
Web services on
demand: WSLA-driven
automated
management

by A. Dan
D. Davis
R. Kearney
A. Keller
R. King

D. Kuebler
H. Ludwig
M. Polan
M. Spreitzer
A. Youssef

In this paper we describe a framework for
providing customers of Web services
differentiated levels of service through the use
of automated management and service level
agreements (SLAs). The framework comprises
the Web Service Level Agreement (WSLA)
language, designed to specify SLAs in a
flexible and individualized way, a system to
provision resources based on service level
objectives, a workload management system
that prioritizes requests according to the
associated SLAs, and a system to monitor
compliance with the SLA. This framework was
implemented as the utility computing services
part of the IBM Emerging Technologies Tool
Kit, which is publicly available on the IBM
alphaWorks™ Web site.

In recent years, we have seen a sharp rise in out-
sourcing of business applications and processes. The
ability to outsource certain business operations al-
lows each business to focus on its core activities and
competencies. On the service providers� end, they
become more cost-effective by exploiting economies
of scale similar to traditional public utilities.1,2 Hence,
the service providers can be referred to as “utility
computing providers.” In order to meet the require-
ments of fast changing market conditions (i.e., in or-
der to be effective, efficient, and flexible), we expect
outsourcing to evolve into “dynamic outsourcing” of
applications and business processes, whereby service
consumers determine programmatically the service
provider and/or service attributes, that is, quality of
service, to use.3

Success of dynamic outsourcing and quickly form-
ing new business relationships are, however, depen-

dent on three critical factors. First, to meet interop-
erability requirements, access to services needs to
be based on open and emerging standards for en-
abling the service-oriented architecture (SOA) model,
and in particular Web and grid services. These ser-
vices may span a wide range of the outsourcing spec-
trum, including access to business applications, such
as financial services, human resources (HR), and en-
terprise resource planning (ERP), and infrastructural
resources, such as storage, computing resources, and
application-hosting platforms. Second, the decision
to outsource a part of the business process or ap-
plication is critically dependent on whether a bus-
iness partner can be trusted to provide an on-time
reliable service. To ensure this quality of service, the
service client jointly with the service provider should
define a service level agreement (SLA) as a part of
a service contract that can be monitored by one or
both parties. The same service may be offered at dif-
ferent service levels (in terms of responsiveness,
availability, throughput) and priced accordingly.
Third, to provide fine-grained outsourcing in a cost-
effective and on-time manner, it is essential to sup-
port automated management of the entire life-cycle
of the business relationship: creation of service of-
fering, creation of SLAs with possible negotiation,
provisioning of applications and environments, and
monitoring of SLAs both for dynamic allocation of
resources and for compliance. To facilitate this au-
tomated management, the SLAs and other agree-

�Copyright 2004 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

DAN ET AL. 0018-8670/04/$5.00 © 2004 IBM IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004136

ments need to be specified in machine-executable
forms. In addition to SLAs with customers, the bus-
iness defines additional objectives for managing the
utility computing infrastructure. This may include re-
source arbitration policies across SLAs (in terms of
optimization of profits, customer satisfaction, etc.)
and strategies for provisioning additional resources.
Resource provisioning and workload management
in meeting SLAs with clients and other business ob-
jectives may differ significantly across service pro-
viders, thus reflecting their unique strategies and au-
tomated management processes. A less agile utility
computing provider may depend on fixed allocation
of resources, whereas a more efficient provider can
dynamically redistribute resources across multiple
customer workloads.

This paper presents a framework for providing dif-
ferentiated levels of Web services to different cus-
tomers through the use of automated management
and service level agreements (SLAs). The execution
environment is referred to as a “Web-services-on-
demand” environment because it exhibits two im-
portant on demand characteristics. First, it supports
dynamic outsourcing (on demand) where service cus-
tomers can dynamically form outsourcing relation-
ships with providers, and the execution environment
supports the required functionalities for managing
the SLA life cycle. Second, to be efficient and prof-
itable, the service provider provisions resources
dynamically (i.e., on demand). In this paper we use

the terms “Web services” and “utility computing ser-
vices” interchangeably.

Figure 1 illustrates a high level architecture of our
implementation, in which functions are grouped into
three components: Web service contracting, Web
service provisioning, and the Web service execution
environment. The Web service execution environ-
ment includes the computing platform and workload
management.

All customer interactions other than the service in-
vocation itself are managed by Web-service contract-
ing. The utility computing provider creates various
service offerings that are defined in terms of service
levels (fixed or negotiable), rating (pricing), and var-
ious restrictions that may be placed on the usage of
this service. Tools for creating an offering may take
into account various business objectives, resource
availability, as well as considerations on the profit-
ability and the difficulty of supporting such an of-
fering. A customer order (also referred to as a sub-
scription) for an offering results in the creation of
an SLA as part of a contractual agreement. The SLA
is expressed via the Web Service Level Agreement
(WSLA) language.4 For flexibility, certain terms of
the contract can be negotiated.5,6,7 The subscription
is tracked during the fulfillment process to make sure
that the service level guarantees agreed upon in the
SLA are adhered to, a process referred to as com-
pliance monitoring. Data on service and resource us-

Figure 1 High level architecture of the Web-services-on-demand utility computing environment

Client 1

Client n

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004 DAN ET AL. 137

age, as well as data on any violation of service level
guarantees, are used in billing and reporting.

Processes for Web-service provisioning and resource
allocation are typically hidden from the customer.
As shown in Figure 1, Web-service provisioning takes
as input both the customer SLA and the business ob-
jectives. The multiple-step process of Web-service
provisioning is performed as a workflow. In order
to optimize on service cost, the utility computing sys-
tem may not allocate all required resources in ad-
vance. Instead, it may use sophisticated online-fore-
casting and capacity-planning tools to plan this
provisioning. In a complex environment, character-
ized by many continuously varying customer work-
loads and/or a complex resource configuration with
hard-to-estimate capabilities, dynamic resource pro-
visioning may be necessary to fine-tune resource al-
location. Resource reallocation takes into account
various business objectives, such as profit optimiza-
tion and customer satisfaction (e.g., no more than
a certain number of violations during a given period,
independent of penalties). As illustrated in Figure
1, the resource allocation plan affects the setting of
configuration and performance goals, which, in turn,
affects the way Web-service invocations are managed.

A Web-service invocation goes through some pre-
liminary steps before service is rendered by the Web-
service execution environment (Figure 1). These in-
clude authenticating the requester, identifying the
contractual agreement and its SLA, and setting up
performance goal management (managing response
time and throughput by prioritizing execution of ser-
vice requests from multiple customers). The service
usage data and the actual performance data are col-
lected online for checking compliance with an SLA
and for customer billing and reporting.

The above framework was implemented by integrat-
ing various technologies that were developed by
teams in the IBM Research Division and the IBM Soft-
ware Group. A subset of the framework is publicly
available on the IBM alphaWorks* Web site as the util-
ity computing services component of the IBM Emerg-
ing Technologies Tool Kit (ETTK).8 The ETTK utility
computing component includes most of the features
of SLA life-cycle management described in this pa-
per (except dynamic provisioning of resources): Web
service contracting, WSLA specification and monitor-
ing, and the SLA-based workload management.

The remainder of the paper is organized as follows.
In the next section we discuss SLAs in Web-service

contracts and provide an overview of the WSLA-based
specification. The following three sections describe
in more detail the three major components of the
architecture: Web-service contracting, Web-service
provisioning, and the Web-service execution envi-
ronment with workload management. We provide
a summary and final comments in the last section.

SLAs in Web-service contracts

Service level management has been the subject of
intense research for several years and has reached
a certain degree of maturity. However, despite ini-
tial work in the field,9 establishing a generic frame-
work for service level management in cross-organi-
zational environments remains a challenge. In this
section, we illustrate via a utility computing scenario
the detailed SLA specification requirements for en-
abling the monitoring of SLA compliance, and how
these requirements are addressed in the WSLA spec-
ification and the WSLA monitoring framework. We
also describe our approach to providing fine-grained
and flexible accounting for utility computing.

Example scenario: utility computing services for fi-
nancial institutions. A financial institution, FINANCE,
offers a suite of Web services that provides functions
for portfolio management. These services are used
remotely by customer applications. The customers
are billed only for services used. A typical FINANCE
customer is SMALLBUS, a small business that provides
portfolio management portals for use by its employ-
ees. The portlets10 that make up the portal consume
the Web services from FINANCE.

FINANCE, rather than acquiring and owning the in-
frastructure for hosting these services, seeks out a
provider of such services. Utility service provider
UTILSERV supplies to FINANCE the computing re-
sources needed to host the portfolio management
Web services, which include servers, storage systems,
networking components, and Internet connectivity.
UTILSERV also provides management services such
as backup, restore, security, and provisioning. An SLA
between UTILSERV and FINANCE documents the
characteristics of the provided infrastructure, such
as network throughput, or the maximum CPU utili-
zation of the processors used to run the portfolio
management Web services.

The contractual agreement between FINANCE and
SMALLBUS includes an SLA that specifies perfor-
mance objectives such as response times and

DAN ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004138

throughputs. These objectives are based on the SLA
between FINANCE and UTILSERV. For example, a
stock purchase transaction involves a confirmation
delay that is part of the SLA and depends on the SLA
between FINANCE and UTILSERV.

FINANCE provides a portal service to SMALLBUS that
includes portlets from FINANCE and uses the infra-
structure provided by UTILSERV. An SLA between
SMALLBUS and FINANCE describes the expected be-
havior of the portal.

Rating models are used to bill consumers for ser-
vices. In the case of UTILSERV and FINANCE, the rat-
ing model includes the following properties and their
values.

Base_price � 10$ per month
Storage_price � 2 $ per GB average per day
Network_bandwith price � 3 $ per Mb per hour
Internet_connectivity_price � 10 $ per GB volume

per month
Internet_connectivity_exceed_price � 2 $ per 10 MB

volume
Network_data_throughput_violation_price � 1 $ per
0.01% deviation

For FINANCE and its customers, the rating model in-
cludes:

Stock_purchase_transaction_service_price � 5 $ per
1000 $ transaction volume

Stock_purchase_limit_price � 3 $ per transaction
Response_time_violation_price � 2 $ per 0.01 %

deviation
Throughput_violation_price � 1 $ per 0.01 %

deviation

The overall contract between the UTILSERV and
SMALLBUS includes service level guarantees, the pen-
alty upon violation of each guarantee, and the rat-
ing on use of this service.

Contracting for Web services. The way computing
utilities are contracted is fundamentally different
from application hosting as practiced in recent years.
An application hosting service involves dedicating
resources to that service. This implies a fixed cost to
the provider for providing and managing these ded-
icated resources. The cost is typically passed on to
the service customer as a recurring charge, regard-
less of the load on these resources and, thus, the ex-
tent to which the customer makes use of these re-
sources. The arrangement is inflexible for the service

provider and, as a result, unduly expensive for the
customer.

Consider a public utility model for service delivery,
such as electric power. Electricity is always available
when needed and customers are billed only for the
power they actually consume. SLAs in utility contracts
dictate the expected reliability of the power delivery
and the maximum power a customer may draw. The
customer load varies in time, so the utility service
provider is able to allocate power dynamically to min-
imize costs and meet the SLAs. A utility computing
provider can operate using the same principle. Com-
puting resources can be added or removed from the
service in order to meet current or anticipated load.
Although this is perhaps easiest to visualize in terms
of computing power, where processors could be
added or removed as needed, utility computing ser-
vices are not limited to this type of resource.

Utility computing services are therefore provided on
demand, following a public service utility model. The
contract between customer and provider defines
charges for services at a relatively fine grain, e.g., pro-
cessor minutes used rather than allocated comput-
ing servers per year. The terms and conditions of the
delivery of the service are defined in a contract, in-
cluding the definition of the service, the rating model
(specifying how the service is priced), and the per-
formance guarantees on various aspects of the
service.

Figure 2 illustrates the contractual relationships in
a utility computing environment. Service provider
B provides services and establishes an “internal” con-
tract with service provider A, which is referred to as
a provider contract. For service provider A, service
provider B is sometimes referred to as a “supplier.”
The provider contract between UTILSERV and FI-
NANCE covers services for storage, network band-
width, and the like, and includes an SLA document
describing the properties of the infrastructure
provided.

Service provider A offers its services under certain
terms and conditions to the consumer. When the
consumer subscribes to this service an “external”
contract is created, which is referred to as the usage
contract. As illustrated in Figure 2, the usage con-
tract contains definitions of the offered services. The
usage type specification includes an ad hoc type that
counts the number of requests, whereas the “time”
field is used to accumulate service request time, and
the “amount” field is used to accumulate measure-

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004 DAN ET AL. 139

ments, such as “KB per second.” The “requester”
field names the customer, SMALLBUS in our scenario.

Service provider A provides services for the con-
sumer in Figure 2. At the same time, service pro-
vider A is a consumer for the services provided by
service provider B. Service provider A may resell to
the consumer the services provided by service pro-
vider B if the provider contract allows it, e.g., through
a license agreement.

SLA compliance monitoring. An SLA defines the
agreed level of performance for a particular service
between a service provider and a service customer.11

Having analyzed a number of SLAs used throughout
the industry for typical application service provision-
ing, Web hosting, and IT outsourcing scenarios, we
found that many SLAs contain a common set of key
elements: the names of the two parties, the SLA pa-
rameters, the metrics used as input and the algorithm
for determining the values of the SLA parameters,
and the service guarantees and the appropriate ac-
tions to be taken if a violation of these guarantees
is detected. The requirements on the scope and ex-
pressiveness of SLAs are as follows:

● In the Web services context, service guarantees and
the relevant input parameters must be associated
with individual Web services, as defined in a Web
Services Description Language12 (WSDL) file, or

processes of Web services as defined in a
BPEL4WS13 specification. Service level guarantees
need to be defined for individual operations in
bindings. Definitions on the port type level are only
of limited use. For example, response times can
only be expressed in a meaningful way on a per-
operation level because the processing of differ-
ent operations in the application service takes a
different amount of time, independent of the cur-
rent load. Different bindings may also yield dif-
ferent response times for the same operation.

● The number of different SLA parameters that can
be defined for a service is potentially very large.
Even seemingly simple parameters, such as re-
sponse time or throughput, can be defined in many
different ways: from the client, the application
server, or the application point of view; sampled
or averaged; the time interval over which the av-
erage is computed; and averaging for the opera-
tion type or for each operation individually. An
SLA must provide a description how SLA param-
eters are measured and aggregated from resource
metrics (metrics that are retrieved directly from
managed resources).

● The SLA must be able to express a large variety of
contractual obligations. This includes service level
objectives with respect to SLA parameters as well
as a deterministic set of actions if violations occur
or other critical situations arise.

Figure 2 Contractual relationships in a utility computing environment

AGREEMENTS
BETWEEN SERVICE
PROVIDER
AND CONSUMER

CONSUMER
SERVICE

PROVIDER A
SERVICE

PROVIDER B

• Utility Services
 Network bandwidth
 Storage, ...
• SLA document
• States

PROVIDER
CONTRACT

• Services
 Stockpurchase_trans
 Stockpurchase_limit
• Usage Type
 • Ad-Hoc, Time, Amount
• Rating
• Pricing
• SLA document
• States
• History/Log
• Owner
• Requester
• ...

• Finance Services:
 Stockpurchase_txn
 Stockpurchase_limit
• SLA document
• States
• History/Log
• ...

USAGE
CONTRACT

DAN ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004140

● SLA monitoring may require the involvement of
third parties. They come into play when either a
task needs to be performed that the two parties
are not willing to commit to, or when a third party
is preferred for reasons of trust. Third parties of-
fer objectivity in the SLA monitoring process and
help avoid disputes.14

● Because the task of computing SLA parameters and
evaluating contractual obligations may be further
split among multiple agents, it is important that
each one of these agents receives only the part of
the contract that it needs to know to carry out its
tasks. Consequently, a mechanism to send only the
relevant parts of the SLA to third parties must be
provided.

● The SLA must be formally defined for automatic
processing. This is important for the automatic
provisioning of a service and for the automatic
setup of the SLA monitoring and management
infrastructure.

Web Service Level Agreements. During the con-
tracting process, after the main elements of the SLA
are agreed upon, customer and provider may define
third parties (in the WSLA context we refer to these
as supporting parties) to which SLA monitoring tasks
may be delegated. Keynote Systems, Inc.15 and Xaf-
fire, Inc.16 (previously Matrix NetSystems) are ex-

amples of such third-party-monitoring service
providers.

When the SLA is finalized, both provider and cus-
tomer make the SLA document available for deploy-
ment. The deployment service is responsible for check-
ing the validity of the SLA and distributing it either
in full or in part to the supporting parties.

Figure 3 illustrates the services involved in compli-
ance monitoring when multiple parties are involved.
Services that may be outsourced to third parties are
either measurement services or condition evaluation
services.

● The measurement service maintains information
on the current system configuration and runtime
information on the metrics that are part of the SLA.
It measures SLA parameters, such as availability
or response time, either from inside, by retrieving
resource metrics directly from managed resources,
or from outside the service provider�s domain, for
example, by probing or intercepting client trans-
actions. A measurement service may measure all
or a subset of the SLA parameters. Multiple mea-
surement services may simultaneously measure the
same metrics, e.g., a measurement service may be
located within the provider�s domain while another

Figure 3 Services involved in SLA-compliance monitoring with multiple parties

CONDITION
EVALUATION
SERVICE

RESOURCE METRICS

SLA
PARAMETERS

NOTIFICATIONS NOTIFICATIONS

MANAGEMENT
ACTION

CONDITION
EVALUATION
SERVICE MANAGEMENT

ACTION

METRICS METRICS

MEASUREMENT
SERVICE

MEASUREMENT
SERVICE

MEASUREMENT
SERVICE

SERVICE PROVIDER
SYSTEM

SERVICE CLIENT

MANAGEMENT
SERVICE

MANAGEMENT
SERVICE

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004 DAN ET AL. 141

measurement service probes the service offered by
the provider across the Internet from various lo-
cations. As depicted in Figure 3, measurement ser-
vices may be cascaded, that is, a third measure-
ment service may be used to aggregate data
computed by other measurement services. For our
discussion, we refer to metrics that are retrieved
directly from managed resources as resource met-
rics. Composite metrics, in contrast, are created by
aggregating several resource (or other composite)
metrics according to a specific algorithm, such as
averaging one or more metrics over a specific
amount of time or by breaking them down accord-
ing to specific criteria (e.g., top 5 percent, mini-
mum, maximum, mean, median etc.). This is usu-
ally done by a measurement service within a service
provider�s domain, but can be outsourced to a
third-party measurement service as well.

● The condition evaluation service is responsible for
monitoring compliance of the SLA parameters at
runtime with the agreed-upon service level objec-
tive (SLO) by comparing measured parameters
against the thresholds defined in the SLA and no-
tifying the management services of the customer
and the provider. It obtains measured values of
SLA parameters from one or more measurement
services and tests them against the guarantees
given in the SLA. This can be done each time a new
value is available, or periodically.

Finally, both service customer and provider have a
management service. Upon receipt of a notification,
the management service (usually implemented as
part of a traditional management platform) takes ap-
propriate actions to correct a problem, as specified
in the SLA. The main purpose of the management
service is to execute corrective actions on behalf of
the managed environment if a condition evaluation
service discovers that a term of an SLA has been
violated.

The WSLA Language Specification. The WSLA Lan-
guage Specification4 defines a type system for the
various SLA artifacts. It is based on the XML Schema.
In principle, there are many possible types of infor-
mation and rules that can be included in an SLA; how-
ever, there is consensus on the general structure of
an SLA. WSLA embraces this structure by dividing an
SLA into three sections: parties, service description,
and obligations.

The parties section identifies the contractual parties
and contains the relevant technical properties, such
as their network addresses and interface definitions

(e.g., the ports for receiving notifications). A party
can be a signatory party or a supporting party. The
information for a supporting party includes, in ad-
dition to the information for a signatory party, an
attribute indicating one or more sponsors of the sup-
porting party.

The service description section of the SLA specifies
the characteristics of the service and its observable
parameters. For every service operation, one or more
bindings may be specified; a binding is the transport
encoding for the messages to be exchanged. In ad-
dition, one or more SLA parameters of the service
may be specified. Examples of such SLA parameters
are service availability, throughput, or response time.

Every SLA parameter refers to one metric, which, in
turn, may aggregate one or more other (composite
or resource) metrics, according to a measurement
directive or function. Examples of composite met-
rics are maximum response time, average availabil-
ity of a service, and minimum throughput. Examples
of resource metrics are: system uptime, service out-
age period, and number of service invocations. Mea-
surement directives specify how an individual resource
metric can be obtained from a managed resource or
from a system acting as a proxy for the resource. Typ-
ical examples of measurement directives are: the uni-
form resource identifier of a hosted computer pro-
gram, a protocol message such as an SNMP (simple
network management protocol) GET message, a com-
mand for invoking scripts or compiled programs, and
a query statement issued against a database or data
warehouse. Functions are the algorithms that spec-
ify how a composite metric is computed. Functions
can be formulas of arbitrary length containing mean,
median, sum, minimum, maximum, and various
other arithmetic or statistical operators, or time se-
ries constructors. For every function, a schedule is
specified. It defines the time intervals during which
the functions are executed to retrieve and compute
the metrics. These time intervals are specified by
means of start time, duration, and frequency. Exam-
ples of frequency specifications are weekly, daily,
hourly, and every minute.

Obligations, the last section of an SLA, define the SLO,
that is, guarantees and constraints that may be im-
posed on the SLA parameters. (For an in-depth dis-
cussion of the WSLA language and usage examples,
the reader is referred to References 4 and 17.)

Accounting. The utility model for service delivery
discussed at the beginning of this section, introduces

DAN ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004142

the need for flexible accounting schemes that sup-
port billing for actual usage. The accumulated us-
age and the number and severity of SLA violations
(detected by the SLA compliance monitoring previ-
ously described) are the input parameters for gen-
erating service usage reports and bills. The specifics
of service rating and billing are defined in the usage
contract (see Figure 2). This document contains all
details of the overall agreement between customer
and provider, and it is used by other components,
such as usage metering.

Figure 4 shows the functional overview of the Web-
service accounting component (shown in Figure 1
as the billing and reporting function of Web Service
Contracting). Web-service accounting gets the con-
text from the appropriate usage contract (step 1) and
queries Web-service metering for usage accumula-
tion and service violations (step 2). It then obtains
rating and pricing information for the services in the
usage contract (step 3), calculates the respective sin-
gle events, and produces a report, and possibly a bill,
in a form specified by a report model. Web-service
accounting uses two database tables: one defines a
key associated with a rating model and the currency
that should be used; the other defines the proper-
ties of the rating model, such as stock purchase trans-

action price, stock purchase limit price, response time
violation price, and throughput violation price. The
pricing for each property is then defined in a sep-
arate column. Thus, service providers can introduce
their own accounting schemes by defining rating
models through the use of properties, implement
these rating models, and associate the usage contract
with a pricing model.

Creating offerings and managing
subscriptions
In this section, we present the Web-service contract-
ing component, which manages all relevant aspects
of contracts for Web services. The approach we take
is extensible in that it has the capability to associate
and treat multiple related contracts. As a conse-
quence, even if a contract is already in place, it can
accept new features.

For runtime processing the contract documents are
represented as contract objects. The system comes
with a set of predefined contract object types as out-
lined in the next subsection. We describe the pro-
cesses operating on these contract objects for cre-
ating offerings and managing subscriptions. The
framework we describe also includes persistent stor-

Figure 4 Functional overview of web service accounting

BILL

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004 DAN ET AL. 143

age and retrieval of contracts as well as contract val-
idation methods during runtime processing.

Contract object types. The Web-service contract-
ing framework supports arbitrary contract object
types; each contract object is an instance of one con-
tract object type. All contract object types are based
on the same data model. All contract objects con-
tain:

X An owner who is responsible for the administra-
tive management of the contract

X A state that can be active, inactive, or deleted. Fol-
lowing the creation of the contract object, the state
is set to inactive. This allows exploiters to add func-
tionality, such as creating contract objects in ad-
vance and making sure they represent a new of-
fering. A contract object is never deleted from the
database (regardless of the term “deleted state”)
because of legal and audit considerations.

X A reference denoting the contract object type
X A contract document, an XML structure that con-

tains the customer contract data. The format of
the contract document varies; any kind of contract
description can be used: string, XML document,
even binaries as Java** strings.

The Web-service contracting framework imple-
mented in ETTK provides four basic contract object
types.

1. Basic: This type is used for storing general pur-
pose contract objects that have no relation to
other contract objects, for example, SLA basic tem-
plates (see the section “SLA templates”). All other

contract object types have relations to other non-
basic contract object types. Contract objects of
this type are only represented by the contract
document.

2. Provider contract: Enables the aggregation of ser-
vices from service suppliers (for a service provider,
its own providers are known as suppliers). It is
possible to create logical units (e.g., a provider
contractlogicalunitcalledsupplierOfStockPurchase
Services) that aggregate all services from the same
supplier. Both, service supplier and service pro-
vider can add services to provider contracts. This
contract object type can be extended to cover in-
ternal cost.

3. Offer: This type is used by the service provider as
a template to create offerings. It can be empty
when created and filled in as needed, for exam-
ple, during contract negotiation. To allow full flex-
ibility, different service operations may be linked
to different rating models.

4. Usage contract: This contract object type repre-
sents the instance of a consumer contract for a
particular service. All further service-related ac-
tions are prescribed by this contract. The service
operations in the usage contract are linked to the
provider contracts that aggregate the service
operations.

In order to support extensibility, the Web-service
contracting framework allows adding properties to
existing contract types. Furthermore, if needed, new
contract object types can also be added. In the latter
case, a plug-in is required that specifies how to ac-
cess, update, and delete the newly defined contract
object.

SLA templates. A WSLA template associated with an
offering defines the quality-of-service properties of
the service. Conceptually, a template is a WSLA doc-
ument that contains fields to be filled in during the
subscription process. In addition, a template contains
a set of constraints on the fields that express the qual-
ity of service (QoS) guarantees associated with the
service. For example, a field representing the trans-
action rate might only accept values between 10 and
1000. For internal processing purposes, templates
can be associated with guides that implement the
function to fill in a value of a field. This specification
is not made available to service consumers.

A template for an SLA (or for any XML-based doc-
ument) consists of the following parts (see Figure
5):

Figure 5 Illustration of a template

DAN ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004144

1. One (or more) partially-filled XML documents
(forms) that prescribe the general outline of the
final document. For our purposes, this set con-
sists of a single WSLA document with the struc-
ture of an SLA and with values for certain fields
left blank. These values, such as customer name,
SLA name, throughput, and response time, will
be inserted during the authoring process.

2. An associated XML document describing the
fields that can be updated, and the rules for up-
dating these fields.
a. A list of named XPointers (pointers) iden-

tifying both the file, and the location (field)
within the file, from which some value is to
be set.

b. For each pointer in the above list, an op-
tional list of constraints placed upon the
value. For example, a constraint may iden-
tify the maximum and/or minimum values
for the field, or an enumeration of the set
of possible values for the field.

The following is an example of a pointer:

�Pointer form�“ID1025194360741.1”
id�“ID1025194425114.3”
name�“Value”
xpath�“#xpointer(/wsla:SLA/wsla:

Obligations/wsla:
ServiceLevelObjective[1]/wsla:Expression/wsla:
Implies/wsla:Expression[2]/wsla:Predicate/wsla:

Value)”�
�Restrictions�

�minInclusive value�“10.0”/�
�maxInclusive value�“1000.0”/�

�/Restrictions�
�/Pointer�

WSLA templates associated with offerings are either
created case by case or, as implemented in the ETTK,
refined from a base template by adding information
from the WSDL definitions of the provider contracts,
and additional performance parameters. Here,
“form�” and the “id�” are identifiers of the form
being referenced, and of the pointer id, which may
be used for associating internal implementation de-
tails (see below). At a later stage in the subscription
life cycle, the WSLA template for an offering is finally
filled out completely, and thus a WSLA instance is
created.

The above template structure is further extended for
aiding the authoring process, and this extended tem-
plate is referred to as the implementation template.

It includes a set of “guides” (implemented as Java
classes) that will be executed during the authoring
stage. A guide associated with a pointer returns a
String value that will be inserted into the location
specified by the pointer. Because each guide is a Java
class, it is capable of obtaining data from a broad
range of sources. The guides are grouped into named
sets called “modes,” such that only the guides asso-
ciated with this mode are executed in sequence dur-
ing authoring in that mode. This is useful in order
to stage the template refinement process, i.e., cre-
ating the offering and registering the subscription.
Here is how a guide is described in a template:

�Guide cloneable�“false”
name�“Insert Average Response Time”
pointer�“ID1025194425114.3”�

�Class�com.ibm.wsla.authoring.guides.
ConstantValueGuide�/Class�

�Parameters�
�Parameter�

�Name�Inserted value,
ref or property:�/Name�

�Value Type�“Property”�
�[CDATA[@@AverageResponseTime]]��/Value�

�/Parameter�
�/Parameters�

�/Guide�

The authoring tool, which is implemented as a Java
class and encapsulated in a Web service, is easily ex-
tended for particular applications. In the current con-
text, there are two methods associated with the two
authoring modes, that is, creating an offering and
accepting a subscription, which supply the values to
be inserted into the SLA template. In both cases, the
values are inserted in a dictionary with well-known
keys. Each method results in the execution of an as-
sociated mode, which itself consists of a set of guides
that have access to the keys. Thus, a guide interro-
gates the dictionary, obtains the appropriate value,
and returns that value to the authoring tool for in-
sertion into the SLA. Other guides that are executed
as part of a mode are responsible for exporting the
SLA into a form suitable for Web-service contract-
ing. In addition to simply inserting values into lo-
cations within a form, the authoring process can per-
form more complex functions, such as conditional
execution of modes, iteration over modes, and merg-
ing of templates (such as merging a template of a
component of an SLA into a template of an SLA).

Web-service contracting processes. Next, we take
a look at the Web-service contracting processes in

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004 DAN ET AL. 145

the ETTK that use the previously described contract
object types. They are depicted in Figure 6.

The provider contracts are obtained as a result of
aggregating the service descriptions from the service
provider (and possibly suppliers); this is shown as
step 1 in Figure 6. The service provider then creates
offerings (step 2) from the description of services in
provider contracts and additional offering proper-
ties: rating, SLA, and so forth. When a customer sub-
scribes to an offering (step 3), a usage contract is cre-
ated that documents the subscription. These steps
are further described next.

Aggregation of service descriptions. In this process
the Web-service descriptions are aggregated (en-
rolled) in provider contracts. This can be done au-
tomatically by using the WSDL descriptions of these
services. A logical grouping allows the service pro-
vider to maintain control over his service suppliers.
Both, the service provider and the service supplier

can register services in provider contracts. Here is
an example of a provider contract for FINANCE:

Name�StockPurchaseServices
Owner�TradingDepartment
State�ACTIVE
Type�PROVIDERCONTRACT
CONTRACTDOCUMENT��
�FinancialServicesSupplierProviderContractDoc�
�services�
�service serviceuuid�“id1”

serviceoperation�“getRealTimeQuote”/�
�service serviceuuid�“id1”

serviceoperation�“getAskPrice”/�
�service serviceuuid�“id2”

serviceoperation�“setLimit”/�
�service serviceuuid�“id3”

serviceoperation�“buyAtbestPrice”/�
�/services�
�/FinancialServicesSupplierProviderContractDoc��

Figure 6 Web services contracting processes and contract objects

1. AGGREGATION
 OF SERVICE
 DESCRIPTIONS

usage contract 1
Name=GoldContract
RequesterID = a23...
Service Operations
 s1.oper 1 id, rating id 3
 s2.oper 5 id, rating id 5
SLA InstanceDoc
...

...

2. OFFER
 CREATION

3. SUBSCRIBING

provider contr. 1

s1.operation_1
s2.*
 ...
 ...

active
...

Rating model 3
 ...

Base Rate = x $
...

 Extended Rate = x $
...

SLA TEMPLATE

 offer 1
Name=Gold
 ...
Service Operations
 S1.oper 1 id, rating id 3
 S2.oper 5 id, rating id 5
SLA template = g34..
...
...

{ s1, s2, ..., sn }

SERVICE PROVIDER

DAN ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004146

Here, id 1 through 3 are internal unique represen-
tations of services such as StockPurchaseServices and
StockPurchaseTransactionService. This allows us to
aggregate multiple services with the same name,
which is particularly useful when services from mul-
tiple suppliers are used.

Creating an offering. When creating an offering, the
provider determines which services from its portfo-
lio will be made available to consumers. This is not
only a technical process, as it involves taking into con-
sideration the business objectives, and hence rating
and pricing of the offering is essential. Here we fo-
cus on the technical aspects of creating the offering
as implemented in ETTK, including the association
of service, SLA, and rating.

An offering may include services, or service oper-
ations, from all available provider contracts. The only
prerequisite is that the provider contracts involved
must be active. This concept can be used to guar-
antee that a service is available before it is actually
offered. Moreover, contract objects of all types can
be created in advance. An offering may include ser-
vice operations from more than one provider
contract.

Each service operation can be associated with a rating
model. The rating model defines attributes and prices
that will be included in the offering. The identifiers
that link the rating models to services/operations are
stored in the usage contract. The rating models are
external to Web-service contracting. An SLA tem-
plate is created using an authoring process, and ei-
ther it is stored with the offering, or, if deployed ex-
ternally, a reference to the document is kept within
the offering.

The use of the contract object type “offering” is op-
tional in the Web-service contracting framework. Im-
plementations other than ETTK may have their own
offering creation process and may use only provider
and usage contracts.

FINANCE might create an offering as shown next. In
this example, servicekey represents a service oper-
ation such as StockPurchaseService.getRealtimeQuote,
or StockPurchaseService.getAskPrice, whereas rat-
ingkey is the link to a rating model.

Name�StockPurchaseServiceOffering
Owner�TradingDepartment
State�ACTIVE
Type�OFFER

CONTRACTDOCUMENT�
��StockPurchaseServiceOfferContractDoc
name�“Stock Purchase Offer”
startdate�“2003-02-20 00:00:00.000000000”
enddate�“2004-02-20 00:00:00.000000000”�
�services�
�service servicekey�“1ae01625-03d5-41a5-8917-

37182a173c99” ratingkey�“id1”/�
�service servicekey�“2b3e03ef-15ce-4aee-8556-

35e433b70acb” ratingkey�“id2”/�
�/services�
�/StockPurchaseServiceOfferContractDoc��
specialOffer�GOLD
AppliesForNewCustomer�YES
SLAtemplate���wsla��. The WSLA template

�/wsla��

Note, that the Web-service contracting framework
allows extending all default contract object types by
adding properties; for example, specialOffer and Ap-
pliesForNewCustomers are added properties (value
GOLD indicates a premium offering).

Subscribing to an offering. Customers agree on the
terms and conditions defined in an offering by sub-
scribing to it. The subscription process results in the
creation of a usage contract that represents the sub-
scription, and it is used for all further processes as
the context to this contractual relationship.

In the course of the subscription process, a customer
retrieves the QoS metrics offered by the provider, ag-
gregates and combines them into various SLA param-
eters, defines service levels for every SLA parame-
ter, and submits the SLA to the service provider for
approval. A business entity carries out the negoti-
ation on behalf of each signatory party (a party that
signs the SLA). The business entity embodies the bus-
iness knowledge, goals, and policies of the party it
represents. Such knowledge enables the business en-
tity to determine the service levels that should be
specified in the SLA in order to ensure compliance
with the business goals. A typical example on the cus-
tomer side is to define thresholds for response times
or throughput according to the price the customer
is willing to pay. On the provider side, typical bus-
iness actions are to decide whether the SLA is accept-
able as a whole or whether the customer-specified
thresholds are too restrictive. Business entities are
typically implemented as automated systems in sim-
ple cases or are realized as processes involving hu-
mans (especially for negotiating contracts).

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004 DAN ET AL. 147

In the main, the usage contract incorporates the
properties of the offering. In addition, the usage con-
tract contains the unique identity of the subscriber.
It serves as the handle to the identity context of the
customer, for example, by accessing the digital sig-
nature stored in the public key by means of the is-
suer certification authority and the distinguished
name. In this scenario the customer selects the SLA
attributes, which are reflected in the SLA document.
Contracts in the Web-service contracting framework
usually have two parts: the business part (i.e., the
contract description that can be signed and/or en-
crypted) and the part containing technical attributes.
This is an important feature, especially for legal pur-
poses, because it ensures the contract cannot be
changed after the subscription process concludes.
This is similar to the mechanism used to prevent
changes to PDF files, which is often used in electronic
contracts today.

Web service provisioning
The Web services delivered on demand by a success-
ful utility computing provider must be based on au-
tomatic provisioning. In the future, SLA-driven au-
tomatic and autonomic18 provisioning will allow the
service provider to allocate resources where and
when they are needed, minimizing delivery costs.
There is no doubt this will be a complex task, as it
will necessarily include components, such as network
connectivity, operating system, application server,
middleware, and application installation and config-
uration. Because most of these provisioning oper-
ations are beyond the scope of this paper, only those
directly related to SLA management will be discussed
here.

Types of provisioning. Depending on infrastructure
capability, types of services, and business models
(e.g., assumption of risk, optimization objectives) one
or more of the provisioning scenarios described next
may be appropriate for a specific service provision-
ing. The objective of provisioning is to allocate suf-
ficient resources in order to avoid violations of ser-
vice level guarantees. In our sample scenario, the
hosting service provider can use all the models de-
scribed below to allocate servers, storage, network
bandwidth, and connectivity.

Provisioning scenarios can be classified into three
categories.

● Dedicated resource provisioning: The simplest case
of provisioning is that of dedicated resources al-

located to a single consumer. When a subscrip-
tion request is received, resources are provisioned
after considering the service specifications versus
the anticipated load. In this case, the SLA system
monitors for service level compliance, reporting
violations when they occur. In the absence of the
capability to add resources dynamically, the ded-
icated environments are typically over-provisioned
anticipating the worst-case workload scenario.

● Per-SLA virtualized resource provisioning: In an
environment in which consumed resources are vir-
tualized (and underlying physical resources are
shared in support of multiple SLAs), the provision-
ing system evaluates whether an additional SLA can
be supported with the resources available to this
virtualized system. The system may also add new
resources to this shared pool based on the aggre-
gate anticipated load of all supported SLAs.19 As
before, the SLA system monitors for compliance
and reports violations.

● Dynamic resource provisioning: In this, the most so-
phisticated on demand environment, resources are
allocated to services, as needed. An initial set of
resources is provisioned for a service, and the SLA
system monitors the performance of that service.
When the load changes, new resources are allo-
cated or deallocated dynamically, in order to min-
imize service delivery costs while meeting SLA ob-
jectives. Dynamic provisioning can be used in
conjunction with the previous two scenarios for
initial resource allocation.

In the preceding example, the agreement between
the utility provider UTILSERV and the service pro-
vider FINANCE could well be a “dynamic resource
provisioning” scenario. The utility provider would
allocate an initial set of system resources to support
the FINANCE service. As load from SMALLBUS cus-
tomers increased, additional resources would be pro-
vided by UTILSERV to ensure compliance with any
response time agreement with FINANCE. When load
on the FINANCE service decreased (e.g. after close
of business), all but the minimum resources needed
to support the FINANCE service could be reallocated
to other services offered by UTILSERV or UTILSERV�s
other customers. Note that in all three scenarios, cer-
tain provisioning steps may be performed in advance
before the creation of a new SLA, whereby a customer
is assigned to a pre-provisioned service with addi-
tional provisioning steps based on the information
in the new SLA.

Next, we describe the “elements” typically provi-
sioned in addition to the actual resources. Then we

DAN ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004148

describe the configuring of an SLA monitor for mon-
itoring new SLAs. We describe the certification and
validation process for ensuring that the provisioned
resources meet the SLA requirements. We finally pro-
vide an overview of the dynamic provisioning process.

Provisioned elements. In addition to the resources
themselves, the following components of the infra-
structure must be provisioned to support an SLA-
managed system:

1. The following information is required for the SLA
management system:
a. Information about the new subscriber—at

a minimum, the identity of the service users.
b. The service to be consumed by the

subscriber.
c. The SLA objectives associated with consump-

tion of the service. In the case of composite
services (when a consumed service itself is
made up of underlying SLA-managed ser-
vices), the SLA objectives of the underlying
services must also be known.

d. A service profile that specifies the actions
that the SLA management system must take
to respond to anticipated loads.

e. The provisioning operations specific to the
new service. These are the actions that the
SLA management system uses to adjust the
resources allocated to the service.

2. Configuration of the instrumentation of the ser-
vice and consumed resources; this is used to pro-
vide metrics about the service delivery to the SLA
system.

3. Configuration of a measurement service that cor-
relates the measurement data with the service
subscription (and the SLA) before delivering it
to the SLA systems.

In our example, FINANCE is a subscriber of infrastruc-
ture services offered by UTILSERV. Identity informa-
tion needed for FINANCE includes a profile and ge-
neric identity as well as specific identities of members
of FINANCE that will administer the FINANCE service.
Services consumed are infrastructure resources
needed to run the FINANCE service. The SLA objec-
tives reflect the level of service that FINANCE wishes
to provide to its customers, SMALLBUS. FINANCE
must specify, along with the service itself, the mech-
anisms with which UTILSERV can change the re-
sources allocated to the FINANCE service. It would
be to the advantage of FINANCE to provide such
mechanisms; UTILSERV would bill FINANCE only for
the resources actually consumed by its service.

FINANCE will need to provision the identities of the
SMALLBUS users who will consume the service. It will
use these identities to control access and to bill
SMALLBUS for consumption of the service. Any at-
tributes of the service specific to the particular
SMALLBUS customer that has been enrolled will be
provisioned. The SLA between FINANCE and SMALL-
BUS will reflect the attributes of the agreement be-
tween FINANCE and UTILSERV.

Another important component of an SLA manage-
ment system is an arbitration engine, which is respon-
sible for arbitrating between different elements of
the SLA system when there is a shortage of resources.
This arbitration engine is driven by the business goals
of the service provider (these goals need to be up-
dated as new subscribers are added).

Deployment of WSLA monitoring. The SLA associ-
ated with service delivery is specified using WSLA.
The WSLA part of the contract specifies the QoS guar-
antees as agreed upon by provider and customer, the
signatory parties to the contract. The components
that use WSLA information as input, in particular
those that are involved in monitoring contractual
compliance such as the measurement service and the
condition evaluation service, must be supplied with
the appropriate information. The information to be
supplied is based on:

● Relevance: Components should only have to deal
with information that is relevant for them. Mea-
surement services are affected only by measure-
ment data and by interfaces to components they
interact with. Likewise, condition evaluation ser-
vices only need information concerning obliga-
tions. Furthermore, a party can use multiple ser-
vices of both kinds in a distributed environment.
The number of services used is not necessarily
specified in the WSLA.

● Information hiding: Compliance monitoring may
involve one or more additional parties (in addi-
tion to the signatory parties). Signatory parties do
not need to share the entire SLA with the support-
ing parties. Signatory parties must analyze the SLA
and extract relevant information for each support-
ing party. All parties need information on inter-
faces they must expose, as well as the interfaces
to partners they interact with.

Thus, the deployment process contains two steps (see
Figure 7). In the first step, the SLA deployment func-
tion of a signatory party generates and sends con-
figuration information in the Service Deployment In-

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004 DAN ET AL. 149

formation (SDI) format to its supporting parties. In
the second step, the service deployment functions
of supporting parties configure their resources in or-
der to perform their role in the process of SLA
monitoring.

The syntax of the SDI format is similar to the syntax
of the SLA language. Rather than containing a com-
plete SLA, it only contains information that is rel-
evant for a particular party. For example, a measure-
ment service only needs to know how to retrieve and
aggregate the metrics that it is responsible for and
how to interact with other parties (either to obtain
other metrics or to make them available in the form
of SLA parameters). Information on obligations in-
cluded in the SLA, or information identifying parties
that the measurement service does not interact with,
is not relevant for this measurement service. Sim-
ilarly, condition evaluation services do not need to
know how SLA parameters are defined by metrics.
Thus, there is an SDI format for measurement ser-
vices and one for condition evaluation services.

Certification and validation. Before a Web service
is deployed, the service and the provisioning actions
available for that service need to be certified and val-

idated for use. Traditionally this validation would
produce information needed for the capacity plan-
ning and forecasting tools that can be used to con-
trol the system in simple and subscription-driven pro-
visioning. For the more sophisticated dynamic
provisioning scenarios, additional information is re-
quired to enable SLA-driven service provisioning.

The information needed to dynamically provision a
service can be determined by observing the behav-
ior of the system under load. A load simulator can
be used to apply various stress loads and measure
changes in the service behavior. The resources ded-
icated to that service can also be varied, and the re-
sulting changes in the service behavior measured.
These measurements can be used to develop a pro-
file of the service, and load testing can be used to
further validate this profile.

When the service is deployed in the field, the SLA
management system uses the service profile to op-
timize resource allocation to meet SLA commitments.
This same profile can be used for capacity planning
of the initial service deployment and to pre-deploy
resources (to the service or free pool) in anticipa-
tion of subscriber growth or changing loads. The ser-
vice profile may also be used as input to costing al-
gorithms for fee-based hosting service providers. In
our example, the behavior of the service offered by
FINANCE would be certified. This would allow
UTILSERV to dynamically adjust the resources allo-
cated to that service to ensure a predictable response
to changes made to meet the SLA that UTILSERV has
with FINANCE.

The Web Service Stress Tools (WSST), available with
the ETTK, can be used to load and stress test Web
services. WSST offers a collection of stress-testing
tools (of any local or remote Java method calls) for
throughput and response time measurements. Tools
currently include:

● Traffic generation engine with real-time control
and comprehensive data collection and display

● Data review tool for display and analysis of col-
lected data

● Support for parallel testing with multiple traffic
classes

● Modular and extensible stress class behavior spec-
ified by experimenter using Java objects dynam-
ically loaded at runtime

● Prepackaged set of classes that implement com-
monly useful behaviors

Figure 7 Deployment of WSLA-compliance monitoring

SDI2 SDI3SDI1

WSLA

DAN ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004150

● Class generator tool for invoking SOAP (Simple
Object Access Protocol) services through client-
side stubs

The WSST is included in the Tools section of the Web
Services and Grid “track” of the ETTK on IBM alpha-
Works*8; the WSST is known there as the “Wide
Spectrum Stress Tools.”

It is interesting to note that the resources needed to
host a service to be certified and the load testing sys-
tem would make an ideal system for delivering on
demand services.

Dynamic provisioning. During the normal operation
of a service subjected to a consumer load, the SLA
management system monitors the performance of
this service and uses the monitoring information di-
rectly or via forecasting algorithms to predict changes
in performance.20 Referring to Figure 8, the SLA
management system then dynamically provisions the
service resources according to the business goals of
the service provider. As illustrated in the figure, the
combined load for service A is decreasing either due
to expired subscriptions, anticipated loads given the
time of day or season, or simply measured system
load. The SLA management system removes a server
from the pool used by service A, while still meeting

the response time and throughput goals. In contrast,
the combined load on service B is increasing either
due to new subscriptions or measured or predicted
temporal changes in activity. To maintain service B
according to its SLA goals, new servers are added
to the resource pool used to supply service B. This
form of dynamic sharing reduces the overall cost of
providing services while still meeting all SLA com-
mitments. Performance metrics and objectives as de-
fined in the SLAs are monitored by the SLA manage-
ment system20 and used to dynamically arbitrate
assigned resource allocation.

To support dynamic provisioning, provisioning pro-
cesses must be made available to the SLA system as
actions or operations. These processes are similar
to the processes used to provision the initial config-
uration for the service, though they may involve only
parts of the entire provisioning flow, namely those
specific to the service characteristics that are to be
changed. As was seen earlier, the service offered by
FINANCE would provide such processes. UTILSERV
would leverage these processes to dynamically ad-
just the infrastructure resources allocated to the FI-
NANCE service. This would allow UTILSERV to meet
the SLA objectives of the service with the minimum
resource cost. These savings would be passed on to
FINANCE by charging only for the resources con-

Figure 8 Dynamic provisioning

RECOVERS
RESOURCES

ASSIGNS
RESOURCES

NEW
SUBSCRIPTIONS

SLA MANAGEMENT SYSTEMPERFORMANCE METRICS

COMBINED
SUBSCRIBER LOAD

SERVICE A EXPIRING
SUBSCRIPTIONS

COMBINED
SUBSCRIBER LOAD

FREE RESOURCE POOL

SERVICE B

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004 DAN ET AL. 151

sumed in delivering the service. FINANCE thus min-
imizes its risk in offering a new service, as it would
only be charged for the resources consumed by
SMALLBUS, with UTILSERV automatically adjusting
to increases and decrease in demand. This is a def-
inite advantage over the former model of anticipat-
ing the worst-case load and requiring an up-front in-
vestment in the resources needed to meet that load
while maintaining the SLA with SMALLBUS. Such re-
sources would tend to be mostly idle during off-peak
hours of consumption, and certainly they would be
idle initially until the service was widely adopted by
SMALLBUS subscribers.

The dynamic provisioning operations allow a service
to be delivered in an autonomic fashion by a utility
computing provider. An SLA-managed service will
be able to consume resources in the most cost-ef-
fective manner, as well as react to changing resource
availability and partial outages.21 Careful planning
can allow for resource overbooking by ensuring
enough resources exist for maximum practical load
rather than maximum theoretical load, using a free
pool and dynamic provisioning to share these re-
sources. By eliminating the need for manual provi-
sioning, by controlling the provisioning of resources
with an SLA management system, and by sharing re-
sources, service delivery costs can be dramatically
reduced.

Web-service execution environment
We now describe the Web-service execution envi-
ronment and how SLA information is used in work-
load management, that is, managing response time
and throughput of Web-service invocation based on
customer identity.22,23

When integrating Web services into a business ap-
plication, the SOAP engine should isolate the SOAP
technology from the application developer as much
as possible. This allows application developers to fo-
cus on their core task without having to worry about
the auxiliary, transport-related duties managed by
the SOAP engine. Similarly, the development and ex-
ecution of the Web service itself should not be af-
fected by any additional processing of the SOAP mes-
sage. That is to say, while processing a SOAP message,
it might be necessary for additional work to be done,
either before or after the desired Web services are
invoked. This additional processing, or provisioning,
of Web services has been widely viewed as common
enough that most SOAP processors have this ability
built into them. They achieve this through the cre-

ation of a pluggable component in the SOAP engine
known as a handler, a filter, or an interceptor. These
components allow the administrator of the SOAP en-
gine to easily decide what pre- or post-processing is
required.

Of course this additional processing could be done
many ways, and in particular it could be done within
the Web service itself. However, by using handlers
the exact customization required in a specific instal-
lation can be done without any code changes to the
service. The Web Services community has already
embraced this notion of pluggable pre- and post-pro-
cessing components, and it has even been incorpo-
rated into the JAX-RPC (Java API for XML-based RPC)
standard—the standard Java APIs for SOAP process-
ing. Now that we have this notion of handlers, what
can we do with them? One of the more natural uses
of handlers is for processing that usually takes place
outside of the realm of the specific work being
done—for example, encryption. As in the HTTP (Hy-
perText Transfer Protocol) world when SSL (Secure
Socket Layer) is used, the applications on either end
are usually not impacted by its use—it is all man-
aged at the transport layer. Similarly, in the SOAP
case we can use a handler on the client side to en-
crypt all, or part, of the SOAP message and a handler
on the server side to decrypt it. Because this can be
achieved easily through simple configuration mod-
ifications, no code changes should be necessary to
the client or to the Web service itself.

How does all of this relate to the WSLA-driven au-
tomated management scenario? Consider that in the
development of a Web-service-based application, it
was realized there were some tasks that were com-
mon to all Web-service invocations. For example,
all requests needed to be checked to make sure that
the user invoking the service had a valid contract for
this particular service. Also, additional processing
is required for enforcing performance guarantees
specified within that contract, and to track the
amount of time or resources used during the pro-
cessing of that request. These types of additional pro-
cessing, while important to the complete application,
should not be the concern of the specific Web ser-
vice being invoked. These are, in essence, system-
wide issues. Figure 9 illustrates specific types of han-
dlers we would use in this scenario.8

Notice that we have quite a few handlers before and
after the Web service itself is invoked. Before we go
into the specific details about each handler and the
corresponding service used by that handler, we first

DAN ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004152

discuss how these handlers are designed and inter-
act with one another. While handlers are indepen-
dent pluggable components, this does not mean they
cannot work together when necessary. For example,
in our scenario the Contract Handler will determine
the specific contract that the user has signed. The
information about the contract will then need to be
made available so that the other handlers can get
access to it, if needed. To accomplish this, along with
the SOAP message being passed from one handler to
another, and ultimately to the Web service, the SOAP
engine also passes some contextual information. The
handlers then can use this storage to place data that
components later in the flow can extract and use for
their specific needs. There are also some additional
components, the Compliance Monitor and the No-
tification Service, which will be discussed later. Fi-
nally, this configuration assumes that authentication
has already been done by the application server and
that the user�s identity is made available to the sys-
tem (as a unique key). Although how to authenti-
cate a user is outside the scope of this discussion, it
is still important to note that it must be done for a
complete scenario to be developed. Next we discuss
what each of these specific handlers will do.

Contract validation and contract detail extraction.
The Contract Handler takes the user identity that

has been added to the contextual information by the
application server and uses Web-service contracting
to check whether the user accessing the service has
a valid contract in place at this time. In addition to
this kind of authorization, in this scenario the Con-
tract Handler puts more contextual information
about this request�s contract and its properties in the
chain. Because of this, the other handlers do not need
to access the information from Web-service contract-
ing, which minimizes the overhead associated with
such access.

Contract details, such as the contract identifier, in-
formation about the service and the operations un-
der contract are put in, as well as the WSLA iden-
tification, throughput level, and throughput interval.
All these details have been agreed upon in the
contract.

Usage metering. The Metering Service, together
with the respective handlers (Metering Request and
Metering Response), allow for the metering of the
Web service without requiring changes to the Web
service implementation. It enables the collection of
information related to the customer�s service utili-
zation. This utilization is expressed in terms of re-
source usage, or consumption. The collected infor-
mation is defined in a meter event. The aggregation

Figure 9 Workload management functions implemented as common pluggable handlers

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004 DAN ET AL. 153

of these meter events forms the basis for charging
and billing of customers. Each individual operation
of the Web service that is requested by the customer
is metered.

The consumption is measured by using different us-
age types. The type of service usage has been agreed
upon earlier as part of the overall agreement in the
usage contract. Four types are supported by the
meter event:

● Request-count-based: This type counts requests to
the service. It is also known as pay-as-you-go. A
factor can be used to express multiple counts with
one meter event. For example, a count of 3 may
represent 15 requests. In the example, this meter
event would be used for the number of stock trans-
actions the customer would execute.

● Time-based: The type records the start and end
time of the service request. A “start” meter event
and a corresponding “end” meter event measure
the duration. The meter events contain a special
attribute that is used for correlating the corre-
sponding events. In the example, this event would
be used to detect response time violations.

● Amount-based: This type is represented by a pair
of data, the actual value and a unit of measure-
ment. With this type, amount consumptions can
be collected. For instance, the pair (212000, KB)
can be from the volume-based Internet connec-
tivity service of the example. The consumption is
metered in amounts of kilobytes of usage. The
value is represented by using an integer data type
to avoid any rounding inaccuracy.

● Canceled: This type is used to indicate that events
with the same correlation identifier should be ig-
nored. It is used for compensation activities.

The Metering Service has two receiving interfaces.
One interface is able to receive single meter events,
and the other can consume a batch of meter events.
The later can be used for caching purposes. The Me-
tering Service stores the passed events persistent to
a database and adds time-stamp information to ad-
dress audit requirements.

As shown in Figure 9, the Metering Request Han-
dler receives the contextual data from the Contract
Handler. Of special interest is the contract identi-
fier that stands for the particular contract under
which the service is requested. The Metering Re-
quest Handler creates meter events depending on
the type of usage that was agreed upon in the con-
tract, adds all required information including the

contract identifier, creates a session identifier, and
passes the events along the handler chain.

The Metering Response Handler gets the meter
events from the context and creates new events, for
example, the end time event for a start time event.
Correlation identifiers (contract and session) are
added, and the set of meter events is sent to the Me-
tering Service.

For composite Web services, the meter event sup-
ports a parent session identifier to create tree-like
structures of meter events.

Workload management. A service provider can of-
fer each Web service in different SLA grades, with
each grade defining a specific set of SLA parameters.
Each grade is differentiated by SLO, base price, and
performance penalty. The service provider uses a
configuration tool to also create a set of traffic classes
and map a �user, service, operation, grade� tuple into
a specific traffic class. The service provider assigns
a specific response time target to each traffic class.
The workload management subsystem allocates re-
sources to traffic classes and assumes that service op-
erations assigned to a specific class have fairly sim-
ilar execution times on a lightly loaded system.

The workload management subsystem controls the
amount of resources allocated to each traffic class,
thus controlling the response time behavior of the
class.24 In addition, the workload management sub-
system is also responsible for policing the contracted
throughput limit per customer.

Figure 10 illustrates the details of the workload man-
agement subsystem. The main components are: a
workload management service, a global resource
manager, and a management console. The workload
management service may be responsible for coor-
dinating the dispatching of requests to one or more
back-end servers on which the target Web services
are deployed. The server on which the workload
management service itself executes may be one of
the target servers.

The workload management service is composed of
a queue manager, a scheduler, a load balancer, and
a throughput policer. The throughput policer is re-
sponsible for dividing the input stream into a set of
request flows and for monitoring the arrival rate of
each request flow. A request flow is uniquely iden-
tified by a �contract Id, service, operation� tuple. Re-
quests beyond the contracted maximum throughput

DAN ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004154

limit are marked as out-of-profile and subsequently
isolated and treated on a best-effort basis (in terms
of meeting their response time objectives) by the
queue manager. Thus, out-of-profile requests have
minimal impact on the response time performance
of customers conforming to their contracted through-
put levels.

The queue manager implements a set of logical FIFO
(first-in first-out) queues, one for each class. Upon
receiving a classified request, the queue manager sus-
pends the request and adds it to the logical queue
corresponding to the request�s class. A scheduler
runs when a specific set of events occur and selects
the next request to execute. The scheduler uses a
weighted round robin scheme. We use a dynamic-
boundary and work-conserving discipline that always
selects a non-empty queue if there is at least one.
After the scheduler selects a request, the queue man-
ager signals the workload management request han-
dler to resume the execution of the request. The
queue manager collects statistics on arrival rates, ex-
ecution rates, and queuing time and periodically
broadcasts these data on the notification service.

When there are multiple back-end servers, the load
balancer selects the server to which the request is
dispatched. A simple round-robin load-balancing dis-
cipline is used, while ensuring that the number of
outstanding requests dispatched to each server does
not exceed the allocation assigned to it. When the
execution of a request is completed, the workload
management response handler reports to the queue
manager the completion of the processing of the re-
quest. The queue manager uses this information to
both keep an accurate count of the number of re-
quests currently being executed and to measure per-
formance data such as service time.

The Global Resource Manager (GRM) periodically
adjusts scheduling weights and concurrency limits,
taking into account current measurements of the of-
fered load, server utilization, and server perfor-
mance. The GRM periodically publishes the control
settings via the notification service. The GRM allo-
cates server resources dynamically in order to max-
imize the expected value of a given utility function
in the face of fluctuating loads. The utility is a func-
tion of the performance delivered to the various
classes.

The Management Console provides an integrated
GUI (graphical user interface) to the management
system. It displays many of the monitoring and con-

trol data distributed over the notification service. It
further allows “manual override” of GRM decisions.
Finally, it displays and allows override of certain con-
figuration parameters.

Compliance monitoring. In the WSLA monitoring
model, the flow of data through the Compliance
Monitor (referred to in Figure 9) can be understood
in terms of the components shown in Figure 11. The
measurement service operates on basic inputs that
it requests periodically from a data-provider plug-
in, through a general-purpose interface (these basic
inputs are known as resource metrics). It is the job
of the plug-in to get the resource metrics, in this case
by querying the Metering Service and extracting data
from the results of that query. The measurement ser-
vice aggregates resource metrics to higher-level SLA
parameters on which the service level objectives are
based. SLA parameters are sent to condition evalu-
ation services that check the service level objectives
based on those parameters. The condition evalua-
tion service will then, as necessary, create notifica-
tions of violations, compliance, or other service
states. These are passed through another defined in-

Figure 10 Workload management subsystem

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004 DAN ET AL. 155

terface to a plug-in that, in this specific case, knows
that notices are sent in the form of ETTK events to
the ETTK�s notification service.

The measurement service and the condition evalu-
ation service are general-purpose facilities for mon-
itoring compliance of an arbitrary SLA, related to an
arbitrary system. The SLA specification must there-
fore include the appropriate measurement service
for a specific measurement, the appropriate condi-
tion evaluation service for a specific SLO, and the ap-
propriate management service to which a specific no-
tification must be sent. Then, the plug-in configuration
data must indicate the plug-ins that get the resource
metrics and the plug-ins that send notifications.

All of this comes together when a new SLA is de-
ployed. First, the WSLA document for the SLA is split
into one piece for the measurement service and an-
other for the condition evaluator. In this specific con-
text, where all of the compliance monitoring takes
place within a single organization, such a splitting
is unnecessary. However, the general WSLA frame-
work takes into account the possibility that different
organizations will handle different compliance mon-
itoring subtasks, and there may be parts of the SLA
that certain subcontractors are not privileged to see.
Hence, the SLA information is split and deployed to
appropriate components. The measurement service
and the condition evaluator each then construct
those internal objects necessary to perform the nec-
essary monitoring. This includes use of the plug-in
configuration data to help in the creation of appro-

priate plug-ins to gather resource metrics and to send
notifications when guarantees are not met.

Summary and conclusions
Dynamic outsourcing of business processes and ap-
plications are crucial for businesses to be effective,
efficient and flexible in meeting the requirements of
fast changing market conditions. To be successful in
dynamic outsourcing and to quickly form new bus-
iness relationships depend on three critical factors:
(1) open and emerging standards in accessing out-
sourced services, and in particular the use of Web
services, (2) establishment of service agreements that
include assurances on the quality of the service
(SLAs), and business terms and conditions including
pricing and penalties, and (3) automated manage-
ment of the entire life cycle of business relationships,
including: creation of the service offering, creation
of SLAs with possible negotiation, provisioning of ap-
plications and environments, and monitoring of SLAs
for both dynamic allocation of resources and com-
pliance. Exploitation of economies of scale and au-
tomated SLA-based service management gives rise
to utility computing systems that provide services in
a cost-effective and efficient manner.

We have described in this paper the essential ele-
ments of a utility computing architecture for support-
ing the entire life cycle of an SLA and SLA-driven man-
agement of services. Within this conceptual
framework, there are many design points in integrat-
ing various tools and technologies. A version of this
architecture has been realized by integrating vari-
ous technologies developed by teams from the IBM
Research Division and the IBM Software Group.
Work is continuing in the evolution and enhance-
ment of existing technologies as well as in integrat-
ing new technologies within this framework, and in
particular SLA negotiation and dynamic provision-
ing of resources.

Acknowledgments

This paper has drawn upon work jointly performed
with many colleagues. In particular, we acknowledge
the contributions of Paul Chen, Richard Franck,
Joachim Hagmeier, Giovanni Pacifici, and Asser
Tantawi to technologies that culminated in the man-
agement framework described in this paper. We
thank the anonymous reviewers for their help in im-
proving the presentation of this paper, and also a
special thanks is in order to Asit Dan for his effort
in coordinating this paper.

Figure 11 SLA monitoring model

MEASUREMENT
SERVICE

METERING-SERVICE
DATA PROVIDER

CONDITION
EVALUATION
SERVICE

RESOURCE

SLA
PARAMETERS

NOTIFICATIONS

NOTIFICATION
SERVICE

NOTIFICATION
PLUG-IN

METERING
LOG EVENTS

WSTK
EVENTS

METERING
SERVICE

DAN ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004156

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.

Cited references

1. A. Dan, H. Ludwig, and G. Pacifici, Web Service Differenti-
ation with Service Level Agreements, White Paper, IBM Cor-
poration (March 2003), ftp://ftp.software.ibm.com/software/
websphere/webservices/webserviceswithservicelevelsupport.
pdf.

2. M. Kienzle, A. Dan, D. Sitaram, W. Tetzlaff, “The Effect of
Video Server Topology on Contingency Capacity Require-
ments,” Proceedings of the Multimedia Computing and Net-
working Conference, San Jose, Jan 1996, IS&T/SPIE (1996).

3. P. Grefen, H. Ludwig, A. Dan, and S. Angelov, Web Service
Support for Dynamic Business Process Outsourcing, IBM Re-
search Report RC22728, IBM T.J. Watson Research Cen-
ter, Yorktown Heights, N.Y. 10598 (2003).

4. H. Ludwig, A. Keller, A. Dan, R.P. King, and R. Franck, Web
Service Level Agreement (WSLA) Language Specification, Ver-
sion 1.0, IBM Corporation (January 2003), http://
www.research.ibm.com/wsla.

5. K. Czajkowski, I. Foster, C. Kesselman, V. Sander, and S.
Tuecke, “SNAP: A Protocol for Negotiating Service Level
Agreements and Coordinating Resource Management in Dis-
tributed Systems,” Proceedings of the Workshop on Job Sched-
uling Strategies for Parallel Processing (JSSPP �02), Edinburgh,
July 2002, Lecture Notes In Computer Science, Volume 2537,
Springer-Verlag, Berlin (2002), pp. 153–183.

6. H. Gimpel, H. Ludwig, A. Dan, and R. Kearney, PANDA:
Specifying Policies for Automated Negotiations of Service Con-
tract, Research Report RC22844, IBM T.J. Watson Research
Center, Yorktown Heights, N.Y. 10598 (2003).

7. K. Keahey and K. Motawi, Taming of the Grid: Virtual Ap-
plication Services, Technical Memorandum ANL/MCS-TM-
262, Mathematics and Computer Science Division, Argonne
National Laboratory, Argonne, Illinois 60439 (2003).

8. Emerging Technologies Toolkit, IBM alphaWorks Emerging
Technologies, IBM Corporation, http://www.alphaworks.
ibm.com/tech/ettk.

9. P. Bhoj, S. Singhal, and S. Chutani, “SLA Management in
Federated Environments,” Proceedings of the Sixth IFIP/IEEE
Symposium on Integrated Network Management (IM�99),
IEEE, New York (1999), pp. 293–308.

10. S. Hepper and S. Hesmer, “Introducing the Portlet Speci-
fication,” JavaWorld (2003), http://www.javaworld.com/java
world/jw-08-2003/jw-0801-portlet.html.

11. L. Lewis and P. Ray, “On the Migration from Enterprise Man-
agement to Integrated Service Level Management,” IEEE
Network 16, No. 1, 8–14 (January 2002).

12. Web Services Description Language (WSDL) Version 1.2 Part
1: Core Language, W3C Working Draft, World Wide Web
Consortium (2003), http://www.w3.org/TR/wsdl12/.

13. Business Process Execution Language for Web Services Version
1.1, IBM Corporation, http://www.ibm.com/developerworks/
webservices/library/ws-bpel/.

14. C. Overton, “On the Theory and Practice of Internet SLAs,”
Journal of Computer Resource Measurement 106, 32–45, Com-
puter Measurement Group (April 2002).

15. Keynote—The Internet Performance Authority, Keynote Sys-
tems, Inc., http://www.keynote.com.

16. Xaffire, Inc., http://www.xaffire.com/.

17. A. Keller and H. Ludwig, “The WSLA Framework: Speci-
fying and Monitoring Service Level Agreements for Web Ser-
vices,” Journal of Network and Systems Management, Special
Issue on E-Business Management 11, No. 1 (March 2003).

18. Autonomic Computing: Creating Self Managing Autonomic Sys-
tems, IBM Corporation, http://www.ibm.com/autonomic/
index.shtml.

19. D. Verma and S.B. Calo, Service Level Driven Provisioning of
Outsourced IT Systems, Research Report RC22501, IBM T.J.
Watson Research Center, Yorktown Heights, N.Y. 10598
(2002).

20. C. Crawford and A. Dan, “eModel: Addressing the Need for
a Flexible Modeling Framework in Autonomic Computing,”
Proceedings of the IEEE/ACM International Symposium on
Modeling, Analysis and Simulation of Computer and Telecom-
munications Systems (MASCOTS 2002), IEEE, New York
(2002), pp. 203–208

21. C. Ward, M. Buco, R. Chang, and L. Luan, “A Generic SLA
Semantic Model for the Execution Management of e-Busi-
ness Outsourcing Contracts,” Proceedings of the 3rd Interna-
tional Conference on e-Commerce (EC-Web 2002), Lecture
Notes in Computer Science, Volume 2455, Springer-Verlag,
Berlin (2002), pp. 363–376.

22. G. Pacifici, M. Spreitzer, A. Tantawi, and A. Youssef, Per-
formance Management for Web Services, Research Report
RC22676, IBM T.J. Watson Research Center, Yorktown
Heights, NY 10598 (2003).

23. R. Levy, J. Nagarajarao, G. Pacifici, M. Spreitzer, A. Tan-
tawi, and A. Youssef, “Performance Management for Clus-
ter Based Web Services,” Proceedings of 8th IFIP/IEEE In-
ternational Symposium on Integrated Network Management (IM
2003), Colorado Springs, Colorado, March 2003, IEEE, New
York (2003).

24. X. Zhu, J. Rolia, M. Arlitt, and A. Andrzejak, “Statistical Ser-
vice Assurances for Applications in Utility Grid Environ-
ments,” Proceedings of the Tenth IEEE/ACM International
Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems (MASCOTS 2002), IEEE,
New York (2002).

Accepted for publication August 29, 2003.

Asit Dan IBM Thomas J. Watson Research Center, 19 Skyline
Drive, Hawthorne, NY 10532 (asit@us.ibm.com). Dr. Dan has been
with the IBM Research Division since 1990 and is at the fore-
front of research and development in on demand computing and,
before that, in transaction-processing architectures and video serv-
ers. He holds several top-rated patents in these areas and has re-
ceived two IBM Outstanding Innovation Awards and eight IBM
Invention Achievement Awards. Twice, he received the honor of
IBM Master Inventor for his work in these areas. Currently, he
is managing the Business-to-Business Integration Department that
is working on the development of the infrastructure for support-
ing dynamic and SLA-driven Web services and grid and auto-
nomic computing. Dr. Dan received a Ph.D. from the University
of Massachusetts, Amherst. His doctoral dissertation received an
Honorable Mention in the 1991 ACM Doctoral Dissertation Com-
petition and was published by the MIT Press. He has published
extensively, including several book chapters, and a book on mul-
timedia servers.

Doug Davis IBM Software Group, 3039 Cornwallis Road, Re-
search Triangle Park, NC 27709 (dug@us.ibm.com). Mr. Davis
works in the Emerging Technology division of IBM as the tech-

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004 DAN ET AL. 157

nical lead for the IBM Emerging Technologies Toolkit. He was
one of the original authors of Axis, the Apache SOAP engine,
and his previous projects also include the WebSphere machine
translation project, TeamConnection, and the FORTRAN 90
compiler. Doug has a B.S. degree from the University of Cali-
fornia at Davis and an M.S. degree in computer science from
Michigan State University.

Robert Kearney IBM Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, NY 10532 (firefly@us.ibm.com). Mr.
Kearney has been with IBM for 34 years—first in software de-
velopment, and for the past 21 years, at the Watson Research
Center. Formally educated in mathematics (University of Mas-
sachusetts, University of Wyoming, and Pennsylvania State Uni-
versity), his expertise is in operating systems and applications. He
is currently interested in tools development, and especially in sup-
port of business-to-business applications.

Alexander Keller IBM Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, NY 10532 (alexk@us.ibm.com). Dr.
Keller is a research staff member in the Autonomic Computing
Department at the Watson Research Center. He received his
M.Sc. and Ph.D. degrees in computer science from Technische
Universität München, Germany, in 1994 and 1998, respectively,
and has published approximately 40 refereed papers in the area
of distributed systems management. He joined the IBM Research
Division in 1999. Dr. Keller�s research interests revolve around
change management for applications and services, information
modeling for e-business systems, and SLAs. He is a member of
the USENIX Association, the IEEE, and the DMTF CIM Ap-
plications Working Group.

Richard P. King IBM Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, NY 10532 (rpk@watson.ibm.com). Mr.
King joined the IBM General Systems Division in 1977 in Roch-
ester, MN, where he worked on System/38�, especially in the area
of system performance. He joined the IBM Research Division
in 1981, where he is now a senior programmer. The projects he
has worked on include fault-tolerant computing, the coupling of
mainframe sysplexes, and high-performance intersystem messag-
ing. Mr. King received a B.S. degree in industrial engineering and
operations research from Cornell University in 1974 and an M.S.
degree in operations research and industrial engineering from
Northwestern University in 1975.

Dietmar Kuebler IBM Software Group, Schoenaicher Strasse
220, 71032 Boeblingen, Germany (dkuebler@de.ibm.com). Mr.
Kuebler is a senior software engineer at the IBM Boeblingen Lab-
oratory. Since joining IBM in 1990, he has held various positions
in development, technical marketing, and project management,
and has acquired experience in architecture and software devel-
opment in multiple environments. His areas of expertise include
object-oriented technologies, Java, WebSphere, and middleware
technologies. Mr. Kuebler led the architecture and development
of the Utility Web Services “Contracting, Metering and Account-
ing” for the Emerging Technologies ToolKit. Recently he has been
involved in transferring these technologies into products and to
customers. He is currently a member of the IBM On Demand
Design Council (ODDC). He studied computer science at Stut-
tgart University, Germany, where he graduated in 1990.

Heiko Ludwig IBM Thomas J. Watson Research Center, 19 Sky-
line Drive, Hawthorne, NY 10532 (hludwig@us.ibm.com). Dr. Lud-
wig is a research staff member at the Watson Research Center,

where he started as a visiting scientist in June 2001. As a member
of the Distributed Systems and Services Department, he works
in the field of electronic contracts and policies, primarily on
WSLA. Previously he was a research staff member at the IBM
Zurich Research Laboratory, where he worked on cross-organi-
zational process management, service outsourcing, electronic con-
tracts, outsourcing-related security aspects, and service model-
ing. From 1992 to 1996, he was a research and teaching staff
member at the department of Office Automation at the Otto-
Friedrich University in Bamberg, Germany. During that time he
worked on co-operative planning and decision-making, and on
the integration of workflow and collaborative applications. He
holds a Master (Diplom) degree (1992) and a Ph.D. (1997) in
computer science and business administration from Otto-
Friedrich University. He published a book and several book chap-
ters, various journal articles and conference papers, acted in pro-
gram committees, and organized workshops in the area of
computer-supported cooperative work, workflow management,
e-business infrastructures, and contracts and policies.

Mike Polan IBM Canada Lab, 8200 Warden Avenue, Markham,
Ontario L6G 1C7, Canada (mpolan@ca.ibm.com). Mike Polan
is an architect in the Tivoli division of the IBM Software Group,
working on the issues of provisioning and systems management
in the on demand environment. His experience in software de-
velopment includes microcode, computer communications, ap-
plication development tools, and e-commerce systems.

Mike Spreitzer IBM Thomas J. Watson Research Center, 19 Sky-
line Drive, Hawthorne, NY 10532 (mspreitz@us.ibm.com). Dr.
Spreitzer is a research staff member. He received his Ph.D. de-
gree in 1989 from Stanford University. First at Xerox PARC, and
later at the Watson Research Center, he did research work in
programming languages and environments and distributed sys-
tems. His current focus is on performance management and per-
formance characterization of clustered services.

Alaa Youssef Computer Science Department, Alexandria Uni-
versity, Egypt. As a research staff member at the Watson Research
Center from August 1998 to August 2003, Dr. Youssef was a mem-
ber of the team that developed the first prototype of a quality of
service and performance management system for Web services.
Dr. Youssef received his Ph.D. degree in computer science in 1998
from Old Dominion University, VA. He received his B.S. and
M.S. degrees in computer science from Alexandria University,
Egypt, in 1991 and 1994, respectively. His research interests in-
clude distributed systems, service management middleware, net-
work and application-level quality of service, and security. Dr.
Youssef is a member of the IEEE.

DAN ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004158

