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Price-at-Risk: A
methodology for pricing

utility computing services

Whereas most companies use the century-old
cost-plus pricing, this pricing method is
especially inadequate for services on demand
because these services have uncertain
demand, high development costs, and a short
life cycle. In this paper we propose a novel
methodology, Price-at-Risk, that explicitly
takes into account uncertainty in the pricing
decision. By explicitly modeling contingent
factors, such as uncertain rate of adoption or
demand elasticity, the methodology can
account for risk before the pricing decision is
taken. The methodology optimizes the
expected “net present value,” subject to
financial performance constraints, and thus
improves on both the cost-based and value-
based approaches found in the marketing
literature.

Pricing is a crucial business decision in the life of
a product. A minor adjustment in price can dramat-
ically affect the profitability of the product, its dif-
fusion in the market, and its ultimate success. Like
many corporate decision processes, pricing is driven
partly by rational reasoning, partly by established
practice, and partly by “black magic” (not necessar-
ily in this order). In the information technology (IT)
sector, pricing falls mostly in two classes. For an IT
product, such as a hardware device or a software li-
cense upgrade, the development costs are small com-
pared to the high initial sunk costs. For example, the
costs associated with the production of a new CPU
are small compared to the cost of a chip manufac-
turing plant. The pricing of IT services has strong sim-
ilarities with instances of pricing in the retail indus-
try. Hardware equipment is sold on a per-unit basis,
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but this simple unit pricing is supplemented by a va-
riety of price schedule modifications, such as quan-
tity discounts, bundling, and market skimming (grad-
ual price reduction) and dealing (temporary price
cutting). Conversely, for IT services, such as services
in outsourcing contracts, a fixed-price contract is
dominant.

In recentyears, IBM has promoted a third way to pro-
vision information services' (other companies have
made similar proposals). Utility computing services
deliver information services when needed, in such
away that customers neither incur the high fixed costs
of purchasing hardware and software, nor commit
to long-term fixed-price outsourcing contracts. In-
stead, they receive the service they need and pay only
for what they use. Utility computing services repre-
sent a departure from the current ways of doing bus-
iness. On one hand, they feature attributes that ap-
peal to customers: short lead times in service
provisioning, high reliability and survivability, cus-
tomized service level agreements, a reduced learn-
ing curve in the adoption of a new service, and easy
access to new technology. On the other hand, utility
computing services have direct financial benefits for
the customer. These benefits come about in two dis-
tinct ways. First, utility computing services reduce
the risk faced by the customer because the costs to
the customer are proportional to the volume of trans-
actions performed during a certain time interval (say,
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Table 1 Comparing provider costs and risks among IT products, outsourcing services, and utility-computing services

Sector

Products

Outsourcing services

Utility-computing services

Initial investment Low-medium
Demand uncertainty High

High High
Low High

a quarter). These transactions are usually correlated
with the number of financial transactions performed
during the same interval, and therefore with the rev-
enue stream of the customer. Therefore, the cost
structure is tied to the revenue. This reduces the
downside risk faced by a customer when the reve-
nue falls below target. In this respect, utility com-
puting services represent a risk management instru-
ment for the customer, similar to insurance.

A second financial advantage of utility computing
services comes from economies of scale. Utility com-
puting services are designed to run on a shared in-
frastructure, in which resources can be dynamically
shared among customers. As the number of custom-
ers grows, the average resource utilization grows be-
cause of the statistical multiplexing of customer de-
mand. As a consequence, hardware costs are sub-
linear in the total volume of transactions. Similarly,
labor and software costs do not increase linearly with
the size of the infrastructure. The increase in oper-
ational efficiency can be translated to lower prices
to customers.

While utility computing services deliver distinct ben-
efits to customers of IT services, they pose new chal-
lenges for providers:

* Reduced contract duration. Contracts for on de-
mand IT services have a minimum duration of one
year, and this term could be further reduced in the
future. This is in stark contrast with the currently
typical terms of five to seven years for outsourc-
ing contracts. Previously, monitoring revenues and
ensuring they are in line with forecasts (revenue
assurance) was handled within each individual con-
tract. In the new model, the challenge is associ-
ated with a portfolio of contracts, and one uncer-
tainty faced by the provider lies in the variable
duration of these contracts.

¢ Reduced switching costs and customer lock-in. Al-

though set-up fees and fixed recurring fees are also
part of utility-computing service contracts, they
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constitute a smaller percentage of the cumulative
revenue. In turn, this facilitates the migration of
customers among providers.

¢ Uncertain customer demand. The core of the re-
alized revenue is variable; that is, it is proportional
to customer demand. With a small customer base
consisting of few customers, the provider faces the
risk associated with fluctuations in demand. If the
customer base is sufficiently large, the fluctuations
have less impact on the profitability of the offer-
ing, and the provider only faces the risks associ-
ated with the industry sector in which the custom-
ers operate. In either case, the risk faced by the
provider is higher than in the previous outsourc-
ing environment.

¢ Short life cycles and high sunk costs. Durations
of utility-computing service contracts are already
shorter than the life cycles of hardware and soft-
ware products. Together with low switching costs,
the short contract duration allows customers to
switch to the newest available technology at little
or no cost. As a result, the life cycle of utility-com-
puting service offerings will be short and tightly
correlated to technological cycles. Within the cost
structure of utility-computing service offerings,
sunk costs are much larger than the variable costs.
Sunk costs include development costs for instru-
mentation, provisioning, and monitoring of new
services.

Thus, new utility-computing services require signif-
icant ex ante development and start-up costs in the
face of uncertain demand. Compared to the exist-
ing pricing practices for IT products and outsourc-
ing services, this is the worst of both worlds. We com-
pare the three sectors in Table 1.

How is pricing affected by the features of an on de-
mand offering? We should point out that three types
of decisions are involved: what to price, how to price,
and when to price. “What to price” pertains to the
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set of attributes associated with the service. Should
a content delivery service include guarantees on per-
formance, such as maximum packet loss or maximum
latency? Should the service offer HTTP (HyperText
Transfer Protocol) and SSL (Secure Sockets Layer)
transactions separately, or should these two types of
transactions be bundled as a single service? Notice
that even a homogenous product can be differen-
tiated by posting prices that depend on volume. This
is a special form of bundling, in which multiple units
of the same product are bundled together. There-
fore, pricing is strongly related to the choice of a
product (or service) line. However, assigning prices
to each item in the product line (“how to price”) is
perhaps the most important task in the pricing pro-
cess and is the only one that is performed by the
“pricer” alone.

In the following, we address the problem of pricing
a service with on demand attributes. We focus on
how to price a single unit of a service delivered to
multiple customers by a shared infrastructure. We
leave the attributes of specific utility-computing ser-
vice offerings in the background; that is, we take on
the problem of pricing with a given set of attributes.
Whereas the attributes are important and affect the
pricing decision, their impact is indirect and is cap-
tured in the price elasticity. There are additional fea-
tures of a complete pricing strategy that are missing
in our analysis. Most importantly, we consider nei-
ther nonlinear-pricing nor dynamic-pricing strate-
gies. Although these aspects are important, we be-
lieve that their impact on the pricing decision is
secondary when compared to price point setting for
a unit of service.

First, we observe that nonlinear pricing approaches
(also known as second-degree price discrimination),
such as bundling and quantity discounts, are not al-
lowed when service resale is permitted*—a very real
possibility in the case of IT services. Second, there
is circumstantial evidence that the demand level of
an individual customer is not sensitive to price. For
example, the traffic to a popular Web site is inde-
pendent of how much the Web site owner is paying
to the content provider. Similarly, the load on a cor-
porate database system is generated by the company
employees, and is insensitive to the price paid by the
company to the IT provider. Given that demand is
mostly exogenous, the impact of quantity discounts
on the pricing strategy is likely to be less important
than the selection of the unit price. Moreover, it
should be noted that one of the most distinctive at-
tributes of on demand services is the high level of

22 PALEOLOGO

contractual standardization: prices are publicly avail-
able to customers, thus ruling out first- and third-
degree price discrimination that posits different
prices for different customers.

Dynamic pricing has been used with success in a
number of sectors, the two major areas of applica-
tion being the travel and hotel industries. Like utility-
computing services, both industries exhibit high fixed
costs. However, a closer look reveals some signif-
icant differences. First, while the sectors mentioned
above exhibit increasing marginal costs and long lead
times for capacity expansion, IT services show that
marginal costs are constant or sublinear (thanks to
multiplexing gains) and with short lead times com-
pared to contract duration. Second, the contract du-
ration in the hotel and airline sector ranges from
hours (a short one-way flight), to days (round-trip
flight, or a long hotel stay), whereas an IT contract
spans a much longer interval. The immediate con-
sequence of the different cost structures is that, while
rationing is unavoidable in airline and hotel reser-
vations, it is virtually absent in IT contracts because
the provider can always find it profitable to expand
capacity to accommodate new customers, and this
expansion requires short lead times. Therefore, al-
though dynamic pricing techniques may prove use-
ful in the future for managing short-term capacity
shortages, the case for their current application in
other sectors is not as compelling. Although unit
prices do change during the lifetime of utility-com-
puting services, the explanation lies in technologi-
cal innovations modifying the cost structure of the
providers and customers’ preferences, rather than
apredefined time-varying pricing policy. We choose
not to consider these effects because they are spe-
cific to each offering and can be treated as additional
contingencies.

The remainder of the paper is organized as follows.
In the next section we review the pricing method-
ology currently followed by practitioners and the the-
ory behind it. We then introduce our pricing meth-
odology by presenting a problem formulation for
pricing on demand services and an algorithm for ob-
taining a numerical solution. In the last section we
summarize our finding and suggest directions for fu-
ture research.

Pricing: practice and theory
In their seminal paper, Hall and Hitch suggest the

pricing process has three stages.® First, the firm es-
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timates a certain demand level g, for a new prod-
uct. Second, it estimates the production costs C(q.,)
associated with the assumed production volume. Fi-
nally, it generates a price by marking up the unit cost
of production, the mark-up being a proxy for the
gross profit margin (GPM) associated with the
product:

Py = 1+ GPM)C(q.,)/q., (1)

The methodology, termed cost-plus pricing, is illus-
trated in Figure 1. Cost-plus pricing is currently
widely practiced. Historical evidence suggests that
cost-plus pricing has been in use at least since the
end of the 18th century. In their 1939 study, Hall and
Hitch found that 80 percent of a sample of surveyed
companies used this methodology.* A study by Skin-
ner found 70 percent of the companies in that sam-
ple, and later studies by Shipley found that 59 per-
cent of the companies used cost-plus pricing on all
of their product lines, whereas an additional 33 per-
cent of companies used this methodology on some
of their product lines.** A more recent study by Dia-
mantopoulos et al. confirms these findings.® All the
aforementioned studies concern product pricing. For
IT service pricing, a comprehensive study is not yet
available. There is ample circumstantial evidence,
however, that cost-plus pricing is more often used
in service pricing than in product pricing.

Why do companies use cost-plus pricing? Although
the question is more than sixty years old, there is still
no definitive answer. We list several possible expla-
nations and refer the interested reader to the rel-
evant literature.

* Bounded rationality. Companies, like individuals,
are not entirely rational agents. Their preferences
are not always fully formed, and their ability to
process information may be limited. In particular,
they often ignore the demand elasticity for a given
product. Their mode of operation, then, is not to
maximize their profit or a similar objective func-
tion, but to obtain a solution that is good enough.

 Fairness. Companies set low prices because these
prices are perceived as “fair” by customers.”-® By
foregoing profits in the short run, the company se-
cures the customers’ allegiance and trust and thus
benefits in the long run.

* Organizational constraints. Corporate decisions
are the outcome of interactions among organiza-
tional entities with possibly conflicting objectives.’
For example, if the pricing decision follows the in-
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Figure 1 Cost-plus pricing process
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vestment decision, the person making that pric-
ing decision might not be driven by profit maxi-
mization. Instead, the pricer tends to validate the
already settled investment decision by assuming
that the investment will yield a certain return.

The cost-plus pricing methodology is at odds with
the prescriptions suggested by Walrasian economic
theory. According to this theory, the two basic te-
nets of industrial organizations are that prices affect
demand, and that decision makers are rational; that
is, their goal is to maximize their expected profit. The
difference between the solutions prescribed by the
cost-plus methodology and the utility-maximization
methodology is best illustrated by analysis. We con-
sider the case of a new service that has some differ-
entiating features when compared to substitute ser-
vices already offered in the market. Furthermore, for
the sake of simplicity, we assume that the compet-
itive environment is static; that is, no other services
enter the same market, and the prices of the exist-
ing services are fixed. In this case, assume there ex-
ists an inverse demand function P(q) that maps a cer-
tain demand ¢ to the price per unit of service that
would generate this demand level. If the average cost
of provisioning g service units is C(g), the problem
to be solved by the provider is

Maximize ¢P(q) — C(q)
Subject to q=0

(2
We call the solution to this optimization problem
the rational pricing solution because it maximizes the
value of the investment in the case of constant unit
prices (see Figure 2).

The differences between cost-plus and rational pric-
ing are best illustrated graphically. Consider first Fig-
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Figure 2  Rational pricing process
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ure 3. The red curve describes the average unit costs
to provide an SU (service unit), say, one GB of stor-
age capacity for the duration of the contract. The
curve has a saw-tooth shape, since capacity cannot
be increased in continuous increments, but only by
adding servers with a fixed minimal capacity. The
blue curve describes the inverse demand curve. In
the cost-plus methodology, the pricer assumes a de-
mand level g, and computes the resulting price p.,.
The demand at this price, however, is much higher
than anticipated, and additional investment is made
to increase production. The production output g*
corresponding to this price is much higher than g.,.
The average unit costs are higher than forecasted,
and the net result is a loss for the provider (the yel-
low area in Figure 3). Compare the previous anal-
ysis to the rational pricing solution illustrated in Fig-
ure 4. The optimization problem (2) is equivalent to
maximizing the area of the yellow area in Figure 4.
The optimal production output is q,,,. Interestingly,
this value is close to the demand level g, but the
optimal price p,, is greater than p,. The graph of-
fers a qualitative interpretation of the most effec-
tive pricing strategy. In this example, the provider
should take advantage of the insensitivity of demand
when price is greater than $9/SU. Based on the (in-
verse) demand curve and on the provider’s cost struc-
ture, the correct positioning of the service is as a pre-
mium service. The strategy is to command such a
price that the output level is below 300 SU, and thus
avoid additional investments in capacity.

Price-at-Risk: A pricing methodology
Although the concept of a demand curve is an el-

ementary and powerful one, it has not been exten-
sively used by practitioners. The main obstacle to its
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adoption is the difficulty of estimating the demand
curve, or equivalently, the price elasticity of demand.
The problem is exacerbated in the area of IT services
delivered over networks. The two major methods for
demand estimation from transactional data, one
based on time series and the other based on cross-
sectional data, find little application here.'’ Long-
term historical data on demand are not available,
given the high pace of innovation in this sector. IT
services usually cater to few large geographical mar-
kets with very different tastes and needs. Thus cross-
sectional analysis does not help either. The only avail-
able alternative is therefore marketing analysis, such
as panel studies, survey research, and focus groups.
The resulting estimates of market size, price elas-
ticity, and rate of adoption have a significant margin
of error. Considering only the expected demand
curve would underestimate the risk associated with
the investment and could lead to undesirable deci-
sions. For example, imagine that, based on the avail-
able market information, the expected GPM is 35 per-
cent. If the distribution of market demand is ignored,
these indicators of financial performance might be
deemed acceptable by the decision maker. But, what
would be the assessment if a more accurate analysis
would reveal that with high probability, say 20 per-
cent, the GPM could be negative? The outlook on
the price and on the investment would change sig-
nificantly. The goal of the Price-at-Risk (P@R)
methodology is to incorporate the essential features
of rational pricing, and, at the same time, quantify
the uncertainty associated with the market assess-
ment of the demand and incorporate it in the de-
cision process. P@R improves upon the current pric-
ing methodology in three ways.
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Figure 3  Cost-plus pricing

P, = (1 + GPM) x C(d,,)
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Figure 4  Rational pricing

PROFIT

AVERAGE COST PER UNIT
OF SERVICE

COST PER UNIT ($)

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004 PALEOLOGO 25



Figure 5 P@R functional model
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1. It uses a detailed model specification that takes
into account multiplexing gains and decreasing
average Costs;

2. It takes into account uncertainty by formulating
the pricing problem as a stochastic model;

3. As in rational pricing, it uses optimization, and
it takes advantage of market information.

Next we describe each of these aspects of the meth-
odology in more detail.

Model specification. The functional model of P@R
shown in Figure 5 differs from the model of Figure
2 in that a Capacity entity is present, together with
Multiplexing Gains as input needed to determine sys-
tem capacity. We now examine in detail the func-
tional relationship between the elements of the
model.

Market structure. Market structure determines how
the market responds to price and how rapidly a new
service is adopted. There are three parameters in the
model: (1) the market size M, defined as the cumu-
lative number of potential customers during the life-
time of the service; (2) the demand elasticity n(p)
= — p/D X dD/dp, where D(p) is the percentage of
customers subscribing to the service at price p; and
(3) the rate of adoption of the service. We use the
Bass model of diffusion of a new product to capture
the adoption of the service over time.'"!? Let F(t)
be the fraction of customers that have purchased the
service for the first time.
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The Bass model postulates that the evolution of F
is described by the differential equation

dF = (a + bF)(1 — F)dt,

where a is termed the coefficient of innovation, and
b is the coefficient of imitation. This simple model
admits an intuitive interpretation and has been con-
sistently validated by empirical studies.

Demand. The number of customers § in the system
at time ¢ is given by the formula

S(p,t) =M X D(p) X F(1), 3)
where

D(p) = exp(— [ n(p)/p dp)

and

F(t)=(1 —e “*)/(bja X e “*"" + 1)

follow from the definitions of demand elasticity and
the Bass diffusion model.

Multiplexing gains. A common feature to all utility-
computing service offerings is that the infrastructure
is shared dynamically among customers. This means
that resources can be allocated to a customer, re-
leased when the customer does not need them any-
more, and reallocated to another customer. There-
fore the total capacity of the system must
accommodate the peak of the sum of customers’ de-
mands. In the case of static allocation of resources,
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or of dedicated resources, the capacity must be higher
and equal to the sum of customers’ peak demand.
As a result, when the infrastructure is shared, the
average utilization increases with the total demand
served by the system. For example, suppose that a
content delivery system serves a single customer
whose load oscillates between 5 and 10 SU/Day, av-
eraging 7.5 SU/Day. In order to guarantee service
to this customer, we need to allocate a capacity of
10 SU/Day, which is the peak demand rate. The av-
erage utilization of the system is 7.5/10 = 75%. How-
ever, if there are eight customers with the same but
independent demand requirements served by the
same infrastructure, then the total demand smoothes
out, and we need a total capacity of 66 SU/Day, to
serve an average demand of 60 SU/Day. The aver-
age utilization is 60/66 = 91%, a 16 percent increase
over the single-customer case. As an effect of the
multiplexing of demands, as more customers get on
board the same delivery system, the peak of the ag-
gregated demand gets closer to the average demand.

In general, economies of scale due to demand ag-
gregation can be expressed as increases in average
system utilization G(S) € (0,1] as the total number
of customers § increases. This function is used in the
next subsection to derive the system capacity.

Capacity. From the definition of multiplexing gains,
and from Equation (3), it follows that the system ca-
pacity L needed at time ¢ is given by

L(p,t) =S(p,)/G(S(p, 1))
Cost structure. Costs are classified in three classes:

* Sunk costs are fixed costs that are incurred at the
beginning of the investment and are independent
of capacity;

e Fixed avoidable costs are optional and usually cor-
respond to investments in capacity. After they are
incurred, these costs are fixed; that is, they are in-
dependent of the actual demand served by the pro-
vider;

e Variable costs are proportional to the demand
served by the provider over a certain horizon.

Below this broad classification lies a rather complex
cost structure. For example, all costs may have a one-
time and a reoccurring component. One-time
charges can be financed over a certain horizon. Vari-
able costs can be one-time costs (such as customer
set-up costs) or reoccurring costs (such as customer
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Figure 6 Demand curve

MARKET SHARE

service costs, costs of failures due to high utilization,
and penalties due to infringement of Service Level
Agreements). In general, the cost incurred at time
t is a function of the demand levels (and associated
capacity upgrades) up to time . We write K(p, t) for

K(S(p, 1), S(p,2),---,8(p, 1)

Revenue. The revenue accrued in period ¢ is
R(p, ) =p X S(p, 1).

Financial performance. The profit accrued in period
tism(p, t) = R(p, t) — K(p, t). From the net cash flow
stream, we can compute the net present value and
the annual gross profit margins.

Stochastic model. In the pricing decision we must
take into account the uncertainty inherent in the es-
timation of input parameter values. Information on
the demand is assessed through marketing analysis.
Similarly, economies of scale, an essential feature
of utility computing services, can only be estimated
based on benchmarks and historical data. The P@R
approach does not require perfect knowledge of
price elasticity, rate of market adoption of a new of-
fering, or economies of scale. Rather, it allows the
decision maker to input worst-case and best-case val-
ues of the relevant parameters. For dealing with the
demand curve, we use two curves, corresponding re-
spectively to the estimated lower and upper bound
for demand (Figure 6). For each price point in Fig-
ure 6, the decision maker sets confidence intervals
on the market share that can be captured.
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Figure 7 GPM probability density function for two

price points
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The set of parameter values compatible with the con-
fidence intervals constitutes the sample space; a value
is sampled for each parameter used in the model,
and this set of samples constitutes a scenario w. P@R
computes the financial performance associated with
each scenario. By generating a large number of sce-
narios, P@R develops a probability distribution of
the financial performance of a price point. The last
step of the methodology, after input specification and
scenario generation, is the performance evaluation.

Market information and optimization. P@R consid-
ers two indicators of financial performance: gross
profit margin (GPM) and net present value (NPV).
GPM is used to decide whether a price point is vi-
able or not, whereas NPV is used to assess the value
resulting from an offering for a certain price point.

Gross profit margins are used in cost-plus pricing to
determine the price at which the offering yields an
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acceptable return. Over a three-year investment ho-
rizon, the decision maker specifies target GPM val-
ues for each year. P@R retains the concept that
GPMs should be used as benchmarks of financial per-
formance but uses the entire distribution of GPM
values, obtained through automatic generation, in-
stead of a single value. To explain how this is accom-
plished, we give a concrete example. Suppose we are
evaluating an offering with a lifetime of one year.
We would like to evaluate the relative performance
of two price points: $50/SU and $70/SU. To do this,
we set a target GPM (TGPM) of 15 percent and a
maximum risk (MR) of 10 percent. The TGPM is the
minimum profit margin that we target for our offer-
ing. We choose a TGPM of, say, 15 percent. The max-
imum risk is the maximum probability we accept for
not meeting our TGPM. We choose MR = 10%.

The probability density functions of the gross profit
margin for the two price points are shown in Figure
7. On the top, the $50/SU GPM density function has
an average return of 50 percent, but the GPM is less
than the target in 17 percent of cases. The yellow
area represents 10 percent of cases, and the 10th per-
centile of the GPM is 6 percent, much less than the
target. The $70/SU density function shown on the
bottom has an average GPM of 40%, sensibly less
than in the $50/SU case (area below the 15% TGPM
value). However, the 10th percentile of the distri-
bution in this case is exactly 15 percent, which means
that we meet the target at least in (1 — MR) = 90%
of cases. Therefore, the $70 price point is viable,
while the $50 is not.

In its use of percentiles to quantify financial perfor-
mance, P@R is similar to the VaR (Value-at-Risk)
methodology used to evaluate the risk exposure as-
sociated with financial decisions."® Although eco-
nomic theory suggests that an expected utility max-
imization (or the specialized mean-variance)
approach is more justifiable, VaR and P@R allow
the decision maker to quantify the potential losses
and gains in monetary terms, and are naturally suited
to quantify the risk-adjusted performance of an in-
vestment decision.

The P@R methodology can be extended to multi-
year investments. Gross profit margins are used to
assess if a price point is viable. The price point is
deemed viable if all the target gross profit margins
are met with a prespecified probability. Within the
range of viable price points, we use the NPV as a
metric of absolute value. (The choice of the NPV is
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somewhat subjective; P@R can be adapted to any
metric that is considered useful.) From the set of vi-
able prices, the decision maker selects the price point
that generates the highest expected NPV, and assigns
it as the price of the offering. Alternatively, the range
of viable prices can be considered as the starting
point of a more complex pricing strategy that includes
special contractual terms and conditions, such as
quantity discounts that add value to the offering and
are still compatible with the price range. The P@R
tool analyzes the investment over a variable time ho-
rizon, although the choice of a three-year period is
the most common one. Instead of computing GPM
for the overall investment, the tool computes for each
year the distribution of GPM values. The decision
maker specifies three target values «;, i = 1, 2, 3,
one for each year, and the maximum acceptable risk
r that any of the targets will not be met. The opti-
mization problem can be formulated as follows.

Maximize Expected NPV(p, o) %)

s.t. to Probability(GPM,(p, w) > a,
fori:l’ 2’ "'7Nyears)2r (6)

P@R simulates a large number of scenarios for each
price point, and computes the probability distribu-
tions of the gross profit margins. Then it checks that
the target GPM is met with probability greater or
equal than (1 — r).

Numerical solution. The problem stated in Equations
(5, 6) is a stochastic program with nonlinear objec-
tive function and percentile constraints. It is well
known that in general the feasible region is non-con-
vex.!* A possible approach to finding one point sat-
isfying the Karush-Kuhn-Tucker conditions for this
problem could be to estimate the expected values
and percentiles for a fixed price point via simulation,
and then to optimize with respect to price by using
standard optimization methods. This approach has
two drawbacks. First, estimating the values of the
objective function and of the constraint can be com-
putationally expensive. Second, the algorithm is not
ensured to converge because the output of the sim-
ulation is an estimate and not the actual expecta-
tion. We present an alternative algorithm that em-
ploys stochastic approximation techniques. The
method updates the price point p, after each sam-
pling; correspondingly, it updates the Lagrange mul-
tiplier A, associated with the inequality constraint
and is described as follows:
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Parameters

K>0
Initialization

A=0

Po=>0
For eachn = 1 to N:

Setd, = (NPV(p, + K/n, )
~ NPV(p,, ©) X n/K (7)

Set f(p,, »)
1 —r if all GPM requirements
= are satisfied (8)
-r otherwise

Set g, = (f(p, + Kin, w) = f(p,), w)) + n/K
Setpn+1 :pn+K/n X (dn_AnXgn) (9)

Set A,y

A, + max{0, A, — K/n X f(p,, o)} if A,>0
Nt if A,

(10)
The convergence result can be stated as follows:

Theorem 1: Assume that, for each p > 0 E(NPV*(p,
®)) < © holds. As N — «, p,; converges in proba-
bility to a price point p* that satisfies the Karush-
Kuhn-Tucker conditions for problem (5, 6).

We relegate the proof of convergence to the Appen-
dix. Note that the price is allowed to take negative
values. When p, < 0 we assume that the demand is
equal to zero.

Concluding remarks

There is widespread agreement that the pricing pro-
cedures currently in use in corporations are inad-
equate and that an improved pricing methodology
should take into account market information. These
shortcomings are particularly evident in IT services
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that are offered on demand. Their relative short life-
time and high initial investments do not leave room
for price adjustments, while at the same time their
adoption is highly uncertain due to the pace of tech-
nological innovation. The shortcomings of current
methodologies notwithstanding, an alternative is not
available yet. The main obstacle to innovation lies
in the modeling of market parameters, such as mar-
ket size, price elasticity, and rate of adoption of a
new product. In this paper, we have proposed a novel
methodology, named Price-at-Risk, whose goal is to
include these parameters and to take into account
the impact of uncertainty in the decision process. For
each parameter of interest, the decision maker en-
ters a confidence interval. A large number of sce-
narios are simulated, each of them with parameters
compatible with the input confidence intervals. A
price point is considered viable if the corresponding
financial performance, expressed by annual gross
profit margins, exceeds a specified target with high
probability. The probability represents the risk aver-
sion of the decision maker, and its use is similar in
spirit to the Value-at-Risk methodology used in risk
management of financial assets. Within the set of vi-
able points, the methodology instructs to choose the
points with the highest expected net present value.
By modeling explicitly contingent factors, such as the
uncertainty in the rate of adoption of an offering or
the associated demand elasticity, the methodology
can account for risk before the pricing decision has
been taken. By optimizing the expected net present
value, subject to financial performance constraints,
the methodology improves upon the simple cost-plus
procedure.

Several important features of real-world situations
have been not been modeled in this analysis. First,
an IT company may have a shared infrastructure with
the ability of providing diverse services that are me-
tered and priced independent of each other. In this
case, the pricing problem is enriched by a multidi-
mensional demand curve. Second, we ignored inter-
actions among competing firms; the setting is akin
to that of a monopolist facing a pricing decision over
a finite time horizon. These interactions are of great
importance in practice and can take various forms,
such as one-time price adjustments, “price wars”
leading to small profit margins for all players, and
“wars of attrition.” It is a challenging research prob-
lem to model the strategic interactions among com-
panies in order to provide useful recommendations
for the pricing task.
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Appendix: Proof of Theorem 1

We sketch here the proof of Theorem 1. We rewrite
the problem stated in Equations (5, 6) in a different
form:

max E(NPV(p)) (11)
s.t. E(h(p)) =0 (12)
where

1 —r if all GPM requirements
are satisfied
—r otherwise

h(p) =

The stochastic process d,, described by Equation (7)
issuchthat E(d,) = (E(NPV(p,, w)) — E(NPV(p,-1))
X n/K.

From Equation (8) we obtain that E(f,(p,, w)) =
E(h(p, »)).

Consider the stochastic process (p,, A,) described
by Equations (7, 8, 9, 10). We consider the piece-
wise constant interpolation of this process (p(¢), A(¢)),
defined as

[p(®), A)] = (p., A,) ift E ( > Kim, EK/m)

m=1 m=1

Under additional mild technical assumptions (see
Reference 15, Ch. 8, Theorem 2.3), one can show
that (p(¢), A(t)) converges in distribution to (p(?),
A(t)), the solution of the system of ordinary differ-
ential equations

dp B d B d _
- @E(NPV(P)) —A ﬁE(h(P))

if A >0
ifA=0

dA {[— E(h(p)) (13)

dr [ - Eh(p)]*

where we use the shorthand x * = max{x,0},x~ =
(—x)*. The stationary points (p*, A*) of the above
system satisfy the conditions:
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of shared resources. He holds a Ph.D. in management science

d _d
dn E(NPV(p*)) — A an E(h(p*) =0 and engineering and an M.S. degree in engineering-economics
P P

systems and in statistics, all from Stanford University.
E(h(p*) =0
A =0
A >0 E(h(p*) =0
[EG(p*)]">0=> A% =0

These are precisely the Karush-Kuhn-Tucker con-
ditions for problem (5, 6), as formulated by Equa-
tions (11, 12). Convergence in distribution to the
point (p*, A*) implies convergence in probability.
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