384 BUDINSKY ET AL

WebSphere Studio
overview

In this paper we provide an overview of IBM
WebSphere Studio, a family of tools for
developing distributed applications for J2EE™
servers for state-of-the-art information
technology systems. In today’s business
environment such systems are complex,
comprise multiple platforms, and make use of
a wide range of technologies and standards.
Through a representative development
scenario we illustrate the way WebSphere
Studio satisfies the challenging requirements
for a modern integrated development
environment. The scenario covers a variety of
technologies and standards, including
database access, Web services standards,
Enterprise JavaBeans™ implementation,
integrated application testing, Web page
design, and performance optimization. We
also describe the Eclipse Modeling
Framework, the open source technology base
on which WebSphere Studio is built.

Modern n-tiered applications integrate function that
is developed by using many different technologies.
J2EE** technologies,' such as JavaServer Pages**
(Jsp**), servlets, Java** Database Connectivity
(JDBC**) database access, and Enterprise Java-
Beans™* (EJBs**), are used to develop distributed
applications that also use eXtensible Markup Lan-
guage (XML)? for a technology-neutral representa-
tion of data, as well as Web services® for integrating
various applications and platforms.

Application development tools are increasingly re-
quired to integrate with an overall application so-

0018-8670/04/$5.00 © 2004 IBM

by F. Budinsky M. Nally
G. DeCandio C. Nelin
R. Earle V. Popescu
T. Francis S. Rich
J. Jones A. Ryman
J. Li T. Wilson

lution that includes tools and runtime environments.
Such integration leads to synergy between tools and
runtime environments and enhances developers’
productivity. Not surprisingly, integrating a rich set
of tools within a single user interface is a significant
challenge.

To meet this challenge, major software tool vendors
rely on a category of software known as an integrated
development environment, or IDE. IBM’s entry in this
field is 1IBM WebSphere Studio,* a family of tools for
developing applications for the IBM WebSphere Ap-
plication Server® (the 1BM middleware platform) and
other J2EE servers, Web servers, and database serv-
ers. WebSphere™ Studio tools run on an open-source
extensible base, the Eclipse platform.® The tools are
available on multiple operating-system platforms, are
translated into many languages for worldwide dis-
tribution, and are accessible by persons with phys-
ical disabilities.

Integrated development environments. In order to
support the development of sophisticated n-tiered
applications in today’s highly competitive applica-
tion development tools market, IDEs must address
a challenging set of requirements, including the
following.

Productivity: Developers must be able to rapidly build
and test applications. Repetitive processes should be

©Copyright 2004 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004



simplified. (Other requirements such as integration
and reuse contribute toward the main goal of en-
hancing productivity.)

Integration: The tools must work together to create
a seamless development workflow that encompasses
design, implementation, testing, analysis, and Web
development. They must be able to cope with mul-
tiple programming languages and heterogeneous
runtime environments.

Flexible, user-friendly interface: The user interface (UT)
must be able to mask the full complexity of the IDE,
providing novice users with simple access to the core
functionality. At the same time, the Ul must also sup-
port the full range of functionality for expert users.

Shared development model: The tools should be able
to share the same development model (sharing de-
velopment artifacts and an integrated workflow) and
should be able to use a different model when it would
lead to greater productivity. The development model
should support bottom-up or top-down application
development as needed.

Reuse: The IDE should provide the ability to reuse
complex application artifacts and Web resources
(this boosts productivity, increases runtime perfor-
mance, and reduces storage requirements).

Scalability: The tools must support the development
of applications that operate within a wide range of
environments. Specifically, for building large-scale
J2EE applications, the tools must handle large num-
bers of application objects and the associated
functionality.

Extensibility: The IDE must allow the incorporation
of new function and components in a natural way,
including tools that are custom-built to fulfill spe-
cific user requirements.

Testing: Given today’s complex runtime environ-
ments, developers must be able to exercise their code
without having to publish it, and to test their code
on remote Servers.

The major IDE products are Microsoft Corporation’s
Visual Studio** .NET, BEA WebLogic** Workshop,
Borland Software Corporation’s JBuilder**, Sun Mi-
crosystems, Inc.’s ONE Studio, and Oracle Corpo-
ration’s JDeveloper.

Microsoft Visual Studio .NET is focused entirely on
developing applications for the Microsoft .NET plat-

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

form. Microsoft uses its own tools platform for de-
velopment of Visual Studio .NET and has been suc-
cessful in attracting third-party software developers
to this platform to enhance and extend the Microsoft
tools.”

BEA WebLogic Workshop is a development environ-
ment for J2EE applications that run on its BEA Web-
Logic server and is part of BEA WebLogic Platform
8.1. WebLogic Workshop is notable in that it has at-
tempted to reduce the skill requirements for J2EE
development by translating features found in Visual
Studio. NET, such as application logic controls and
source code annotations, into the world of Java.
(Many of these features are proprietary.)®

Borland JBuilder is a popular IDE for Java and J2EE
programming. JBuilder is not aligned with a partic-
ular middleware platform and offers support for sev-
eral, including the market leaders, IBM and BEA. Be-
cause of this breadth of support, it does not cover
the 1BM middleware platform to the same depth or
level of integration as WebSphere Studio. The prod-
uct is implemented on a proprietary tools platform
that includes support for third-party extensions.’

Sun ONE Studio is an IDE for Java and J2EE program-
ming, focused primarily on support for the Sun ONE
Application Server.!” Sun ONE Studio is imple-
mented on top of an the open-source tools platform
NetBeans**,!! which is offered as an alternative to
the Eclipse open-source tools platform.

Oracle JDeveloper, another IDE for Java and J2EE
development, is focused on development for the Or-
acle Application Server, but supports other platforms
as well. It is built on a proprietary Oracle tools plat-
form (older versions were built on a tools platform
licensed from Borland).*

IBM has competed in the IDE marketplace with the
VisualAge* family of products since the early 1990s.
Since then the application development environment
has become increasingly complex. IBM WebSphere
Studio emphasizes breadth and depth in its support
for the IBM middleware platform, while also provid-
ing support for competitive and open-source J2EE
Servers.

WebSphere Studio approach to IDE requirements.
The 1BM middleware platform is a rich software envi-
ronment for the deployment and execution of n-tier
applications, based on J2EE with significant IBM ex-
tensions. Because of the richness of this platform,

BUDINSKY ET AL. 385



it requires a large and complex programming model.
Middleware can be defined as the layer of enabling
software that mediates between applications that ei-
ther run on different platforms, or come from dif-
ferent vendors, or both. Generally, middleware me-
diates between applications and an operating system.
1BM’s middleware for Web applications includes the
WebSphere Application Server and its extensions,
WebSphere MQ messaging products, DB2* and as-
sociated database products, Lotus Domino*, and
Tivoli* application management products. For the
purposes of this article, the programming model in-
cludes the programming concepts, application pro-
gramming interfaces, and file formats used for the
development, deployment, and field support of ap-
plications running on this platform.

WebSphere Studio represents the result of a mul-
tiyear effort by IBM to reinvent its application de-
velopment tools portfolio in order to address the re-
quirements of its middleware platform. In the late
1990s, it became clear that the current extensive tools
portfolio was too fragmented for modern n-tiered
applications (which involve a range of diverse tech-
nologies). An ambitious project was started to simul-
taneously develop a new platform for integrating
tools (later named Eclipse) and a new generation of
IBM application development tools, implemented on
top of that platform. The result of that effort is the
WebSphere Studio family of products and the
Eclipse workbench.

There are two main approaches to the design of ap-
plication development tools: the direct-to-middleware
approach and the model-driven approach. In the di-
rect-to-middleware approach, the concepts of the un-
derlying middleware execution platform are exposed
to the application developer. IDE tools use the
middleware APIs and create files in the formats re-
quired by the middleware. The direct-to-middleware
tools operate almost exclusively on the file formats
of artifacts defined by the middleware programming
model. They give the application developer full ac-
cess to the features of the underlying middleware
programming model. Well-designed direct-to-
middleware tools can significantly simplify program-
ming tasks and reduce the number of concepts and
detail a developer is required to deal with. Web-
Sphere Studio takes the direct-to-middleware
approach.

The tools that use the model-driven approach ex-
ploit more abstract, higher-level concepts than those
of the target middleware environment, and then gen-

386 BUDINSKY ET AL

erate the code that runs in the target environment.
The goal of tools using the model-driven approach
is to allow applications to be defined using concepts
closer to the business problem domain than to the
information technology domain. Such tools use file
formats different from those in the target middle-
ware environment and do not give developers ac-
cess to all the features of the target middleware. IBM
Rational Software Corporation* produces many ex-
amples of model-driven development tools.

We believe that the direct-to-middleware approach
and the model-driven approach are not competing
but rather complementary approaches. Both ap-
proaches address the fundamental requirement of
enhancing productivity, but for different develop-
ment circumstances. Direct-to-middleware tools fa-
cilitate productivity by potentially reducing the num-
ber of new concepts and tasks a programmer is
required to understand, especially for development
in a familiar middleware environment. The model-
driven approach allows an application to be spec-
ified at a higher level of abstraction. It can also en-
able the development of applications from the same
specification for different versions of a target middle-
ware platform, or even for different platforms. It is
possible to use both kinds of tools together on the
same project. In this paper we do not cover tools that
follow the model-driven approach.

WebSphere Studio facilitates tight integration with
other tools, including model-driven tools (especially,
but not exclusively, the IBM Rational Software Cor-
poration tools), by exploiting WebSphere Studio’s
platform APIs. WebSphere Studio also provides a rich
platform for integrating third-party tools. In addi-
tion to the Ul and source-code-management integra-
tion facilities offered by the Eclipse workbench, Web-
Sphere Studio uses the Eclipse Modeling Framework
to provide a common technology for the implemen-
tation of shared in-memory object models and API
libraries. This technology enables the manipulation
of all the concepts and file formats of the WebSphere
platform.

In an IDE in which each tool is responsible for read-
ing, writing and manipulating the objects and files
required by the middleware platform, the integra-
tion of the various tools takes place at the file level,
and is relatively loose and coarse-grained. In con-
trast, WebSphere Studio provides a rich set of API
abstractions over a wide range of files, which sim-
plify the implementation of associated tools and pro-
vide a more tightly integrated experience for the de-

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004



veloper. Tools integrating with WebSphere Studio
can share a single memory copy of a middleware ar-
tifact, and tools integration can occur at the finer-
grained level of the individual objects stored within
the files. Use of the Eclipse Modeling Framework
provides a powerful approach to the fundamental
requirements of enhancing productivity and enabling
integration. A more detailed discussion of the frame-
work is found near the end of this paper.

WebSphere Studio is not a single product, but rather
a family of products. WebSphere Studio Site Devel-
oper (or Site Developer, for short) is intended for
Web application developers and includes tools for
relational database access, Web services, Web page
design, performance profiling, and testing. Web-
Sphere Studio Application Developer (or Applica-
tion Developer, for short), is intended for J2EE de-
velopers and contains all the functions in Site
Developer. In addition it supports EJB development.
The development scenario that anchors this paper
focuses on the functionality in these two core prod-
ucts. (See “A development scenario” later in this

paper.)

The WebSphere Studio family of products also con-
tains advanced extensions for specific categories of
users. These extensions adhere to the same UI ar-
chitecture as the core products and include much of
the same functionality. WebSphere Studio Applica-
tion Developer Integration Edition extends Appli-
cation Developer with features aimed at developers
of business integration applications. WebSphere Stu-
dio Enterprise Developer enables development for
the entire range of IBM mainframe environments.
WebSphere Development Studio Client addresses
the needs of IBM eServer™ iSeries™ developers and
those integrating iSeries components into distributed
applications. These products are beyond the scope
of this paper.

The rest of the paper is structured as follows. In the
next section, we start with an extended overview of
the user interface, which illustrates key mechanisms
for the integration of tools and workflow. This leads
into our chosen development scenario that exercises
different aspects of WebSphere Studio functional-
ity. Whereas many different scenarios are possible,
the chosen scenario demonstrates many of the prod-
uct’s most useful functions in an integrated work-
flow. Next, we describe the Eclipse Modeling Frame-
work, which provides the basis for WebSphere
Studio’s file sharing among tools. We conclude with

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

alook at future challenges for IDEs, and WebSphere
Studio in particular.

WebSphere Studio Ul

In this section we describe some of the UI design fea-
tures of the WebSphere Studio family. Because the
Ul is the mechanism that integrates WebSphere Stu-
dio’s large number of tools, it provides the context
for understanding the product’s overall concepts and
usage.

WebSphere Studio provides a user interface that is
attractive and easy to use and that can be used in
different combinations in a wide variety of develop-
ment scenarios. This requires that a simple user expe-
rience be available for simple tasks while allowing
expert users access to the full power of the under-
lying programming model. In order to satisfy this re-
quirement, WebSphere Studio provides several
nested levels of integration. We consider them in
their logical order, building up from the simplest to
the most general (note that the typical user expe-
rience might involve the higher level integration
first).

Development of the WebSphere Studio products fol-
lowed the User-Centered Design (UCD) methodol-
ogy." This methodology places the user at the cen-
ter of all design decisions. It includes a range of
specialized techniques to acquire feedback from rep-
resentative samples of users during all stages of de-
sign and development. User testing sessions were
conducted to understand the tasks that users typi-
cally perform and the problems they experience with
their tasks, to iteratively evaluate the high-level and
low-level design of the products, and to assess the
products’ design against user experience with the
prime competitors’ design.

The results from these activities indicated that users
would like to see less clutter in the workbench UI
and better UT support for task flows in the tools. This
user feedback led us to further refine the design of
perspectives and cheat sheets (described later) to in-
crease user productivity and the task flow integra-
tion among our products.

The UI techniques described in this article provide
WebSphere Studio with layered integration that pulls
together plug-ins into a single tool suite and unifies
user task flows. In order to encourage third-party
plug-ins to exploit these various Ul integration mech-

BUDINSKY ET AL. 387



anisms in a consistent way, WebSphere Studio ad-
heres to the Eclipse UI guidelines, produced for de-
signers and developers of all Eclipse-based
products.® The Eclipse platform that underlies Web-
Sphere Studio is very flexible and extensible, but the
platform framework can only enforce Ul consistency
among the registered components to a certain ex-
tent. The UI guidelines provide platform-specific
guidance and best practices for plug-ins to consis-
tently and tightly integrate into the workbench.

We describe below the various UI mechanisms used
in WebSphere Studio that enable layered integra-
tion and provide an integrated user experience on
top of the J2EE programming model.

Menus, toolbars, action sets, and extension points.
In addition to the core functionality of its workbench
platform, WebSphere Studio is designed to be ex-
tensible by plug-ins, which can contribute new views,
editors, wizards, menus, and tool items to the plat-
form. Plug-ins can be open-source tools or third-
party vendor tools. Although each plug-in is imple-
mented as a separate component in the platform, Ul
mechanisms such as merged menus, context menus,
toolbars, and action sets (as well as perspectives and
cheat sheets, to be discussed later) give the platform’s
Ul the illusion of seamlessly integrated components,
as shown in Figure 1.

Each workbench window contains a menu bar and
a toolbar. These are prepopulated by the platform,
but a plug-in can add items to each. This is accom-
plished by using an action set, a set of task-oriented
actions that users can show or hide. The actions
within an action set are often distributed through-
out the window’s menu bar and toolbar. For exam-
ple, by using the Window — Customize Perspective
dialog, users can enable the EJB action set to have
EJB development-related actions available in the
menu and toolbar.

In addition to supporting the standard content as-
sistance in any of its several editors, the WebSphere
Studio workbench also provides Ul extension points,
such as Quick Fixes and Quick Assist, to further en-
hance the user experience. For example, users can
click on the light-bulb marker on the lefthand mar-
gin of an editor for suggestions on how to fix prob-
lems with the source code.

These kinds of UI extension points give users a con-
sistent and context-sensitive way to perform tasks.
The workbench has well-integrated support for the

388 BUDINSKY ET AL

popular open-source build tool ANT,** which allows
developers to automate repetitive tasks. Other ex-
ternal tools, such as word processors and spread-
sheets, can also be integrated with the workbench.
The UI extension points in WebSphere Studio pull
together an integrated tool suite that works as a sin-
gle entity and helps users be more efficient in accom-
plishing their J2EE application development tasks.

Editors and supporting views. In WebSphere Stu-
dio, text editors are used to interact with entities of
interest, which may be documents or data objects.
The focus of attention is a reflection of the task at
hand. For example, when the task is to create, edit,
and debug Java code, the focus is the Java code, and
an editor is used to interact with that code.

WebSphere Studio’s next level of UI integration
comes in the relationship between the editors and
the additional views provided to support the editors,
primarily the Navigator, Outline, and Properties
views. Whenever an editor is active, an outline of its
content is displayed in the Outline view (Figure 1).
The outline is used to navigate through the edit data
or interact with the edit data at a higher level of ab-
straction. For example, if a user opens EJB imple-
mentation code in an editor, the structure of the class
is displayed in the Outline view. Then, if a method
or field is selected in the Outline view, the text dec-
laration of that item is revealed and selected in the
editor. If a user selects a method or field and invokes
its context menu, the user can interact with the se-
lected item as a conceptual unit, rather than just a
sequence of characters.

The interaction between editor and view is two-way,
with the editor driving the content of the supporting
views. The editor and supporting views contribute
user task-related actions to the menu bar, toolbar
and context menu. The supporting views can then
leverage these action contributions to further en-
hance the in-context user experience. For instance,
in an EJB editing scenario, users can select methods
in the Outline view and invoke an action to promote
the methods to be remote interfaces.

Not all views are associated with editors. Some views
provide information about the overall state of the
workbench or its contents, for example, the Java
package explorer view (see Figure 1), which shows
a logical view of the Java packages and classes con-
tained in files in the workbench. Other examples are
the J2EE navigator and J2EE hierarchy views, which

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004



Figure 1 Typical workbench configuration

Short cut bar Menu bar Tool bar

Workbench window

Perspective Editor

| - i

Java - MenuTest.jiwva - Eclipse Platform

File Edit Source Reftactor MNavigate Search Project

Run  Window Help

10/ x]

I L

Em MernuTest. java
e >
Egimport declarations

*®.

MenuTest
, MyMenuBar

& FileShortouts
@ MyMenuBar()
[]"":R& JRE Swstem Library [jdk1.3.1]

1= ge E v x || i]Welome [J] MenuTest java X
Ve o= = @author iinli =1
E&J MenuTesk * J
|_:_|E§ {default package) * To change this generated comment go to

* Window:Preferences:Java:Code Generation:Code and Comments

import java. awt *;
import java. awt. event . %
import javax.swing. *:

@ mainiStrin
< d'tIE ol import javax. s=wing. border . *:
ECELeS import javax.sving.event ¥
& editshortouts
& FileItems class HyMenuBar extends JHenuBar {

String[ ] fileltem= = new String[ ] { "Hew", "Cpen". "Save
String[ ] editltems = new String[ ] { "Undo "Cut", "Copy
char[ ] fileShortcuts = { 'N', '0"', 'S' '"X' }
char[ ] editShortcuts = { 'Z','X",'C','¥" }
public MyMenuBar{ ) {
JHenu fileMenu = nmew JHenu("File"): i
«| | 3
7 Tasks (D items) LA
I Jl L I Description I Resource I In Folder I Locatiol

4 4
1]

Package Explorer ‘ Hierarchy Tasks ‘ Chnsole

-

MenuTest,javalimport declarations - MenuTest
S

Status line Views

provide a simplified, logical view of the J2EE file
structures.

Dealing with J2EE file formats in an IDE like Web-
Sphere Studio presents some design challenges. J2EE
defines a rich, complex model for the formats of files
that are executed on a J2EE application server. Files
associated with Web user interfaces are structured
in a particular directory structure inside an archive
file called a Web application archive (WAR) file. Sim-
ilarly, EJBs are defined by particular file and direc-
tory structures within EJB module archive files. WAR

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

files and EJB modules are, in turn, nested inside an
enterprise application archive (EAR) file. It is desir-
able to allow developers access to all of the detail
of the files and directory structures in order to allow
exploitation of all the available features of the ap-
plication server. However, experience with previous
development environments within IBM has shown
that using an alternative, tools-based model for re-
sources causes problems, particularly integration
with other tools that use the application server’s file
structures directly and with the application server’s
own capabilities, such as the administrative console

BUDINSKY ET AL. 389



and problem determination tools. On the other hand,
exposing the details of these files and their structures
directly, as in WebSphere Studio’s standard Navi-
gator view, makes for an intimidating experience, es-
pecially for simple scenarios and novice users.

For this reason, WebSphere Studio offers the J2EE
hierarchy view as an alternative to the J2EE naviga-
tor. The J2EE hierarchy view shows a simplified, log-
ical view of the project, directory, and file structure.
It also shows logical 12EE information that is encoded
in the contents of the files themselves, such as EJB
and servlet definitions. Together, the J2EE naviga-
tor and hierarchy views fulfill the requirement of pro-
viding simplified views of J2EE while allowing devel-
opers access to the full detail of the J2EE artifacts.

Perspectives. The fundamental building blocks un-
derlying the UI of any product based on the Eclipse
architecture are editors, views, and action sets. Typ-
ically, editors allow the user to create and modify
resources; views allow the user to navigate among
a set of resources or see alternate logical presenta-
tions of those resources, and action sets allow the
user to invoke groups of operations against these re-
sources. Because Eclipse is an open system, it has
no limit on the number of editors, views, and action
sets that are integrated at any one time. Furthermore,
no single component has control over the integrated
Ul so that if left unchecked, it could easily become
a chaotic collection of bit parts. To create an orga-
nizing principle that builds on the previous layers of
UI integration, WebSphere Studio introduces the
concept of perspectives. Perspectives provide the Ul
with order and integration by governing the set of
editors, views, and action sets visible at any one time.

Three of the more commonly used perspectives are
the J2EE perspective, the Web perspective, and the
server perspective. At any given time, only one per-
spective can be visible in a workbench window (al-
though the user may have several windows open in
a workspace). The selected perspective determines
the views that are visible, the spatial arrangement of
these views, the default location of the editors when
invoked, as well as the actions available on the win-
dow’s menu and toolbar. Of the more than 80 views
that exist in WebSphere Studio Application Devel-
oper, only eight are initially presented in the J2EE
perspective; and of the more than 50 action sets that
can be added to the menu and toolbar, only 16 are
added by default.

390 BUDINSKY ET AL

The product itself determines the set of views and
action sets to pull together within a perspective, as
well as the number of perspectives to provide. The
overriding principle is that WebSphere Studio per-
spectives encapsulate sets of views and actions that
allow users to complete major application develop-
ment tasks without having to switch their working
context. Consequently, WebSphere Studio provides
perspectives targeted to particular user roles (e.g.,
Web developer), to distinct phases of the develop-
ment life cycle (e.g., profiling and logging), and to
specialized resource types (e.g., data). The individ-
ual user is able to customize most aspects of a per-
spective, as well as create entirely new perspectives,
but the design point is to provide a default collec-
tion that is immediately useful “out of the box.”

Perspectives are also responsible for one final layer
of order and integration, control over tool selection;
for example, controlling the list of perspectives to
which users might switch from their current one, con-
trolling the list of views users might load into their
current perspective, and controlling the list of wiz-
ards users might launch from the current perspec-
tive. Of all the possible entries (for wizards, that num-
ber runs into the hundreds), WebSphere Studio is
designed to select those ten or so that are most use-
ful to the task at hand (or, in the case of perspec-
tives, the set to which users are most likely to switch
as they proceed to their next major task). As with
views, editors, and action sets, these lists are
customizable.

Cheat sheets. WebSphere Studio includes many in-
stances of long-running macro-tasks in which numer-
ous smaller tasks must be completed. These macro-
tasks often span multiple component areas, requiring
the use of any number of wizards, editors, and views.
Often, the smaller tasks that make up a macro-task
need to be completed in a specific order, require re-
petitive data entry, and require context-related in-
formation to be maintained as the user traverses the
various wizards, editors, and views. In the past, such
macro-tasks have been extremely difficult for new
users to complete or understand. To help new users
through these long-running tasks, especially when
the task sequence is non-intuitive, WebSphere Stu-
dio introduces a form of user assistance known as
cheat sheets (Figure 2).

Cheat sheets list a linear sequence of steps where
each step contains a step title, a short textual over-
view of the step, and an action link that invokes a
wizard, an editor, or a view. Each step additionally

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004



includes a visual indication of step completion, a link
to the help system for further details, and, option-
ally, the ability to repeat or skip a step if appropri-
ate. In other words, the cheat sheet is a form of user
assistance similar to a traditional help system, ex-
cept that it is interactive and highly integrated with
the rest of the UL The state of the cheat sheet is pre-
served if the user needs to close it (or even the prod-
uct) midway through a task. The cheat sheet capa-
bilities support macro-tasks that might take many
minutes, if not hours, to complete and enable Web-
Sphere Studio to support many more substantive task
flows than can be done with wizards alone. Wizards
are ideally suited to integrating a series of micro-
tasks under a single unifying umbrella UI, but their
strength is in supporting tasks that typically take no
more than a couple of minutes to perform. Cheat
sheets take task support well beyond those bounds.
They offer a way of scaling up traditional user as-
sistance to match the increased complexity of the IDE
itself.

A development scenario

Now that we have introduced the WebSphere Stu-
dio UL, we will examine a development scenario that
makes use of many of the UI features and the as-
sociated tools. The scenario is designed to introduce
some of the functions of WebSphere Studio Appli-
cation Developer for creating J2EE applications. The
scenario has been greatly simplified to focus on rep-
resentative capabilities and techniques. More de-
tailed information is available in the extensive tu-
torial and reference information provided with the
WebSphere Studio products.

In this scenario, a fictitious manufacturing company,
Global Widgets, has decided to deploy an enterprise
application based on Web services so that client ap-
plications running on application servers, personal
computers, personal digital assistants (PDAs), and cell
phones can access information stored in the corpo-
rate Human Resources (HR) database. Web services
have been chosen so that a single programming in-
terface to the HR database can support this large va-
riety of client applications, thereby reducing costs
and speeding development. The scenario also devel-
ops a Web user interface application using Struts®
and JSP technologies.

The scenario covers the following application devel-
opment phases:

1. Developing database reporting functions and
publishing them as Web services.

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

Figure 2  Cheat sheet for creating an EJB

B4 cheat Sheets 3
Create and run an EJB 2.0 CMP entity bean

B v - x

v/ [£] Introduction
v/ [E] Create an EJB 2.0 project
v/ [i] Create an EJB 2.0 CMP entity bean

SISO

[ create a query method

During this step, you will create a new query method, or
finder method, on your CMP entity bean by using the
query wizard, Add Finder Descriptar. All fields in the
wizard are prepopulated for the Cheat Sheet.

Click the "Perform" button below to launch the New Query
wizard,

L s 4
| for the CMP entity bean
[3] Generate deployment code for the EJB project
[+] Create and configure a server
[l Manually create tables
[+] Run the CMP entity bean on the server

OO OO

This phase introduces the WebSphere Studio
SQL query building and debugging tools, and
shows how SQL queries and stored procedures
can be published as Web services.

Defining a Web service that performs updates
to the data.

This phase shows how to define a more com-
plex database interaction as an EJB implemen-
tation that can also be published as a Web ser-
vice.

Creating the EJB implementation.

This phase uses WebSphere Studio’s uUML**
(Unified Modeling Language) Visualizer and
Java Editor to create the code for the EJB ses-
sion bean defined in the previous phase.
Testing and debugging the application.

This phase explores the features of the Server

Test Facility and shows how to use them to test
the EJB session bean.

BUDINSKY ET AL. 391



5. Testing for ws-1 conformance and publishing to
a UDDI (Universal Description, Discovery, and
Integration) registry.

This phase tests the application for conformance
to the Web Services Interoperability (WS-1) or-
ganization’s Basic Profile and shows how to pub-
lish the completed Web service to a company’s
internal Web service registry (UDDI).

6. Creating the Web application.

This phase creates a robust user interface to ac-
cess the newly developed Web service.

7. Analyzing and optimizing performance.

The final phase uses the Performance Profiling
tool to identify any performance bottlenecks in
the completed application.

Note that the WebSphere middleware platform and
the corresponding WebSphere Studio tools offer
many options for application architecture and ap-
plication deployment topologies, most of which we
cannot cover in this paper. In this scenario, we choose
to follow a single representative topology that pro-
vides some idea of the range of WebSphere Studio’s
capabilities. We develop a set of Web services using
a combination of WebSphere and 1BM DB2 technol-
ogies, and use the Web service interfaces we create
in the development of our Web UI (as alternatives
in our UI implementation, we could have used DB2
access, stored procedures, or EJBs directly). The best
choice of architecture for a particular application de-
pends on many factors, and the interested reader can
consult Reference 16.

Creating data access reporting functions and pub-
lishing them as Web services. The initial phases of
the Global Widgets scenario highlight WebSphere
Studio support for data access functions. Database
support covers a wide range of products, including
IBM DB2, IBM Informix*, IDS Server, Oracle Data-
base, Microsoft SOL Server, and others. This support
includes, among other things, creating tables and
views and sampling their data, accessing DB2 feder-
ated data, graphically building and executing SQL
statements, and developing and testing DB2 Java and
SQL stored procedures and deploying them in J2EE
applications. The scenario is based on the DB2 SAM-
PLE database that contains sample data for a num-
ber of fictitious departments and their employees.
Associated with each employee there is an ID num-

392 BUDINSKY ET AL

ber, a name, a salary, an education level, and a de-
partment. Departments have an ID number, a name,
and a manager.

This phase of the scenario uses WebSphere Studio
tools to develop data access reporting functions and
then publishes those functions as Web services, thus
making them easily available through the wide va-
riety of devices and applications that Global Wid-
gets supports. The reporting functions produce the
list of all departments, the list of all employees in
a given department, and the management chain for
a given employee. These reporting functions are im-
plemented bottom-up, using SOL queries and a DB2
SOL procedure, and then deployed as DB2 Web
services.

The reporting functions are implemented by directly
accessing the database. Two of the functions, list all
departments and list all employees in a department,
are simple queries implemented as SOL SELECT state-
ments. The third function, list the management chain
for an employee, is a more complex query and is im-
plemented as a DB2 SQL stored procedure. These func-
tions are then deployed as a Web service. This illus-
trates a bottom-up approach to Web service creation.

A few simple steps with minimal coding are all that
is required to begin development of these functions.
After launching Application Developer and creat-
ing a new dynamic Web project, named HR, the de-
veloper opens the data perspective, creates a con-
nection to the DB2 Universal Database™ v8.1 SAMPLE
database, and imports the database into the project.
The next step is to open the SQL Query Builder, us-
ing the pop-up menu in the Statement folder. The
query builder enables users to build SQL statements
graphically by selecting tables and columns from the
database, linking them to specify JOIN operations,
and building expressions to qualify the data to be
retrieved.

Figure 3 shows a query defined against the SAMPLE
database, which itself was built with only a few mouse
clicks. The data returned by this query will be dis-
played in the Department List page of the client ap-
plication. While this example shows a relatively sim-
ple query, the graphical query builder can be used
to build extremely sophisticated SQL statements. The
query can also be executed directly within the editor
to verify that it returns the intended data.

The statement that returns the list of employees
would be defined in a similar manner. Because the

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004



Figure 3  Query defined against SAMPLE database

4P Data - SAMPLE - listDepartments - IBM WebSphere Studio Application Developer

(=1

File Edit Mavigate Search Project Run SOL  Window Help

B-EBES

s TR IE B R =

& .|| ¢ e

Welcome [ *SAMPLE - listDepartn

SGL Source:

RYNAN.DEPARTHENT.DEFPTNO,

EYMAN,.DEPARTHMENT.DPEPTHAME,

RYMAN.DEPARTHMENT . MGENO
FROM

RYMAN.DEPARTHMENT

iz
g
@ ||| sELECT
I

Tables:

DEPARTMEMT

DEPTHO
DEFTHAME
MGERNO
[] ADMRDEPT
[] LOCATION

Statement: IIistDepartments

Columns ] Conditions ] Groups ] Group Conditions ]

[ DISTINCT

Calumn | Alias I Outpuk

I Sork Type

Sork Order

RYMAN. DEPARTMENT. DEPTHNO
RYMAN. DEPARTMENT. DEPTMNAME
RYMAN, DEPARTMENT. MGRMNO

EERE

department whose employees will be listed must be
passed as a parameter to the query, this statement
would illustrate the tools support for defining que-
ries that contain /ost variables (the standard SQL term
for a formal parameter in a query, the value of which
is set at execution time). When this type of query is
executed by using the query builder, the user is
prompted for values for any required host variables.

Our third statement, which lists the management
chain, is implemented as a stored procedure that runs
directly in the database. This provides an important
security benefit: the database administrator can au-
thorize users to execute the stored procedure and
get results without having to authorize the same users

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

to view all of the data accessed by the stored pro-
cedure. Users can be granted authority to call the
listManagementChain procedure and get management
chain information from the EMPLOYEE table, with-
out being able to view the sensitive salary data stored
in the same table.

WebSphere Studio provides sophisticated tools to
assist with the development of stored procedures, in-
cluding wizards, editors, and debugging capability.
Figure 4 shows the WebSphere Studio desktop with
the source code editor for creating SQL procedures.

Stored procedures need to be uploaded and installed
into DB2 in order to run. WebSphere Studio takes

BUDINSKY ET AL. 393



Figure 4  Source code editor for SQL procedures

4 Data - listManagementChain - IBM WebSphere Studio Application Developer

File Edit MNavigate Search Project Run ‘Window Help

| -BEE [N [ F

8 BRe|(S]B|%-|s|AIAI[wa- -

[/ Data Definition v x || ) welcome

I ] *SAMPLE - listDepartments

| BistManagementchain X | B=| outine X

= (= databases

CREATE PROCEDURE RYMAN.listManagementChain ( IN inEmp:

= [ SAMPLE (DB2 Universal Database 8.1)
= B RYmMaN
[#-(23 Tables

®
L

-- SQL Stored Procedure
== inEmpno

An outline is not
available,

(3 Views

~(( Aliases

(3 Indexes

(23 Triggers

(23 Structured Types
= (23 Stored Procedures

" 80 listManagementChain

“(23 User-Defined Functions
(3 Statements
(= theme

K] i S R —— |
Data Definition | Navigator

P1: BEGIN

END P1

|7 ]

DB Servers v X
=] & Con1 (SAMPLE: DB2 Universal Database ¥8.1)
= [# SAMPLE(jdbc:db2:SAMPLE)
34 NULLID

= B4 RyMan ]

Ll "]

Overview |Parameters | Options lSou'oe |

#-(C3 Tables

i Views
(2 Aliases
(23 Indexes

L7 0B Output

(23 Triggers

(23 Structured Types

i Stored Procedures
“-[23 User-Defined Functions

Messages I Parameters ] Results |

Tasks | DB Output |

care of these mechanics with a single click. In ad-
dition, WebSphere Studio offers source-level debug-
ging capability for SQL procedures. Figure 5 shows
our SQL procedure being debugged.

An important architectural aspect of WebSphere
Studio is that many components are shared across
different features of the product. For example, the
model of the database catalog that was imported in
this scenario, as well as the SQL editor and other user
interface components, are also used in JSP and EJB
development scenarios.

WebSphere and DB2 provide the ability to publish
SQL statements and SOL and Java stored procedures
as Web services in a simple, declarative manner.
WebSphere Studio wizards simplify the task of cre-
ating the configuration files necessary for publish-

394 BUDINSKY ET AL.

ing DB2 Web services. A single WebSphere Studio
wizard captures the specification of the database con-
nection and maps the Web service operation to the
database operation. The wizard then deploys the ser-
vice to a test server and can optionally start the test
server. The built-in test page enables us to test our
Web service without needing to develop a custom
Web application, as illustrated in Figure 6.

Defining a Web service that performs updates to
the data. Now that the data reporting functions have
been created and published as Web services, the next
phase of the scenario is the development of an ad-
min Web service that allows applications to perform
administrative functions, such as updating the name
of an employee or a department, updating salaries
and education levels, transferring an employee from
one department to another, and creating or delet-

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004



Figure 5 Debugging an SQL procedure

4k Debug - listManagementChain - IBM WebSphere Studio Application Developer

File Edit Navigate Project Profile Run ‘Window Help

F-2Ra||8|F-%-%-||%- 0| | AFB|[% -

Search

ebug 0B BRI el % v x

)= Yariables

= % WebSphere v5.0 Test 't [Server]
- & WebSphere v5.0 Test Environment (WebSphere v5.0)
=] ﬁ RYMAN.listManagementChain [Stored Procedure Debugger]
= &2 jdbc:db2:SAMPLE
= @y LISTMANAGEMENTCHAIN (Suspended (breakpoint at line 28))
= LISTMANAGEMEMTCHAIN [Line: 28]

=
8
°
L]
¥

@ =0
3 V_EMPNO =

@ Y_MGRNO = |{PROGR
@ Y_SELECT = Select * from SESSION.t1
@ IN_EMPNO =

- SQLCODE=0
@, SQLSTATE = 00000

@ ATEND=0

Debug ‘Servers

"Iariahles‘Breakp... |Expres... |Registers Storage Storag... Monitors Modules < b

| Welcome

| J| SAMPLE - listDepartm... | §DlistManagementCh... X | 1| SAMPLE - istEmployees | < departments.dadc

2 Outline x

LEAVE ins_loop;
END IF;

IF v_empno = v_mgrno THEN
LEAVE ins_loop;

END IF:

SET v_empno = v_mgrno;

SET vl = 1wl =F1ls

CLOSE c1:

] == T —

INSERT INTO SESSION.tl (c_lewvel, c_empno) values { lvl, v_ewmpno ):

4 | Anoutline is not available.

Overview | Parameters | Options [Source |

O DB Output

Status Action
Z Inprogr... Cal

Object Name
LISTMANA. ..

A RYMAN,LISTMANAGEMENTCHATN(IN IN_EMPNO CHAR(6))
Messages Parameters IResuIts l

DFalure  Cal LISTMANA. ..

Name:

I Input

+ Success  Build for d...
v Success  Call

listManage. ..
LISTMANA. ..

ol Can [

| _empno

Pl

Console | Tasks |DB Output ‘

ing an employee or department. The admin Web ser-
vice is more complex than the reporting Web ser-
vices in that it must enforce specified authorization
rules. For example, only a department manager may
perform a salary change or employee transfer. In ad-
dition, the admin Web service must respond to in-
valid input parameters by returning detailed fault
messages. These considerations lead to the choice
of EJBs as the implementation technology, instead
of SOL UPDATE, INSERT and DELETE statements. The
Web service will be implemented as a stateless ses-
sion EJB that will access the database using Depart-
ment and Employee entity EJBs.

EJB-based Web services may be developed using ei-
ther a bottom-up or a top-down approach. In the top-

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

down approach a Web Services Description Lan-
guage (WSDL)? document is developed first and a
skeleton session EJB is generated from it. The meth-
ods of the generated session EJB are then coded. In
the bottom-up approach, a session EJB is developed
first and is then deployed as a Web service, with the
WSDL document being generated from the session
EJB. For a further discussion of these development
approaches, see Reference 17.

The bottom-up approach is the fastest way to get
started with Web services because it builds on tra-
ditional programming skills. However, the top-down
approach has several important benefits, including
improved interoperability. In Web services, WSDL
acts as the programmatic contract between clients

BUDINSKY ET AL. 395



Figure 6 Web service output

<k Web - Web Browser - IBM WebSphere Studio Application Developer
File Edit Navigate Search Project Run Window Help

|F-BERa|®|A-]8Ke|%-|® 2| AIP|[% - -

* | Welcome I | SAMPLE - listDepartments [ - llistManagementChain
=]

I _J| SAMPLE - listEmployees * \ieb Browser ¢ |

I http: {flocalhost: 9080/HR [Reportsidepartment.dadx/TEST

WORF Test Page

5] Navigator [#] Actions

é--‘-http:mempt.urturijepartsjdepartmanLd

[£] Documentation

~WSDL Binding
~WSDL Service

@ D o listDepartments Operation

<?wml version="1,0" ?>

- <retumn>

</return=
</xsdl:listDepartmentsResponse:

- «<xsdl:listDepartmentsResponse xmins: xsd1="http://tempuri.org/Reports/department.dadx"
xmins="http:/ /tempuri.org/Reports/department.dadx" xmins: SOAP-
ENY="http://schemas.xmlsoap.org/soap/envelope/" xmins: xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http:/ /www.w3.0rg/2001/XMLSchema-instance">

<listDepartmentsResult xmins: xsi="http://www.w3.0rg/2001/XMLSchema-instance" />

and services. In the top-down approach, WSDL is a
central development artifact, being the source for
generation of both service skeletons and client
proxies.

Industry experience over the last few years has shown
that the best way to achieve interoperability is to de-
scribe Web services as an exchange of XML docu-
ments, which, when using SOAP (Simple Object Ac-
cess Protocol), is referred to as the document/literal
style. WebSphere Studio includes many new features
that directly support document/literal style Web ser-
vices, such as top-down creation of WSDL, validation
of WSDL, generation of HTML (HyperText Markup
Language) documentation from WSDL, and conform-
ance-checking of both WSDL documents and SOAP

396 BUDINSKY ET AL.

messages against the Web Services Interoperability
Organization Basic Profile (Ws-1 BP). The Basic Pro-
file specifies versions, clarifications, and constraints
for SOAP, WSDL, and UDDI. For additional informa-
tion on these Web services standards see References
18 and 19.

For the Global Widgets scenario, we start top-down
development of the admin Web service by creating
anew WSDL document in project HR, admin.wsdl, and
then edit it with the WSDL editor as follows:

* We create a new port type for the service and add
anew operation for each of the administrative func-
tions in the service, for example, ChangeDepart-

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004



Figure 7 Graph view of WSDL editor

4 Web - admin.wsdl - IBM WebSphere Studio Application Developer

File Edit Navigate Search Project Run ‘WSDLEditor Window Help
F-HE(n]A-]8 %8 2«2

laan (@ F &

Definition

Imports. Types
= [3) http:/fglobalwidgets.com

Services Bindings Port Types Messages
() ChangeDepartmentNameResponse

B AdminService B[] AdminsOAPPort |E E AdminPortType

CI=3 A\dm’nﬁw.wm;—‘—> B
| sompiaciess B ChangeDepartmentilame |
$1 input

P parameters (tns:Ck

| B & Transferemployee

& output L B () ChangeDepartmenthameRequest type

IP_parameters (ins:ChangeDepartmentiiame)
B [ TransferEmployeeRequest
[ ChangeEmploysehameResponse

-

52

Input

Name [ ]
Mmaue‘lns‘(hangdkpartm!ntNameRequzsl = ‘ bt |

Source | Graph

Writable Insert 14

mentName, ChangeEmployeeName, and Transfer-
Employee.

* We create an input and an output message for each
operation and, optionally, some faults.

* We specify the format of the messages and
faults using the XML Schema Description Lan-
guage (XSD) editor integrated into the WSDL
editor.

* We complete the WSDL document by creating a
service element that contains a single port, bind-
ing the port type using document/literal style SOAP
over HTTP.

Figure 7 shows an example of creating a WSDL doc-
ument. Our document, admin.wsdl, is open in the
graph view of the WSDL editor. The input message
of the ChangeDepartmentName operation is selected
and its XSD definition is expanded to show the input

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

parameters, DepartmentNumber and Name. In gen-
eral, a message format may be an arbitrarily com-
plex XSD document. In this example, the message is
merely a wrapper for some simple parameters, and
the message type is referred to as the wrapped
document|literal style.

Now that the wSDL document has been created, the
next step is to generate a skeleton EJB Web service
based on the WSDL document. At the same time we
will generate a Java client proxy and sample JSP test
client in order to exercise the service. The Web Ser-
vice wizard can perform all the required tasks includ-
ing creating the EJB project, HR EJB; generating the
skeleton stateless session EJB, deployment code, and
all deployment descriptors; starting the service in the
WebSphere test environment; and generating the cli-
ent proxy and JSP test client.

BUDINSKY ET AL. 397



Figure 8 Map browser

*§ Map.mapxmi(DBZUDBNT.

After this is completed, we have a running Web ser-
vice and can test it using the JSP client. However, the
service does nothing because it does not yet include
any business logic. Implementing the business logic
calls for WebSphere Studio’s Java development tools
and normal EJB programming. The following phases
of the scenario introduce some of the tools that are
available to simplify the job of developing and test-
ing the EJBs. See Reference 20 for more informa-
tion on Web services tools in WebSphere Studio.

Creating the EJB implementation. Now that we have
created a session bean skeleton to implement our
admin Web service, we can use the EJB tools to com-
plete the service implementation. Using a session
bean for the service implementation gives access to
the services provided by the EJB container, such as
management of transactions to ensure data integ-
rity and security to allow control over which users
have access to HR functions.

398 BUDINSKY ET AL

®| Enterprise Beans % 4 & ¢ &3> v |0 Tables NS
=3 “HrRCwP A =0
= B { Department =" DEPARTMENT
3 4 deptno : java.lang.String ZB Y DEPTNO : CHARACTER(3)
4 deptname ! java.lang.String  * DEPTNAME : YARCHAR(29)
4 mgrno : java.lang.String E § ¥ MGRNO : CHARACTER(6)
4 admrdept : java.lang.String f ¥ ADMRDEPT : CHARACTER(3)
4 |ocation : java.lang.String § ¥ LOCATION : CHARACTER(16)
=3 { Employee L = * EMPLOYEE

@ 4 empno : java.lang.String 8 EMPNO : CHARACTER(8)
4 firstnme : java.lang.String § * FIRSTNME : VARCHAR(12)
 midinit : java.lang.String B ¥ MIDINIT : CHARACTER(1)
4 lastname : java.lang.String § ¥ LASTNAME : YARCHAR(15)
4 workdept : java.lang.String f * WORKDEPT : CHARACTER(3)
N 4 mhanama @ dmiis lama Cheima ! a |2 AUARCAIS « AUARASTERS AN

4 Overview

Enterprise Beans | Tables

=+ (2 HRCMP 0 sampLE

+-(23) Department 5 DEPARTMENT
(Y Employee £ EMPLOYEE

The admin service will work with the data from the
EMPLOYEE and DEPARTMENT tables. In the EJB pro-
gramming model, entity beans provide access to per-
sistent data of this kind. WebSphere Studio provides
tools to generate container-managed persistence
(cMP) entity beans from table definitions. In partic-
ular, the EJB-to-RDB mapping wizard creates entities
using a bottom-up map. This generates CMPs that pro-
vide a direct representation of the underlying tables
to our HR EJB project. The wizard generates the two
CMPs required by the admin service and automat-
ically maps them to the EMPLOYEE and DEPART-
MENT tables. We can view the detailed results using
the map browser, as shown in Figure 8. Now that
the two CMPs have been generated, we can imple-
ment the admin bean by using simple EJB/Java APIs
on the CMPs to manipulate the data.

The mapping wizard automatically uses local-only
entities (a best-practice behavior). Because only the

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004



Figure 9  UML visualizer with EJB class diagram

T umidiagram2, dRRR S

k Select
i}, Marquee (icr)]
Our bean inherits its remote
[ Note i Department
e AdminPartType methods from the PortType P
= interface o @ deptno : String
T Text O changetmpiloyeeiame () o @ deptname : String
(= Java o~ © changeDepartmentVame ( ) o @ mgrno ! String
[ Package © vansfrEmpioyee () o @ admrdept : String
& Class o @ location : String
2] Interface
 Extends gl SLE gEae (J .
~ Implements «Local Reference» . © 0 findbyPrimaryXey (
=EB20 # @ ejb/Department s . O * creste () Employee
S BMP Bean AdminPortType_RI o @ empno : String
[ CMP 1.1 Entity o @ firstme : String
Bean i i
= i o @ midinit : String
P 2. '
granz Oty ! o @ lastname : String
@ Stateless Session «abstraction» o @ workdept : String
» g::;ful e ' © @ phoneno ! String
Bean «Local Reference» °® P.uredate.: —
@gl:::age Driven % ejb/Employee > o @ job : String
e o @ edlevel : Short
¥ E38 Inheritance AdminSOAPPortImpl e e, o ® sex : String
SSEF Reference - o ® bithdate : Date
> EJB Local Reference 0 g* create () o @ salary : Bi. Socimal
1:1 CMP 0y vansfrEmpioyee () The service implementation AR .g 5
] POy @b i |
Relationship 0y changeEmployeaName () uses Department and ° onus | 3{gDec|.ma
& tmave &1 orreocatmetismel -1 Employee beans for ¢ ® comm : BigDecimal
& ;el:tg;:hm 2 PRCSIGERL Gt 0, * creste ()
nalati_onship Q2 findByPrimaryKey (
o ot g
& 1:M Directed CMP
Dalakinnchin
e

session bean can be remote, we are able to maintain
encapsulation of the persistent data. Because the
CMPs are local entities, we must define local refer-
ences in order for the session bean to work with them.
These references can be created graphically using
WebSphere Studio’s UML Visualizer. The only steps
required are to add the three beans to a new class
diagram, and then use the Visualizer palette to draw
the two local references. The resulting EJB class di-
agram is shown in Figure 9.

The UML Visualizer provides powerful graphical ed-
iting capabilities for EJBs. For example, Figure 9 also
shows annotations that we added to show the inher-
itance among the generated Java interfaces. The UML
Visualizer uses UML object-modeling notation that
has been standardized by the Object Management
Group, Inc.”!

The diagram created by the UML Visualizer is saved

in the admin EJB project and can be shared with the
development team along with the other development

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

artifacts. The Visualizer has no additional model data
that needs to be synchronized with the EJB deploy-
ment descriptor and supporting Java source. Because
its visualization is derived dynamically from those
sources, it is always in synchronization. Changes
made in the EJB deployment descriptor editor or Java
editor are reflected immediately in any class diagram,
and vice versa.

Once the local references have been created for the
entity beans in the admin session bean implemen-
tation, the developer can switch to the Java editor
to complete the implementation. The body of the
changeDepartmentName method can use a standard
coding pattern for INDI (Java Naming and Directory
Interface) lookup of the Department home via the
ejb/Department local reference. Figure 10 shows how
the developer would complete the method using the
Java editor.

The WebSphere Studio Java editor is extended with
features to assist EJB developers. For example, the

BUDINSKY ET AL. 399



Figure 10  Session bean in Java editor

&b J2EE - AdminSOAPPortimpl. java - IBM WebSphere Studio Application Developer

File Edit Source Refactor Mavigate Search Project Run Window Help
H-HES |[F) | TS| B|RBY |0 |[TL|[35-%-%- B e->-|BE ]
B || 28 126E Hierarchy R A 0 *adminSOAPPartimg x
@ ||+ [E Enterprise Applications A
?c\ =
+ () Application Client Modules . . . .
* (3, Connector Modules public void ejbPassivate() {
+ (% Web Modules b
= EJB Modules
%@ FooEJB public void ejbRemove() {
+ () HRCMP /
= (2 HREJB o . i .
5@ Session Beans public javax.ejb.SessionContext getSessionContext() {
= ® AdminSOAPPartlmpl return sessionContext;
[3f adminPortTypeHome }
3 Admi
E'? ﬁx:::g;;i‘;:ﬁ:fp’ public void setSessionContext (javax.ejb.SessionContext sc) {
'@O EjbLocalRef ejb/Departmen sessdonContext =isc:
£® EjbLocalRef ejbfEmployes }
Entity Beans " X X
g% Message-Driven Beans EN public void changeEwmployeelNane (
Maps java.lang.String employeeNuwber,
i MyAppEJB java.lang.String firstName,
. OIDGenerator java.lang.String middleInitial, W
7 @ OIDUser java.lang.String lastName)
+ (8 sample throws java.rmi.RemoteException {
+ (D WLEB ¥
I+ m Databases N > <
C@ Carers LS public void changeDepartmentName (
5 java.lang.String departmentNumber,
£ ! java.lang.String name)
J2EE Hierarchy | Project Navigator throws java.rmi.RemoteException {
v
&= Outline 18 o x =
£ com.globalwidgets -~
#-“= import declarations 7 Tasks (Filter matched 3 of 21 items) P RIP Y x
=0 Adin50APPortimgl . [t [ Description
o, ssssonContenttijavax e cesspl | g CHKI2503W: This method must not throw java.rmi.RemoteException (EJ6 2.0: 7.10.4, 18.3.8, 18.6).
jbActivate()
g 2 :;b cfe'::es a CHKI25034: This method must not throw java.rmi.RemoteException (EJB 2.0: 7.10.4, 18.3.8, 18.6).
° i efPassivatel) A CHKI2503W: This method must not throw java.rmi.RemoteException (EJ6 2.0: 7.10.4, 18.3.8, 18.6).
@ » ejbRemove()
© getSessionContext()
@ - setSessionContext(SessionCont:
@ p changeEmployeeName(String, 51
@ p changeDepartmentMame(String, v < | >
< | > Tasks | Servers  Console DB Servers |Properties
Writable Insert 55113

method outline adds decoration to distinguish home
and remote/local interface methods, and provides an
Enterprise Bean submenu to facilitate adding and
removing implementation methods from the appro-
priate interfaces. The task list is extended to pro-
vide feedback on the correctness of EJB and other
J2EE artifacts along with feedback on the Java com-
pilation process.

This scenario shows a basic path through the Web-
Sphere Studio EJB tools and illustrates how Web-
Sphere Studio simplifies the task of building and de-
veloping applications with EJBs. The capability for
using a scenario of this kind is important for initial

400 BUDINSKY ET AL

developer experience with the products, as well as
for programmer productivity. It is equally important,
even for experienced developers, that WebSphere
Studio provides deep and detailed control over ev-
ery aspect of EJB development defined in the J2EE
specification and over the application server exten-
sions to these capabilities. One example of this is the
multipage custom editor provided to assist with view-
ing and modifying EJB deployment descriptors, illus-
trated in Figure 11.

In the EJB phase of the scenario, we completed the

implementation of the admin bean (the Ad-
minSOAPPortimpl session bean) and connected it to

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004



Figure 11 Multipage custom editor

&b J2EE - EJB Deployment Descriptor - IBM WebSphere Studio Application Developer @@|@

File Edit Navigate Search Project Run Window Help

'ﬁP EjbLocalRef ejb/Departmen
£® EjbLocalRef ejbfEmployes
[® Entity Beans
Ea Message-Driven Beans
Maps
+- (3 MyAppEIB
+ OIDGenerator
+ (35 OIDUser

+ (33 Sample ~ References

S ERe[80 S6a S Bnw 4 [S8H- %% @92 0k4
B || 2 126€ Hierarchy v % || ./ *AdminsoAPPartimpl java X
Y T@ Enterprise Applications ~
;; + () Application Client Modules HREJB
i, Connector Modules ~ General Information ~ Usage
t g :;;th:;:::is Display name: [HREJB The following enterprise applications use this EJB module:
& @ FooEJB Description:
+ (3 HRCMP e
= {3 HREJB
=@ iess:jn _Be:g:PP i ~ Enterprise JavaBeans
@'m::iminﬂor‘:'ly:zmme The following Enterprise JavaBeans are used in this application:
[3 adminPortType_RT L]
[9% AdminsOAPPartImpl ® AdminSOAPPortImpl | Details... ~ Assembly Descriptor

The following is a link to the method transactions, method
permissions, and security roles defined For this EJB application.

~ EJBClient JAR

+ (3 WLEXB
+ Cf Databases
() servers
£ |
J2EE Hierarchy | Project Navigator

beans in this EJB application.

The following is a link to the references defined for enterprise

EJB Client JAR: [

(E

@ Outline

Overview Beans  Assembly Descriptor | References  Access  Source

|= (3 HREJB

= @ AdminSOAPPortImpl Y7 Tasks (Filter matched 0 of 21 items)

L® EjbLocalRef ejbjEmployee [ ]t [ pescription

';‘,]' EjbLocalRef ejbjDepartment

<

Tasks | Servers Console DB Servers  Properties

Writable

the database using entity beans. The next step is test-
ing and debugging the Web service application.

Testing and debugging the application. We have al-
ready made references to the ability to simply and
immediately test a function by executing it on a Web-
Sphere Application Server. In each case, we have
done this by selecting a simple menu item or check-
box in a wizard, without installing, configuring or
manually starting the application server, and with-
out packaging and installing the application contain-
ing the function. This capability is provided by the
Server Test Facility. Testing the admin bean for the
Global Widgets scenario requires the use of the Uni-

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

versal Test Client (UTC), which is the most complex
component of the Server Test Facility. To understand
its usage, we will take an extended look at the Server
Test Facility as a whole and at the test environments
that it supports.

The Server Test Facility. This facility allows the user
to explicitly manage and edit server configurations
as part of the development environment and also au-
tomatically creates default server configurations for
applications under development. This allows for im-
mediate testing without the need for an explicit con-
figuration step. The Server Test Facility supports
multiple application servers including various ver-

BUDINSKY ET AL. 401



sions of WebSphere Application Server, BEA Web-
Logic, and Apache Tomcat.

In addition to being able to create a single default
test server configuration that supports the simple test
experience described above, the test environment al-
lows the developer to explicitly create and manage
multiple test server configurations and server in-
stance definitions. Because the files that form the
server configuration are saved in the source code
management system, complex configurations can be
shared between team members to help with consis-
tent, repeatable testing.

Server configurations and server instances provide
a very flexible test environment, but with this sup-
port comes the inherent complexity of having mul-
tiple servers, server configurations, and associated
projects. Rather than requiring developers to learn
the entire structure just to test a simple application,
WebSphere Studio provides a staged introduction
to the test environment that starts with simple menu
selections and wizards. If a project is not already as-
sociated with a server configuration, a new config-
uration is created for it. If the configuration is not
associated with a server instance, a new instance is
created. Finally, the server is started with the con-
figuration and displayed in a browser integrated into
the workbench. Other server configuration details,
such as the definition of data sources required for
CMP beans, the generation of EJB deployment code,
and even relational database table creation, are han-
dled as part of this process.

In addition to the support for this simple experience,
WebSphere Studio Server Test Facility also provides
extensive tooling for expert developers who need to
control each and every detail of their server config-
urations, such as the Server Test Facility multipage
custom editor. Further discussion and additional de-
tails on the WebSphere Studio Server Test Facility
are available in Reference 22.

WebSphere Unit Test Environment. This environment
is a key implementation of the Server Test Facility.
It consists of a complete instance of the WebSphere
Application Server, which is shipped and installed
with the Studio development environment. Because
the server is tightly coupled with the desktop, the
applications under development can be easily exe-
cuted and tested without the overhead of publish-
ing the application or installing it into a separate
server. Studio includes multiple versions of the ap-
plication server, in order to allow testing of appli-

402 BUDINSKY ET AL

cations that target an older version of the runtime.
It is even possible to apply WebSphere Application
Server fixes to the test environment.

The critical distinguishing feature of the WebSphere
Unit Test Environment is its locality; because it is
installed as part of the development environment,
it is possible to bypass the file distribution and pub-
lishing step otherwise required to install an appli-
cation. Because the WebSphere Studio organizes
files according to the J2EE specification, the Unit Test
Environment can generate a server configuration
that points to the application as it exists in the work-
space. This means that even after the application has
started running, the developer can make changes to
the files. The server will detect that the files have
been updated and immediately reflect the changes.
This tight coupling provides an extremely produc-
tive edit/compile/debug experience, in which the
overhead of republishing and redeploying changes
made while debugging is almost zero. For further
information on configuring the WebSphere Unit Test
Environment, refer to Reference 23.

WebSphere Studio provides a related feature called
hot method replacement, which has the capability to
replace, in memory, the byte-codes for a previously
loaded class. This means that the developer can make
code changes to an application that is running on
the WebSphere Application Server and has stopped
at a breakpoint. When the source file is saved, the
incremental Java compiler updates the JvM** with
the new code. The current execution point resets to
the start of the current method, but no other appli-
cation state is lost.

WebSphere Remote Test Environment. The Remote
Test Environment refers to the capability of Studio
to publish to, configure, start, and interact with a
server defined on a remote system. This capability
should not be confused with the runtime system man-
agement function. Rather, it is intended to allow test-
ing on a server other than that included as part of
WebSphere Studio.

Aswith the Unit Test Environment, the Remote Test
Environment can use different versions of the Web-
Sphere Application Server, but each server instance
must be installed separately from WebSphere Stu-
dio. The installation can be on the same machine on
which WebSphere Studio is running, on another ma-
chine running on the same operating system, or even
on a different operating system. This model can also
be used to mitigate the performance impact of run-

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004



Figure 12 Bean page in Universal Test Client

4P J2EE - Test Client - IBM WebSphere Studio Application Developer
File Edit Mavigate Search Project Run Window Help

|F-RRe (& || S¢SV aa®| | 4-68||SE|/f-%-%-|

= | T

28 || @ 1BM Universal Test Client

9 References )

[i8 Parameters &

v @ EJB References
x aAdminPortTyge
X AdminPortTypeHome
v @ adminPortType RI 140
B2 Method Visibility
@ yoid changeDepartmentiame(String, String)
® void changeEmployeeName(String, String, Str
@ void transferEmployee(String, String)
i No UserTransaction loaded
v & Dbject References
i No object references available
* # Class References
i No class references available
> 1 utilities

Recently added:
AdminPortType_RI 1

& void changeDepartmenthName(String, String)

Parameter Yalue

String: BO1 Objects - I
String: Planning Objects - I

¥ Results from
© com.globalwidgets.AdminPortType_RI.changeDepartmentName ()

The method completed successfully

ning the application server on the development envi-
ronment machine—a single dedicated test machine
can provide the execution capabilities for a complete
department. After a remote server has been com-
pletely defined, it is used in exactly the same way as
the Unit Test Environment.

Testing an EJB in the Universal Test Client. When cre-
ating a Web application, the unit test mechanism is
relatively straightforward—we display the applica-
tion pages in a browser. However, when creating an
EJB or Web-service-based application, it is much
more difficult to unit-test the constituent parts of the
application. The UTC is a Web application included
with WebSphere Studio that provides an easy mech-
anism for testing a server-side component such as
an EJB without the need to develop a custom appli-
cation to drive the EJB. The UTC is enabled in the
server configuration, which results in the additional
application being included in the server when the
configuration is published.

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

Interaction with the UTC occurs via a browser—ei-
ther the one integrated into WebSphere Studio or
an external browser. The UTC includes a number of
pages, all accessible from the application home page:
the INDI explorer and properties pages allow us to
view and modify the INDI namespace, and the bean
page allows us to explore active Java beans and EJBs.
The typical test experience occurs in the bean page,
but the first step is to load the EJB. The JNDI name
of the EJB in question can be located via the JNDI
explorer, and the EJB home can be added to the bean
page. Alternatively, the bean page can load a Java
class and then create a new instance of that type, as
in Figure 12.

The interaction within the bean page mirrors the J2EE
programming model. In the case of our admin bean,
the first step is to select the home bean. The various
methods are dynamically determined and displayed
in the browser: we can then select a method to cre-
ate or find the bean, and that method returns an in-

BUDINSKY ET AL. 403



Figure 13  TCP/IP Monitor view with Web service operation invocations

4p Server - Web Browser - IBM WebSphere Studio Application Developer
File Edit MNavigate Search Project Run Window Help

S [ ESEBFAS [H-) @

1P Monitor

8%~ %

RSy

CEX

104 | & x

= localhost:9081

@ (% iHRjservices/AdminSOAPPort
W JHR [services/AdminSOAPPort

B P4 /R jservices{AdminSOAPPort

Request: localhost:9081
Size: 625 bytes

Byte View vl

Time: 5:31.13.97 PM
Response Time: 10 ms
Type: HTTP

Response: localhost:9080

Size: 528 bytes Byte View v

POST /HR/services/AdminSOAPPort HTTP/1.0
Host: localhost:S080
Content-Type: text/xml:
Content-Length: 438
SOAPAction:

charset=utf-8

¢ | 3

~

"http://globalwidgets.com/ChangeDepar tmentName'
v

HTTP/1.1 200 OK ~
Server: UWebSphere Application Server/S5.1

Content-Type: text/xwml; charset=utf-§

Content-Language: en-US

Connection: close

<?xml version='1.0' encoding='UTF-8'?2>

<SOAP-ENV:Envelope xnlns:g0="http://globalvidgets.con” xml)
<SOAP-ENV: Body>

<g0 : ChangeDepartmentName><g0 : Depar tmentNurdoer>A03</ g0: Depa)
</SOAP-ENV: Body>

</SOAP-ENV: Enve lope>

<?xml version="1.0" encoding="UTF-8"?2>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org:

stance of the admin bean (which is displayed in the
browser). The next step is to click the Work with Ob-
ject button and invoke methods on the bean: select
the method, define the parameters to pass, and in-
voke it. This provides an indication of whether the
admin bean is working as designed.

The result of the method invocation can be further
inspected and invoked, or just displayed as neces-
sary. Equally importantly, we can set breakpoints at
any point in the application and use the UTC as the
trigger to run to that point. The UTC usage model
is very consistent with the best practice usage of
EJBs—the UTC is a Web application that invokes the
EJB.

It is important to note that EJBs are not the only ar-
tifact type that can be displayed and invoked. In fact,
any Java class can be loaded via the UTC, making it
an ideal mechanism to invoke multiple application

404 BUDINSKY ET AL

paths. This includes the Java proxy that is generated
for Web services or any user-provided class file.

Testing for WS-I conformance and publishing to a
UDDI registry. After the business logic of the admin
session bean has been unit-tested in the UTC, the sce-
nario shifts to a focus on the Web service aspect of
the implementation. The implementation is validated
for conformance with the WS-I Basic Profile and
then published to the Global Widget’s internal UDDI
Web service registry.

The TCP/IP Monitoring Server is the WebSphere Stu-
dio tool used to test for WS-I conformance. This
server acts like a tunnel between the client and the
Web service. It captures, displays, and records all
message traffic. In addition to being a valuable de-
bugging tool, it can save the recorded messages to
a log file, which can be validated against the Basic
Profile. Figure 13 shows the TCP/IP Monitor after it

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004



Figure 14  Log file and task view

% Server - log.wsimsg - IBM WebSphere Studio Application Developer

File Edt Navigate Search Project Run XML Window Help
|F-B8s || AR (|A-]0B|[%-||slve-2-[|8RAEEDE §
g 5. Mavigator v X B X |
IR F =1-[e] log I A
i = ; HRL a1 timestamp 2003-11-26T17:34:45.518
2 T a2 TS @ xmins http:{ fwwer ws-i,orgftestingf2003/03/log/
ﬁ h & v:v Scu::cet @ xmins:wsi-log http:/ fwwis.ws-i,orgftesting/2003/03/log/
— T g le Dt:n @ xmlns:wsi-monConfig http: { fuswm. ws-i.orgftestingf2003/03/monitorConfigf
B ‘;::]_s:: @ xmins:xsi http: {fwwiw,w3,.0rgf2001 fXMLSchema-instance
B) websettings = (e monicor [
B .website-confi YErsho L0
2 e 9 @ releaseDate 2003-03-20 B
5= BTG & %imﬂ?mﬂteft_
. = [e] environment |
] HREAR
& g e - (2] runtime |
. [e] operatingSystem NG
- (] xmiparser [
=l (€] wsi-monConfig:configuration [
[€] wsi-monConfig:comment [N Corment
=1 (€] wsi-monConfig:logFile |
replace true
location LRL
+-[€] wsi-monConfig:addstylesheet [N
(€] wsi-monConfig:logDuration 600
[e] wsi-monConfig:deanumeeoutSeconds. B
[€] wsi-monConfig:manInTheMiddle [N
= [e] messagetntry G
@ xsi:type wsi-log:httpMessageEntry
@ I 1 v
Design | Source
¥ Server Configuration v X
= Cﬂ Servers %7 Tasks (Filter matched 3 of 4 items) 9P R :=:9 v X
FL tunnel [ v I ! I Description l Resource I In Folder I Location I
i () WebSphere vS.1 Test Environmer] 5 Message ID 1:The message is not sen...  log.wsimsg ~ HR line 26
& Message ID 3:The message is not sen...  log.wsimsg HR line 57
A Message ID 5:The message is not sen...  log.wsimsg HR line 88
< [ | ||Servers |Console | TCP{IP Monitor | Tasks
|writable  |nsert 89:1 |
has captured three Web service operation invoca- specifies that messages should be sent using HTTP
tions. The third invocation is selected, and its input 1.1, but here the client is using HTTP 1.0. The log file
and output messages are shown in the bottom left and Task view are shown in Figure 14.
and right panes.
The final task in developing the admin Web service
Tovalidate the captured SOAP messages, simply click is to publish the service description to a UDDI reg-
the checklist icon at the top of the TCP/IP Monitor istry. WebSphere Studio’s Web Services Explorer
view. This action saves the messages to a log file in acts as a universal client to any compliant UDDI reg-
the standard XML format specified by the ws-I Test istry. The Web Services Explorer lets us easily ex-
Tools and runs the validator on the log file. Any er- port a WSDL service description from a development
rors or warnings detected by the validator are asso- project and publish it in a UDDI registry. The first
ciated with the log file and appear in the Tasks view. step is to export the service description into Web-
In our example, the service is valid, but the valida- Sphere Studio’s private UDDI test registry, which can
tor detects a warning in the client: the Basic Profile be installed into the WebSphere test environment.

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004 BUDINSKY ET AL. 405



Figure 15 Tools for Struts

& Web - HRApp.gph - Di\wsad\wsadS1\workspace-hr - IBM WebSphere Studio Application Developer

Eie Egt Navigate Search Erofet Run Window Help

S

== ]

lella-TellgF&-le sIAIA[e -9 -2 6 [Ehs

[[2=5 F2

E3kRAzpcoh X |

S
-8 web sre Corfiguraion A
-4k Web Degloyment Descrptor
725 JavaSource
(5162 WebContert
- i, Libraries
- FZ3 HRApp.geh
{5 FRCient-Iritial
- Wweb Ste Corfiguration
3] Web Daployment Descripter
142 Javasource
(3-8 webConterk
-4, Librariezs

M| # Qo

o ox

- index.sp

- [ updeteDepartment.isp
=47 itbemefahbalaidgess.jigl
® 4 {HRGientfthomeiMaster cs:
4 themejMaster.cos

&7 iHRCizntfheader.gf

7 [HRdisntfooter.pg

7 (ARGl themeiverticahta
# {opdateDepartoank

D tent 1 deptno. q

Explorer for
following
linkages
between
elements

loginForm
Scope = request.

4

deptForm
Scope = request

B[
s Connesdion
ﬁ?lrubs Tods
Gk Acticn Mappng fede
€ Feem Bean hiads
@ Java Baan liode
F) Web Page Nede

k. Web Appication Hode
(3] 5tus Madle Node

Palette for
adding Struts
elements to
application flow
departments.jsp

Web Diagram
Editor for
layout of
application
page flows

1
1
1
1
+

lpdatcbcpi:vlmmt Jsp
I
¥

-

L

JupdateDepartment

L

Dot e
3 ok desiune 7 T (hér motched 6 f fitere)

3 v x

0 subrmk : subik
B [t [ Desaiption

| Resour &

© & deptarm
v suzcess

[}

The part Yesponse has an nvatd vale IstErplyeeResporse’ defined for 15 element. Elzment deckraticns must refer to valdval...
The part Yequest’ hes aninvaid valuz isxEmployees’ defined for s element, Elsment dexl

Jeparty
it

A refer to valid vales de

(]
[x] The part vesparse’ h:

&4 [cetDenartment
2 BDCTanstinmbey o =
L] [

! defined for s 2lement. E

towsld ...

Attibutes | Styles | Thunnals [Siruts Explorer ||| Quitk Eat Tasks | Colars Servers  Consdle Search

HRCliznt

After the service description has been tested and val-
idated, it can be published to the private UDDI reg-
istry used by Global Widgets by using either the reg-
istry’s standard programmatic SOAP interface or its
Web interface.

At this point, the admin Web service has been designed,
implemented as a session bean, tested, validated, and
published. It is now ready for use in client applications.

Creating the Global Widgets Web application. So
far, the Global Widgets scenario has used a variety
of WebSphere Studio tools to implement the logic
and data access components for the Global Widgets
Web application. The next phase focuses on the set
of tools used for developing a Web user interface.
The tight integration between the Java tools and Web
development tools supports a task flow that had pre-
viously been difficult because the tools may have been
based on different models and may have not worked
well together.

406 BUDINSKY ET AL

The user interface for the Global Widgets applica-
tion will support login, reporting, and updates. The
reporting will include a master-detail data grid show-
ing the list of departments and allowing users to drill
down into the employees in a department. The cli-
ent will be developed as a Struts application. (Struts
is a popular open-source framework that supports
development of Web user interfaces using the widely
accepted model-view-controller architecture. For a
detailed discussion of all the elements in the Struts
programming model see References 15, 24, and 25.)
WebSphere Studio supports the building of Struts-
based applications through a set of tools illustrated
in Figure 15.

The Web Diagram Editor is used to lay out the flow
of a Web application graphically. The other impor-
tant tool here is the Struts Explorer. It shows how
all the elements of the application relate to each
other and shows these relationships from different
perspectives in the form of a hierarchy. From any

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004



Figure 16 Web Diagram Editor

[E3Hrapp.gph | X

1
1
’t ‘
>
loginForm
Scope = request departme

oo

deptForm
Scope = request

;‘getDepa:tments -

nts.jsp

updateDep?rtment.jsp

JupdateDepartment

. | €3 Form Bean Mode
o @ 15va Bean lnde
< . fs] Web Page Node
S .|| Gj, Web Application Mode

i || () Struts Module Node

given node in the hierarchy, one can traverse links
between the elements. The underlying infrastructure
understands how these indirect references would re-
solve at runtime and shows this relationship directly
in the hierarchy at development time. In this way the
tool can tell the user at development time whether
all the linkages are correct in much the same way
that compilers show how references to named ele-
ments resolve.

Application developers often start designing a Web
application by drawing diagrams of how the appli-
cation pages relate to each other. WebSphere Stu-
dio provides this capability. Using the Web Diagram
Editor (Figure 16), users can draw diagrams in which
the nodes represent pages and actions and the ar-
rows represent transitions to other pages or actions.

Figure 16 shows a diagram of the Global Widgets
application at some point in the development. The

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

rectangular icons represent JSP pages, and the
“gears” represent code (actions) that will be invoked
when each page is submitted. Struts concepts, such
as form beans, Java beans, modules, and Web ap-
plications, can also be represented in the Web Di-
agram Editor.

At this point, all the nodes are gray, and the arrows
are dotted. Nodes and arrows in this state are said
to be unrealized. This is because there are no run-
time artifacts that implement any of the diagram el-
ements. We now go through a process of realization
to create runtime artifacts. When artifacts become
realized, the nodes representing them on the dia-
gram will become colored. Arrows emanating from
realized nodes become solid if the reference repre-
sented by the arrow is valid. When realized, the di-
agram represents the actual deployment artifacts: the
tool does not maintain a separate abstract model
from which the artifacts have been generated. Be-

BUDINSKY ET AL. 407



cause of this, even Struts applications that were not
created with this tool can be rendered and modified.
This also means that the diagram will stay completely
in synchronization with the deployed code if further
modifications are made outside the tool.

A developer can realize any node by simply double-
clicking on it and completing the resulting wizard.
The wizard uses relevant information from the di-
agram to provide default values. In this way the de-
veloper can work on successive nodes and realize the
entire diagram very quickly. After each wizard is
completed, an appropriate editor for the given ar-
tifact opens. In the case of JSP pages, the Page De-
signer tool opens. (Details of this tool will be cov-
ered when we realize the Global Widgets JSPs.)

The logic elements created earlier are integrated into
the Web application by implementing a Struts ac-
tion (gear icon). This is done by double-clicking on
the Struts action to invoke the New Struts Action
wizard, completing the wizard, and inserting a few
lines of Java code in the Java editor. For instance,
for the GetDepartments action, this means invoking
the Web service that returns a list of departments
and then forwarding the list to Departments.jsp.

Designing the Web pages. The Web development
tools include a full-function Web page editor that
makes creating, editing, and maintaining Web pages
simple and easy. This editor, named Page Designer,
uses a drag-and-drop metaphor for adding elements
to a page and includes sophisticated page layout func-
tions to create pages with a professional look and
function. The Page Designer specializes in handling
typically hard-to-edit dynamic JSPs, as well as static
HTML pages (for more information on JSPs, see Ref-
erence 26). The editor contains both a WYSIWYG
(what you see is what you get) design page and a
source page. The two pages are completely synchro-
nized, so that developers can switch between them
depending on their task. An important feature of
Page Designer is that it preserves the exact format
of surrounding HTML and JSP source while the de-
sign page is being used to modify an element.

The Page Designer Editor (Figure 17) opens when-
ever a JSP or HTML page is realized in the Struts ed-
itor. The wizard creates default page content to help
jump-start the page design. If the page is connected
to a form bean in the Web Diagram Editor, the wiz-
ard automatically creates page content that contains
a Struts form connected to the form bean.

408 BUDINSKY ET AL

Page templates. Page templates are used to create
a common look and feel for an application. A page
template can factor out common visual elements of
all pages in a site into a single file. This permits chang-
ing the look of the entire site quickly and easily by
changing only one or more page templates. Web-
Sphere Studio automatically propagates changes
made to a page template to all pages based on the
template. One way to think about a page template
is as a Web page with “holes” in it. These holes, or
content areas, are the only areas that Web develop-
ers can modify in a page instantiated from a page
template. All other areas are read-only.

Page templates can be created quickly with the same
process used to create regular Web pages. For our
scenario, we can easily create a page template by us-
ing drag-and-drop techniques in the Page Designer
Editor. First, we add a common header and a left-
side navigation area. Then we drag and drop a Con-
tent Area from the Page Template category of the
palette. When pages are created using this page tem-
plate, page editors will only be able to modify con-
tent within the BODY content area. Our completed
page template is displayed in Figure 18.

We can apply page templates to Web pages when
they are created using the JSP wizard, or apply them
to existing pages while editing them in Page Designer.
In the scenario, we apply the template to the exist-
ing pages in the Global Widgets Web site.

The Global Widgets page template uses Cascading
Style Sheets (CSS) to specify default text style and
background colors. Style sheets are useful in abstract-
ing fonts, color, and other design elements of a Web
site and can be referenced within HTML/JSP pages.
You can change the look and feel of the page tem-
plate by using the WebSphere Studio CSS editor,
which is called css Designer (Figure 19). ¢SS De-
signer is integrated with Page Designer so that you
can change styles for a page and see the results im-
mediately. By linking to the CSS style sheet from
within the page template, the style sheet is applied
to all pages instantiated from the template.

Adding navigation bars with Web Site Designer. The
next step is to add navigation bars to the Global Wid-
gets Web pages using WebSphere Studio’s Web Site
Designer tool. Managing navigation structure can be
difficult and time-consuming because sites often re-
quire different navigation bars on each page, for ex-
ample, if each page’s navigation bar only showed its
parent page and its direct child pages. Web Site De-

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004



Figure 17  Page Designer Editor

€ Web - departments.jsp - IBM WebSphere Studio Application Developer

feo fdt Toobw fuet 5P Fumt Tbe Frage Page Tods bevgele Sewch Boject Run TestColectr Window beb

-mas|=ala-e]e)se %o s|AAM|[wa-o-[|§§[[em

Palette for

&

v x ||Bocwmnsge X

adding HTML

departments. 5 - Deparinent Resits
7

¥l - | mame - | sunded - L to page using

Gallery
organized
artwork and
images for

drag and drop

quick access

Departments

WYSIWYG
design

=t 8

surface

Attributes

=415 {depr DEPTNO) (@15 {dept DEPTNAME} (@15 dept MGRNO) [E

view allows

quick editing
of selected
element

Color palette
allows quick
modication of
color schemes

Design,
source and

preview
pages

EEE
aEEER
AEEEENE

|| Srppets Outine < »

signer automates the process of creating, organiz-
ing, and maintaining the navigation structure.

To add a navigation bar to the Global Widgets pages,
we use Web Site Designer to build up a “map” of
the site pages that we want to include in the nav-
igation. This “map” can include existing pages as well
as new pages that will be realized later, in the man-
ner of the Struts editor. Figure 20 shows an example
of a hierarchy that could be built for the Global Wid-
gets site.

After we have created the hierarchy, we can add the
navigation bars described by this hierarchy by using
the navigation tags in the site parts drawer of the
palette, which is displayed when a JSP or HTML file
is open in Page Designer. For the Global Widgets
pages, all that needs to be done is to open the page
template in Page Designer and drag a vertical nav-
igation bar into the left area of the page. When the
template is saved, all the files that use the template

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

are automatically updated with the appropriate nav-
igation links. Furthermore, if Web Site Designer is
used to reorganize the site, every navigation bar in
the site will be updated accordingly. Figure 21 shows
a sample page from the Global Widgets application
with navigation bars added.

Performance analysis and optimization. Now that
the Global Widgets Web application is more or less
complete, the next step in the scenario is to tune the
application performance. For this step, we use the
WebSphere Studio Performance Profiling tool to
identify and isolate performance bottlenecks, object
leaks, and system resource limits.

The Performance Profiling tool. The Performance
Profiling tool is capable of reconstructing the appli-
cation execution path and displaying the interaction
of business components such as servlets, EJBs, and
JSps. The tool can also collect execution information
at the class instance and method invocation level.

BUDINSKY ET AL. 409



Figure 18 Global Widgets page template

The tool targets applications at all levels of complex-
ity, from simple, standalone Java applications to com-
plex, multitiered enterprise applications running on
multiple machines, and even on different platforms.

Two different types of data collectors, also known
as profiling agents, are provided with the tool: the
J2EE Request Profiler and the Java Profiling Agent.
They allow us to gather profiling information used
to analyze application execution from different
angles.

The 12EE Request Profiler agent is used to visualize
the application execution logic, without going into
method invocation details, as it collects data from
requests arriving on EJB and Web containers. This
data collection mechanism enables the creation of
sequence diagrams, which represent interactions
among servlets, JSPs, and EJBs, while ignoring other
artifacts of the application infrastructure that do not
represent the business logic. As the application ex-

410 BUDINSKY ET AL

ecution crosses the boundaries of a host, the remote
discovery mechanism causes an attachment to other
instances of the J2EE Request Profiler.

The Java Profiling Agent runs in the JVM process
and receives notifications of JvM events, based on
the JvMPI (Java Virtual Machine Profiler Interface).
This agent is best used to identify performance de-
tails such as the classes or methods responsible for
poor execution performance.

The WebSphere Studio Performance Profiling tool
provides a powerful user interface for profiling an
application and for analyzing the profile data. A set
of statistical views helps us identify performance hot
spots at the package, class, or method-invocation
level. The tool also provides a set of graphical views
that help us better understand the application ex-
ecution at the node, process, thread, or method-in-
vocation level.

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004



Figure 19

CSS Designer

Bl Edt Soie Poges Pregen figale Seych Poject Run TestColecisr findow teb

I¥-gaala|a]a-a

) |0 %-|®s||AAA[Ce-o - |HS AN -[6S5-%-

Analyzing performance. This phase of the scenario
focuses on solving a specific performance problem:
the time taken to change the department name is
very high the first time the operation is executed,

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

gf’ v x|[Tdowteengo | Smameon x|
I3 | vessew with: [ <saroie veri fie> s][gmeer 4l
s [ | trome 8| % 25 %% - b LoR: #FEEEEE: ‘
COLCR: P
. Selected Style Wl mm-n::;.‘.? ‘Timas New Reman' |
}
3 £h
- Style Of H1 I ’»
= COLOR: ;
xmxm 2 | mn-n:;:;: ‘Times New Roman':
‘ s i ] TEXT-TRANSFORM: capitalize
J8] Gabery x | Standard HTML Elemen
H2
ggm Textin Body Textin Body 1l <
(3 Borer Text in Body Text in Body COLCR: green: .
@ bt | fONT-ﬂJh..’!’! 'AMAI‘M’A' Roman'y
G totien s A e
G 5o eading 1 Heading 1 =
) i Mitreds
o Headi
e e [ e —|
S ] e of | o ST
= 3 g A3
AN Heating 4 1] | T Togn e | fromant g
“Ro0or Page propeses Sorcer soox i 1
Heating € Head - border Sty New Roman’: @
* Borcer Wgth I || et > c
& m:n.w R ff e 8 & B x
e wo | o 32|
o wi [ S
AaBbYyZz
T R |
Figure 20 Global Widgets site hierarchy
S&H SR
Widget A Widget C

while the next call to the same operation is visibly
faster. The best way to start analyzing enterprise ap-
plications is to have an overall view of the applica-
tion execution flow. The J2EE Request Profiler agent

BUDINSKY ET AL. 411



Figure 21  Global Widgets page with navigation bar

|| Q18 {depr DEPTNO} [@15{depx_DEPm:4.\JE} |<Bls{depr_Ame'0} |m

3Ii

is used to collect this type of information. While the
agent is monitoring the Global Widgets application,
we will change a few department names and then
return to the WebSphere Studio Performance Pro-
filing tool and analyze the execution results.

In Figure 22, the Object Interactions view displays
the application execution in a UML format. Notice
the interaction among servlets and JSPs. In the fig-
ure, we can see that three department change op-
erations were executed. The method AdminSOAP-
Portimpl.changeDepartmentName call results in a call
to the ProgrammingModel.findByPrimaryKey method.
For the first and last execution, the department was
successfully found, and, as a result, there followed
a call to the ConcreteDepartment_.setDepartment bean
method. The red indicators on the left side of the
diagram represent the elapsed time between consec-
utive events. Double-clicking on any of the indica-
tors locates the sections with high execution time.

Next, the Java Profiling Agent can be used to get
more details on the application execution, based on

412 BUDINSKY ET AL

method invocation details. The Performance Pro-
filing tool provides a set of statistical views to help
analyze the execution performance at the package,
class, or method level. The Package Statistics view
(Figure 23) is a good starting point because it iden-
tifies the packages responsible for slow execution
time. From here, we can drill down and look for the
class or method responsible for poor execution
performance.

In Figure 23, the Package Statistics view shows sta-
tistics of the different classes, grouped by their con-
taining packages. The view can be customized to dis-
play any type of statistical data, such as memory
allocation or time-based statistics. In this particular
example, because the interesting information is the
execution time, the packages are sorted using the ex-
ecution Cumulative Time column. The figure iden-
tifies the com.globalwidgets package as the execution
hot spot, and within this particular package, Admin-
SOAPPortStub is the class responsible for the slow
execution time.

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004



Figure 22  Object Interactions view

File Edit Navigate Search Project Run Profile Window Help

-
‘#’ Profiling and Logging - Web Browser - IBM WebSphere Studio Application Developer Iﬂ — ID' :I

I-BReB%-[@b]|23Ba[aR-[s]=e--

= 2 ject interactions .I 0 @ Q & %
?3 Transports ServicesServiet Transports : 0:AdminSOAPPortImpl  Transports i 0:ProgrammingModel Transports | 0:ConcreteDepartment_2694a846 T o
] 14 D18 O 22 27
[6‘ Transports : 0:WebServicesServiet Transports : 0:AdminSOAPPortImpl | | Transports : 0:ProgrammingModel | | Transports : 0:ConcreteDepartment_2634a846)
—(L .
=i
= ; : ; ;
- - |
[ eeemrsrem— A = E
— ; i [changeDepartmenthame : :
 r—————— =] :
I e e i
: : : : Ovewiewl v
Hi | )

In a like manner, we can use the Class Statistics view
to identify the method responsible for the Admin-
SOAPPortStub class’s overall poor performance,
which turns out to be the changeDepartmentName
method. Next, we use the Method Invocation view
to analyze the execution pattern for AdminSOAPPort-
Stub.changeDepartmentName. The Method Invoca-
tion Table shown in Figure 24 displays the method
invocations in a tabular format.

It is interesting to note that for the first method in-
vocation the execution time (see the Cumulative
Time column) is high compared with the second
getAdminSOAPPort invocation. Analyzing the method
invocations stack, we can finally determine that the
invocation of the Stub$Invoke.invoke method on the
first execution of AdminSOAPPortStub.changeDepart-
mentName is responsible for the poor performance.

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

This example introduces only one of the capabili-
ties of the Performance Profiling tool. Additional ca-
pabilities include finding memory leaks, performing
heap analysis, and tracing application execution (log
analysis and correlation).

The Global Widgets scenario and developer pro-
ductivity. Now that the Global Widgets application
development scenario is complete, we can summa-
rize its general tasks and the WebSphere Studio tools
that were used.

1. Develop database reporting functions.

a. Create the reporting functions, using SQL
Query Builder and Source Code editor and de-
bugger for SQL stored procedures.

b. Publish the database reporting functions as a
Web service, using WebSphere Studio wizards.

BUDINSKY ET AL. 413



Figure 23 Package Statistics view

'-Q’ Profiling and Logging - Web Browser - IBM WebSphere Studio Application Developer t- = | O Ii]

File Edit Mavigate Search Project Run Profile Window Help

IFEEEETYEICE

(26| %SBDR[I[K-]]| #[[cc- -

|©je= | B

& Package Statistics - unknown [ PID:2248 ] 5 | % A x
Filter: | com.globalwidgets* [V Case-sensitive
Package | Total Instances l Collected | Base Time | <Cumulative Time | Calls |
46,599847 53
14,421405
_AdminPortType_RI_Stub 1 0 12,210958 5
EJSRemoteStatelessadminSOAP.. . 1 0 0.000236 12,209403 4
AdminSOAPPortImpl 1. 0 0.000851 7.075382 =
_AdminPortTypeHome_Stub 4 1 0.000419 0.321636 6
EJSRemoteStatelessadminSOAP. .. 1 0 0.000311 0.315479 3
EJSStatelessAdminSOAPPortIm. .. 1 0 0.000188 0.045275 3
_EJSRemoteStatelessAdminSOA... il 0 0.000195 0.000308 17
_EJSRemoteStatelessAdminSOA. . . 1 0 0.000002 0.000002 3
AdminServiceLocator i 1] 0.000000 0,000000 0
com.globalwidgets.hr 13 0 0.001421 24,663570 79
com.globalwidgets.hr.websphere _... 6 0 0.003261 7.112406 58

2. Develop an EJB implementation for data update.

3.

a.

b.

Define the data update (admin) Web service
using the WSDL editor.

Generate a skeleton EJB Web service from the
WSDL definition by using a Web service wizard.
Create CMPs to represent the data to the EIB
implementation, again by using a wizard.

. Define references to the CMPs by using the UML

Visualizer.

. Create the business logic for the Web service

session bean by using the Java editor with EJB
extensions.

Test and debug the implementation using the
Server Test Facility’s UTC.

4. Publish the Web service.

414 BUDINSKY ET AL.

a. Test the Web service for conformance to the
Web Services Interoperability Basic Profile
(WS-1 BP).

b. Publish to the Global Widgets Web services
UDDI by using the Web Services Explorer.

5. Develop the Web application.

a. Create the Global Widgets Web Ul as a Struts
application by using the Web Diagram Editor.

b. Design the JSP Web pages by using the Page
Designer editor, page templates, and CSS
Designer.

c. Create a Web navigation hierarchy by using
Web Site Designer.

6. Analyze and optimize performance by using the

Performance Profiling tool.

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004



Figure 24 Method Invocation Table

# Profiling and Logging - Web Browser - IBM WebSphere Studio Application Developer

File Edit Mavigate Search Project Run Profile Window Help

=10 x|

|IF-BR&| 8| %-

EIDEYX:- XY HE AR

| % v x

i [8] Method Invocation Table - unknown [ PID:22 48]
B Filter: |
S >Invocations | Instance Name

[V Case-sensitive

| Start Time | Cumulative Time |

[=l changeDepartmentMame

=

[=l changeDepartmentMame AdminSOAPPortStul

invoke
[=l changeDepartmenthame

invoke

AdminSOAPPortStub. 10282
getchangeDepartmentNameln...  AdminSOAPPortStub, 10282
i ke. 11586
b.10282
_getchangeDepartmentMameln... AdminSOAPPortStub, 10282
Stub$Invoke. 115779

AdminSOAPPortStub, 10282
_getchangeDepartmentNameln... AdminSOAPPortStub, 10282
Stub$Invoke.122332

4,953098 9.453951
4,953201 0,353956
5.307177 9.0 ()

]
17.102351 2.417618

17.102376 0.000333
17.102718 2.417235
21.796156 2.562504
21,796180 0.000336
21.796525 2.562123

Rather than attempting a comprehensive overview,
this scenario has focused on a single representative
workflow. Other scenarios just as easily could have
been chosen that would have illustrated the same
degree of integration and productivity while exer-
cising different functionality. It is worthwhile to note
the wide variety of tools utilized in this single, tightly
integrated workflow, and the ease with which appli-
cation artifacts can move from one tool to another.
For many tasks, wizards automate most or all of the
programming steps. The high level of tools integra-
tion contributes greatly to developer productivity.

Eclipse Modeling Framework

The underlying framework that enables the fine-
grained data integration between the WebSphere

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

Studio tools is known as the Eclipse Modeling
Framework (EMF).?” This section provides a tech-
nical overview of the EMF. In addition to having gen-
eral technical interest, this technology is notable for
the manner in which it enables WebSphere Studio
to be extended in an extremely tightly integrated
fashion.

One future goal of WebSphere Studio is to provide
an extensible tools platform that tools vendors and
even customers can extend as a platform for creat-
ing J2EE and WebSphere applications. Such a plat-
form would leverage the EMF technology used to im-
plement the internal model APIs of WebSphere
Studio. EMF is also a powerful technology for im-
plementing object models outside of WebSphere

BUDINSKY ET AL. 415



Studio. In the future, we expect to expose many of
the internal WebSphere Studio object model APIs de-
veloped with EMF, along with ancillary APIs that fa-
cilitate manipulation of these models, to allow tool
developers outside of IBM to reuse this function
within other tools that can be integrated with Web-
Sphere Studio.

EMF is an Eclipse subproject that provides a Java run-
time framework and code generation facility for
building tools and other applications based on struc-
tured models. Unlike many tools of this type, EMF
models are surprisingly simple— essentially the class
diagram subset of UML—providing a large percent-
age of the benefits of modeling with a very low cost
of entry. Most importantly, EMF modeling enables
and supports data sharing between applications, a
critical requirement for an open, extensible tool envi-
ronment like WebSphere Studio.

The EMF framework provides a metamodel, called
Ecore, for describing EMF models. Ecore is based
on the Object Management Group’s MOF** (Meta
Object Facility) specification. Ecore started out as
an implementation of MOF but evolved based on the
experience gained while using it to implement the
WebSphere Studio tools. The resulting EMF frame-
work is a highly efficient Java implementation of a
core subset of the MOF API. Ecore corresponds to
the EMOF (Essential MOF) portion of the recently
accepted MOF 2 specification.

The canonical form of an EMF model is an XMI (XML
Metadata Interchange) serialization of an Ecore
model. One of the main strengths of EMF is its flex-
ibility with respect to the means of defining an Ecore
model:

* XMI—we can create an Ecore XMI document di-
rectly by using an XML or text editor or by using
EMF’s simple tree-based sample Ecore editor.

e UML—We can define the model by using a com-
mercial UML modeling tool such as Rational
Rose™, or by using a free Eclipse plug-in such as
Omondo’s EclipseUML graphical editor.?

* Java—We can use basic Java interfaces with a few
simple annotations to describe an Ecore model.

* XML Schema—We can convert an XML Schema
defining the data structures for the model directly
into an Ecore model.

The XMI document approach is the most direct but
generally only appeals to XMI experts. The UML

416 BUDINSKY ET AL

choice is desirable if we are already using modeling
tools, while the Java approach provides the benefits
of modeling in a pure Java development environment
(for example Eclipse’s JDT [Java Development
Tools]). The XML Schema approach is most desir-
able when the tool or application is intended to ma-
nipulate XML data that is already defined using an
XML Schema, such as with Web services. Regard-
less of which input form is used to define an EMF
model, the benefits are the same.

From an Ecore model, EMF’s generator can create
a corresponding set of Java implementation classes.
Every generated EMF class implements an interface,
EObject, that provides an efficient reflective API for
accessing the object’s properties generically. In ad-
dition, change notification is an intrinsic property of
every EObject, and an adapter framework can be
used to support open-ended extension to the objects.
The runtime framework also manages bidirectional
reference handshaking, cross-document referencing
including demand-load, and arbitrary persistent
forms with a default generic XMI serialization that
can be used for any EMF model. EMF even provides
support for dynamic models; that is, Ecore models
that are created in memory and then instantiated
without generating code. All of the benefits of the
EMF runtime framework apply equally to them.

Most of the tools in WebSphere Studio model their
data using EMF. These include models for XSD (XML
Schema), WSDL (Web services), RDB and SQL (re-
lational databases and queries), Java and EJB (J2EE
tooling), and many more. A generic EMF mapping
model and framework is also used to implement
WebSphere Studio’s mapping tools, such as EJB-to-
RDB mapping and XML-to-XML document transfor-
mation. This kind of reusable mapping framework
is possible because of the consistent use of EMF to
model the data being mapped.

Some models in WebSphere Studio simply use the
default XM serializer provided by EMF to persist their
models. Others implement customized serialization,
enabling the model to be persisted in its natural (na-
tive) format. For example, XML Schema models are
persisted as .xsd files, Java models as .java files, and
so on. Other models, for example, mappings, are typ-
ically persisted using XM, although specific types of
mappings may be serialized differently. For exam-
ple, XML Schema mappings can also be serialized in
XSLT (Extensible Stylesheet Language Transforma-
tions) format.

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004



There are two fundamental benefits from Web-
Sphere Studio’s use of EMF. First, it results in a pro-
ductivity gain in implementing the tools by provid-
ing a high-level method (UML) to represent the
design for communication among teams and by gen-
erating part of the implementation code. Second,
while Eclipse itself provides an effective platform for
integration at the UI and file level, EMF allows the
WebSphere Studio tools to integrate at a much finer
granularity than would have been possible otherwise.
EMF modeling provides the foundation for fine-
grained data integration in WebSphere Studio.

A framework called EMF.Edit extends and builds
on the core EMF framework, adding support for gen-
erating adapter classes that enable viewing and com-
mand-based (undoable) editing of a model, and even
a basic working model editor. EMF.Edit is also used
by several of the tools in WebSphere Studio. More
information on EMF (and EMF.Edit) is available in
Reference 27.

Future directions and challenges

Experience with WebSphere Studio has shown that
as the functionality provided to the user grows, es-
pecially in higher-end versions of the product, it be-
comes a challenge to keep the user interface unclut-
tered and easy to understand. This is true even with
skillful use of Eclipse Ul structuring mechanisms such
as perspectives and views. In response to this chal-
lenge, the Eclipse community is introducing new Ul
organizing concepts, namely activities and contexts.
Future versions of WebSphere Studio will exploit
these concepts to provide a simpler, more task-fo-
cused user experience in products that continue to
have very rich function.

We will also explore techniques for implementing
tools that can be made available either on an indi-
vidual computer or over the Web. Classic develop-
ment tasks, such as compiling source code, are al-
most always performed by individual developers
working on dedicated computers. However, for some
tools it would be desirable to use them not only in
the context of an IDE running on a personal com-
puter but also on a server with access through a Web
browser UI. Tools for configuring and administrat-
ing systems are typical examples.

Finally, an important goal for the WebSphere
middleware platform is simplifying the development
process. We consider an approach based on further
separation between tasks performed by application

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

programmers focused on the implementation of bus-
iness logic and tasks performed by specialists deal-
ing with the IT infrastructure. This direction is a joint
effort between IBM tool and runtime teams; an im-
portant example can be seen in the recently published
SDO architecture,® which is supported in the latest
release of the WebSphere Studio Web tools and
WebSphere runtimes. We expect to see more of this
kind of runtime and tool simplification to ease the
development of applications that run on the Web-
Sphere platform.

*Trademark or registered trademark of the International Bus-
iness Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.,
Microsoft Corporation, BEA Systems, Inc., Borland Software Cor-
poration, or Object Management Group, Inc.

Cited References and notes

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Java 2 Platform, Enterprise Edition (J2EE), Sun Microsystems,
Inc., http://java.sun.com/j2ee/.

. Extensible Markup Language (XML) 1.0, World Wide Web

Consortium (W3C) (2000), http://www.w3.0rg/TR/REC-xml.

. World Wide Web Consortium (W3C), http://www.w3.org/.
. IBM WebSphere Studio Family, IBM Corporation, http://

www.ibm.com/software/infol/websphere/index.jsp?tab=
products/studio.

. WebSphere Application Server Version 5.1 Information Center,

IBM Corporation, http://publib.boulder.ibm.com/infocenter/
ws51help/index.jsp.

. Eclipse.org, Eclipse Foundation, http://www.eclipse.org/.
. Product Overview for Visual Studio .NET 2003, Microsoft Cor-

poration, http://msdn.microsoft.com/vstudio/productinfo/
overview/default.aspx.

. BEA WebLogic Workshop, BEA Systems, Inc., http://www.

bea.com/framework.jsp? CNT = index.htm&FP =/content/
products/workshop.

. Borland JBuilder X, Borland Software Corporation, http://

borland.com/jbuilder/index.html.

Sun Java Studio Standard, Sun Microsystems, Inc., http:/
developers.sun.com/prodtech/javatools/index.html.
NetBeans’ Products, NetBeans.org, http://www.netbeans.org/
products/.

Oracle JDeveloper 10g, Oracle Corporation, http://otn.oracle.
com/products/jdev/index.html.

D. A. Norman and S. W. Draper, Editors, User Centered Sys-
tem Design: New Perspectives on Human-Computer Interac-
tion, Lawrence Erlbaum Associates, Hillsdale, NJ (1986).
Apache Ant, Apache Software Foundation, http://ant.apache.
org/index.html.

The Apache Struts Web Application Framework, Apache Soft-
ware Foundation, http://jakarta.apache.org/struts/.

J. Adams, S. Koushik, G. Vasudeva, and G. Galambos, Pat-
terns for e-Business: a Strategy for Reuse, IBM Press, Double
Oak, TX (2001).

A. Ryman, “Tools for Building Web Services,” in Java Web
Services Unleashed, R. Brunner et al., Sams Publishing, In-
dianapolis, IN (2002), pp 641-674.

A. Ryman, “Understanding Web Services,” developerWorks,
IBM  Corporation (July 2003), http://www.ibm.com/

BUDINSKY ET AL. 417



developerworks/websphere/library/techarticles/0307_ryman/
ryman.html.

19. Basic Profile Version 1.0a, Final Specification, Web Services
Interoperability Organization (2003), http://www.ws-i.org/
Profiles/Basic/2003-08/BasicProfile-1.0a.htm.

20. C.Lauand A. Ryman, “Developing XML Web Services with
WebSphere Studio Application Developer,” IBM Systems
Journal 41, No. 2, 178-197 (2002).

21. See G. Booch, J. Rumbaugh, and I. Jacobson, The Unified
Modeling Language (UML): User Guide, Addison-Wesley,
Upper Saddle River, NJ (2001); and OMG Unified Modeling
Language Specification, v. 1.5, UML Revision Task Force, Ob-
ject Management Group (March 2003).

22. T. Francis, E. Herness, R. High Jr, J. Knutson, K. Rochat,
and C. Vignola, IBM WebSphere 5.0 Application Server, Wrox
Press, Birmingham, UK (2003).

23. H. Kushner, Developing J2EE Applications with IBM Web-
Sphere Studio, IBM Press, Double Oak, TX (2003).

24. C. Cavaness, Programming Jakarta Struts, O’Reilly, Cam-
bridge, MA (2003).

25. T. Husted, C. Dumoulin, G. Franciscus, D. Winterfeldt, and
C. R. McClanahan, “Struts in Action: Building Web Applica-
tions with the Leading Java Framework,” Manning, Greenwich,
CT (2003).

26. M. Hall, More Serviets and JavaServer Pages, Prentice Hall,
Upper Saddle River, NJ (2002).

27. Eclipse Modeling Framework, Eclipse Foundation, http://
www.eclipse.org/emf].

28. Eclipse, Omondo EclipseUML, http://www.omondo.com/
index.jsp.

29. IBM and BEA Joint Specifications Overview, IBM Corpora-
tion and BEA Corporation (2003), http://www.ibm.com/
developerworks/java/library/j-commonj-sdowmt/.

Accepted for publication January 30, 2004

Frank Budinsky IBM Software Group, IBM Toronto Lab, 8200
Warden Ave, Markham, ON L6G 1C7, Canada (frankb@ca.
ibm.com). Mr. Budinsky is leader of the Eclipse Modeling Frame-
work (EMF) project at Eclipse.org, co-architect and implemen-
tor of the EMF framework, and EMF code generator. Frank has
been involved in the design of several frameworks and genera-
tors, including the IBM/Taligent Compound Document Frame-
work in VisualAge/C+ +, the Composed Business Object Builder
in Component Broker, and a common framework for mapping
tools in WebSphere Studio. He holds B.Sc. and M.Sc. degrees
in electrical engineering from the University of Toronto and is
lead author of Eclipse Modeling Framework: A Developer’s Guide
(Addison-Wesley, 2003).

George P. DeCandio [BM Software Group, Research Triangle
Park Lab, 3039 Cornwallis Road RTP, NC 27709 (decandio@
us.ibm.com). Mr. DeCandio is a Senior Technical Staff Member
and senior manager of Web and portal tooling for WebSphere
Studio. He is one of the original architects and developers of Web-
Sphere Studio. Most recently he and his teams have been involved
in defining the JavaServer Faces specification (JSR 127) and in
architecting and developing the IBM tooling for this new tech-
nology. He has also worked as a programmer and team lead on
the Visual Builder portion of IBM’s VisualAge products. He re-
ceived a B.S. degree at the Rochester Institute of Technology in
1989.

418 BUDINSKY ET AL

Ralph Earle IBM Software Group, Research Triangle Park Lab,
3039 Cornwallis Road RTP, NC 27709 (ralphe@us.ibm.com). Dr.
Earle is a senior software engineer in the Rational Division, and
manager of User Assistance Development for WebSphere Stu-
dio. From 1998 -2003, he was the content architect for IBM’s Visual-
Age and WebSphere Developer Domains. He is the co-author
of Enterprise Computing with Objects (Addison-Wesley, 1998).

Tim Francis IBM Software Group, IBM Toronto Lab, 8200 War-
den Ave, Markham, ON L6G 1C7, Canada (francis@ca.ibm.com).
Mr. Francis, who joined IBM in 1990, is a Senior Technical Staff
Member and development manager of the WebSphere Tools team
in the IBM Toronto Lab. In 2001 he received an IBM Outstand-
ing Technical Achievement Award for his work on WebSphere
Studio. Tim is a senior member of the WebSphere Architecture
Board, a core member of the Rational Desktop Tools Develop-
ment Council, and is a co-author of Professional IBM WebSphere
5.0 Application Server (Wrox Press, 2003).

JulianJones [BM Software Group, IBM Toronto Lab, 8200 War-
den Ave, Markham, ON L6G 1C7, Canada (julianj@ca.ibm.com).
Dr. Jones, a Senior Technical Staff Member at the IBM Toronto
Lab, joined IBM in 1988 and worked on the usability of appli-
cation development tools. He received a B.Sc. degree in occu-
pational psychology from University of Wales in 1984 and a Ph.D.
degree in human-computer interaction from the University of
York in 1991. In 2002 he received an Outstanding Technical
Achievement Award for his work on the Eclipse project.

JinLi IBM Software Group, IBM Toronto Lab, 8200 Warden Ave,
Markham, ON L6G 1C7, Canada (jinli@ca.ibm.com). Mr. Liis a
User Experience lead for the IBM Rational tools products, with a
focus on usability. He participated in many customer engagements,
helping IBM customers build their business applications. He has
an M.Sc. degree in computer science from the University of
Toronto, is a certified Sun Java developer, and is an IBM solu-
tion developer.

Martin Nally BM Software Group, Research Triangle Park Lab,
3039 Cornwallis Road RTP, NC 27709 (nally@us.ibm.com). Mr.
Nally, who joined IBM in 1990, was lead architect for VisualAge/
Smalltalk, one of the architects of VisualAge/Java, and the lead
architect and development manager for WebSphere Studio. His
current title is Chief Architect for Rational Desktop Products.

Connie Nelin IBM Software Group, IBM Austin, 11501 Burnet
Road, Austin, Texas 78758 (nelin@us.ibm.com). Dr. Nelin is a Dis-
tinguished Engineer in the Data Management Architecture and
Technology department. Since joining IBM in 1987 she has
worked on database application development support and tool-
ing. She currently has overall responsibility for application de-
velopment tooling strategy, architecture, and development for the
DB2 family of products.

Valentina Popescu IBM Software Group, IBM Toronto Lab,
8200 Warden Ave, Markham, ON L6G 1C7, Canada (popescu@ca.
ibm.com). Valentina is an advisory software developer, leading
a team that develops user interfaces for profiling, tracing, and
logging tools for the Eclipse platform. She is currently interested
inuser interface issues including analysis, correlation, and visualiza-
tion of problem determination data (such as profiling, tracing,
andloggingdata). In2003 she received an IBM Outstanding Techni-
cal Achievement Award for her work on autonomic computing.

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004



Scott Rich IBM Software Group, Research Triangle Park Lab,
3039 Cornwallis Road RTP, NC 27709 (srich@us.ibm.com). Mr.
Rich is a Senior Technical Staff Member, the development man-
ager of WebSphere Studio Application Developer, and leader of
the Rational Desktop Tools Development Council. He has been
with IBM for 15 years, holding a number of technical positions
involving VisualAge/Smalltalk, VisualAge/Java, and WebSphere
Studio.

Arthur G. Ryman IBM Software Group, IBM Toronto Lab, 8200
Warden Ave, Markham, ON L6G 1C7, Canada (ryman@ca.
ibm.com). Dr. Ryman is a Senior Technical Staff Member and
development manager in the Rational Desktop Products group.
In 2001 he received an IBM Outstanding Technical Achievement
Award for his work on Web services. Dr. Ryman is a member of
the IBM Academy of Technology, an Adjunct Professor of Com-
puter Science at York University, a senior member of the Insti-
tute of Electrical and Electronic Engineers, and a member of the
Association for Computing Machinery.

Timothy W. Wilson IBM Software Group, Research Triangle
Park Lab, 3039 Cornwallis Road RTP, NC 27709 (tww@us.
ibm.com). Mr. Wilson is a Senior Technical Staff Member in the
WebSphere Studio Tools group. He has been working with in-
tegrated development environments and programming languages
since 1987. He is currently chief architect of Enterprise Gener-
ation Language, a business language tool set based on Eclipse.
In 2003 he received an Outstanding Technical Achievement award
for the creation of the WebSphere Studio tool set surrounding
the Struts open-source framework.

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004

BUDINSKY ET AL. 419



