching can be im-
plemented. The architecture will also support the
ability to share network ports among multiple pro-
tocols. Finally, the CFA will provide functions for con-
figuring, administering, and initializing channels. It
will also be responsible for establishing the flow of
network traffic through the correct channels.

In the CFA, a component that is at the beginning or
the end of a channel chain is known as the channel
framework user (CFU). In an inbound channel chain,
the request originates at the network and ends at the
CFU. In an outbound channel chain, the request orig-
inates at the CFU and ends at the network. Exam-
ples of CFUs are the Web container and the EJB con-
tainer. CFUs may have many inbound channel chains
leading to them and many outbound channel chains
leading from them.

324 FONTES, NORDSTROM, AND SUTTER

Types of channel. Channels can be classified into
three types, as shown in Figure 11:

1. Connector channels are those channels closest to
the network interface. A connector channel is the
lowest channel in the channel protocol stack. An
example of a connector channel is a TCP (Trans-
mission Control Protocol) channel.

2. Protocol channels are responsible for abstracting
information that is transferred through them.
When reading information, a protocol channel
will generally parse the information into high-level
structures that map to constructs which are spe-
cific to the protocol. When writing information,
a protocol channel will take information provided
in protocol-specific structures and map it to the
structures needed by the channel below it in the
stack. There may be zero or more protocol chan-
nels in the link between the connector channel
and the application channel. An example of a pro-
tocol channel would be an HTTP (HyperText
Transfer Protocol) channel.

3. Application channels are the top-level channels.
These channels are generally built on top of spe-
cific protocols in order to draw the correct data
out of them. Examples of application channels in-
clude those for the EJB container and the HTTP
Proxy.

Inbound channel chains and discrimination pro-
cessing. At the time of program execution, the
Channel Framework helps ensure that messages ar-
riving at a connector channel follow the correct in-
bound channel chain to the appropriate CFU. The
CFA accomplishes this by using a process called
discrimination.

Each channel in an inbound chain contains a discrim-
ination process, which is implemented and assigned
to the channel by the framework. In the CFA, this
object will hold the discriminators of each of the
channels above it in the stack. When a new connec-
tion arrives at a connector channel, it calls the discrim-
ination process. The CFA calls the discriminator of
each channel above it in the stack. The discrimina-
tor uses data provided to determine whether the
channel should accept the connection. When a chan-
nel indicates that it will accept the connection, the
CFA makes the connection for that channel.

After all the channels in an inbound channel chain
have been linked, the CFA no longer participates in
the processing of the message as it flows through the

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

Figure 12

Use of protocol channels to transform requests and responses

CHANNEL

CHANNEL

channels. The CFA does not impose any execution
overhead beyond connection set-up.

Outbound channel chains. At runtime, the CFA is
responsible for validating, creating, initializing, mod-
ifying, and removing any outbound channel chains
used by components in the application server. Out-
bound channel chains have a preset configuration
of channels. There is no discrimination process as-
sociated with outbound channel chains.

Outbound channel chains can be stored as named
channel chains in the configuration. Components can
access the preconfigured outbound channel chains
by name. Components can also create named outbound
channel chains dynamically, by specifying the named
channels to use. Named channels can be created
dynamically by specifying the Channel Factory to use
and the configuration parameters of the channel.

Channel chain topologies. There is a difference in
the possible topologies for inbound channel chains
and outbound channel chains. A channel can appear
in more than one inbound channel chain. The to-
pology of an inbound channel chain is represented
by discriminators. The discriminator of a channel de-
fines the possible channels that can appear above it
in the stack. The discriminators are used at runtime
by a discrimination process in the CFA to select the
specific channels that are to handle a particular
connection.

Whereas a channel can appear in more than one in-
bound chain, a channel in an outbound channel chain

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

h
H CHANNEL

can have at most one channel above or below it in
the stack. The topology of an outbound channel chain
is thus described by a linear list of channels. Because
the list is linear, there is no need for a discrimina-
tion process to determine the channels that are to
handle a particular outbound connection.

Benefits of the CFA. The CFA eliminates duplicate
code for implementing network communication
functions. Each developer requiring network services
no longer has to implement a full network stack, mak-
ing network services easier to maintain and enhance.
All users of the CFA benefit from its enhancements
without modifying code. For example, if the non-
blocking 1/0 functions are eventually implemented
that use higher-performance asynchronous 1/0 func-
tions, all users automatically receive this perfor-
mance benefit.

As new protocols are required for handling requests
for WebSphere Application Server services, new pro-
tocol channels can be written. For example, a pro-
tocol channel that understands the format of some
legacy application’s requests could be written to
transform the request into a format understood by
the EJB container’s application channel. When the
response is delivered from the EJB container’s ap-
plication channel, the new protocol channel can
transform the response into the format understood
by the legacy application. In this way, new protocols
can be accepted by the EJB container without chang-
ing any of the container code itself. In the future,
the J2CA itself could become a channel, as depicted
in Figure 12.

FONTES, NORDSTROM, AND SUTTER 325

Conclusion

Access by applications to new resources outside of
the application server will continue to be a critical
requirement, and new network protocols that pro-
vide additional functionality and performance im-
provements will continue to be developed. To date,
adding new connection protocols has been an exer-
cise in extending the server runtime in various ways
to add new protocols. As more protocols are added,
it becomes more and more problematic to make the
new protocols quickly available.

The 12EE Connector Architecture has evolved over
time to give vendors the ability to design and deploy
resource adapters that can provide access for appli-
cation components to resources and access for re-
sources to application components. The CFA will give
vendors the ability to design and deploy new pro-
tocols that can be plugged into the application server
with the same ease.

*Trademark or registered trademark of International Business
Machines, Inc.

**Trademark or registered trademark of Sun Microsystems, Inc.

Cited references

1. R. Monson-Haefel, Read All About EJB 2.0, IBM Developer-
Works (2000), http://www-106.ibm.com/developerworks/java/
library/j-jw-ejb20/.

2. B. Shannon, Java 2 Platform, Enterprise Edition (J2EE) Specifica-
tion Version 1.4, Sun Microsystems, Inc., Santa Clara, CA (2002),
http://java.sun.com/j2ee/1.4/download.html#platformspec.

3. M. Fisher, J. Ellis, and J. Bruce, JDBC API Tutorial and Ref-
erence, Third edition, Addison-Wesley Publishing Co., Read-
ing, MA (2003).

4. T. Oya, B. Brown, M. Smithson, and T. Taguchi, CCF Con-
nectors and Database Connections Using WebSphere Advanced
Edition: Connecting Enterprise Information Systems to the Web,
IBM, Austin, TX (2000).

5. S. Minocha and P. McMillan, “Migrating Enterprise Access
Builder Components from VisualAge for Java to WebSphere
Studio Application Developer,” IBM WebSphere Developer
Technical Journal (2002), http://www7b.boulder.ibm.com/
wsdd/techjournal/0201_minocha/minocha.html.

6. S. Minocha and P. McMillan, “Migrating Enterprise Access
Builder Components from VisualAge for Java to WebSphere
Studio Application Developer Integration Edition 4.1,” IBM
WebSphere Developer Technical Journal (2002), http://
yangcontent.svl.ibm.com/wsdd/techjournal/0207_minocha/
minocha.html.

7. Distributed TP: The XA Specification, The Open Group (Feb-
ruary 1992), http://www.opengroup.org/publications/catalog/
¢193.htm.

8. K. Kelle, P. Schommer, and K. Sutter, “J2EE Connector Ar-
chitecture Extensions in WebSphere Application Server V5,”
IBM WebSphere Developer Technical Journal (2003), http://
www7b.software.ibm.com/wsdd/techjournal/0302_kelle/kelle.
html.

326 FONTES, NORDSTROM, AND SUTTER

9. M. Hapner, R. Burridge, R. Sharma, J. Fialli, and K. Stout,
Java Message Service, Sun Microsystems, Inc., Santa Clara,
CA (2002), http://java.sun.com/products/jms/docs.html.

10. R.Jeyaraman,J2EE Connector Architecture Specification, Sun
Microsystems, Inc., Santa Clara, CA (2002), http://java.sun.
com/j2ee/connector/download.html.

Accepted for publication December 8, 2003.

Stephen M. Fontes IBM Sofiware Group, 3039 Cornwallis
Road, Research Triangle Park, NC 27709 (fontes@us.ibm.com,).
Mr. Fontes is a senior software engineer in the WebSphere Ap-
plication Server development group. He obtained a B.S. degree
in management and an M.S. degree in computer science from
Worcester Polytechnic Institute in Worcester, Massachusetts. Af-
ter graduating in 1984, he joined IBM Endicott, working in com-
puter-aided engineering. While in Endicott, he obtained an M.S.
degree in mechanical engineering from Cornell University in
Ithaca, New York. In 1996, he relocated to Research Triangle
Park (RTP) to be the lead programmer for IBM’s edge load-bal-
ancing solution. While in RTP, he has worked in a variety of roles,
including security architect for IBM’s Tivoli division. He is cur-
rently the lead architect for WebSphere’s edge components and
Channel Framework Architecture.

Cathlene J. Nordstrom [BM Software Group, 3605 Highway
52 North, Rochester, MN 55901-7829 (cjn@us.ibm.com). Ms. Nor-
dstrom is an advisory software engineer in the WebSphere Ap-
plication Server development group. She earned a B.S. degree
in computer science in 1981 at North Dakota State University.
She joined IBM in 1984 after working as a computer analyst in
the manufacturing industry. Her work in architecture and devel-
opment has spanned a broad range of products including PC Sup-
port, Office Vision/400™, AS/400™ Integrated File System (IFS)
and currently connection management for the WebSphere Ap-
plication Server. She has presented various topics at COMMON
(an international professional association for ongoing education
and discussion of IBM’s mid-range systems).

Kevin W. Sutter IBM Software Group, 3605 Highway 52 North,
Rochester, MN 55901-7829 (sutter@us.ibm.com). Mr. Sutter is a
senior software engineer in the WebSphere Application Server
development group. He started his computer career with Unisys
in 1983 after graduating from University of Wisconsin - La Crosse
with a B.S. degree in computer science. In 1988, he joined IBM
Rochester in the PC Support area (client/server product support
for the AS/400®). Since that time, he has worked on several
projects, including Host Print Transform for the AS/400,
SOM/DSOM (System Object Model/Distributed System Object
Model) Persistence and LifeCycle, Component Broker, and now
WebSphere. Mr. Sutter is the lead architect for the J2EE Con-
nector Architecture implementation within the WebSphere run-
time. He has authored several papers and presentations pertain-
ing to connection management.

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

