
Usability and
design considerations
for an autonomic
relational database
management system

by R. Telford
R. Horman
S. Lightstone

N. Markov
S. O’Connell
G. Lohman

Autonomic systems offer numerous
advantages over non-autonomic systems, and
many of these advantages relate to ease of
use. The advantages regarding ease of use
include reducing the number of low-level
system administration tasks, simplifying the
system administrator’s interface, handling
exceptions which would otherwise have
resulted in system alerts, and the learning, by
the system, of actions taken by the
administrator. However, human intervention
must still be factored in, and care must be
taken in the design of autonomic systems not
to make the system administrator’s task more
difficult. This paper examines the ease-of-use
ramifications of autonomic computing in the
context of relational databases in general, and
of the IBM® DB2® Universal DatabaseTM

Version 8.1 autonomic computing system in
particular.

In October of 2002, IBM made two key announce-
ments. The first was a vision of “e-business on de-
mand,” a blueprint for the future of computing. e-
business on demand computing is characterized by
four key traits—integration of systems, openness, vir-
tualization of hardware and software resources, and
autonomic computing.1 The second announcement
concerned autonomic computing itself—IBM an-
nounced an organization, and a cross-company ini-
tiative, to deliver autonomic computing systems.2

How does autonomic computing relate to ease of
use? This paper answers that question by describing
a real-life example of an autonomic system with
strong ease-of-use characteristics. This system, the

IBM DB2* Universal Database* (UDB) Version 8.1
autonomic computing system, employs a number of
usability features combined with autonomic technol-
ogies to deliver an administrative interface unlike
anything else in the industry.

Autonomic computing and ease of use

Autonomic computing is all about self-managing sys-
tems. At the core of the autonomic computing initia-
tive is the concept that computers need to be more
self-configuring, self-healing, self-optimizing, and
self-protecting in order to reduce the overall com-
plexity of a system. Autonomic computing is de-
scribed as a “closed loop” system, which includes a
“monitor-analyze-plan-and-execute” process in or-
der to make decisions.

From an ease-of-use perspective, autonomic com-
puting offers a leap forward in the following ways:

Self-configuration. Rarely does an IT component work
“out of the box.” As part of the installation process,
there is always a certain amount of configuration re-
quired by the user in order to allow the component
to work appropriately within the environment in
which it is installed. In an autonomic computing sys-
tem, the system itself can configure its components.
Maintaining the current state of a system’s config-
uration (and that of each component) at all times,

�Copyright 2003 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

TELFORD ET AL. 0018-8670/03/$5.00 © 2003 IBM IBM SYSTEMS JOURNAL, VOL 42, NO 4, 2003568

the system has the ability to predict the impact of
a change to the configuration and learn from the re-
sults of such changes. It learns the ramifications of
each change and decides when it is appropriate to
make them.

Self-optimization. Today, much of an administrator’s
time is spent keeping a system “tuned” to changing
workloads. What works today for one type of work-
load may no longer be optimal if the workload grows,
shrinks, or changes. Manual optimization of systems
is both time-consuming and difficult. Quite often it
is based on human trial-and-error rather than care-
ful analysis and planning. Using the principle of pol-
icy-based decision-making, an autonomic system
tunes itself to meet a set of objectives defined in the
policies. Policies direct autonomic systems in find-
ing computational partners, prioritizing limited re-
sources, maintaining security, and recovering from
failures. Policy specification, though not a new field,
takes on an entirely new significance within the con-
text of autonomic computing.

Self-protection. The state of the art today in many
system protection infrastructures involves the use of
an alert mechanism to prompt an administrator’s re-
sponse when an intrusion detection system detects
what appears to be a potential threat. By reducing
or eliminating the role of the administrator in re-
sponding to these alerts and taking appropriate se-
curity measures automatically, autonomic systems
can reduce the time required to re-establish system
security.

Self-healing. In complex e-business infrastructures,
it is critical for the system to have the ability to de-
tect inter-component errors and perform “root cause
analysis” to help correct them. Because of the het-
erogeneous nature of an e-business infrastructure
spanning multiple components, there is no standard
way to correlate and trace transactions across the
system. Each component logs information in its own
format, requiring the labor-intensive task of man-
ually correlating events across the infrastructure. In
an autonomic system, this information is logged and
correlated at the system level, allowing the system
to perform event correlation and root cause anal-
ysis.

One of the key ease-of-use values of an autonomic
system derives from the ability to lower the burden
of mundane tasks and allow the administrator to fo-
cus on higher-order problems and responsibilities.

Another key ease-of-use attribute of autonomic sys-
tems is the simplification of the administrator’s
interface. Autonomic computing allows for a less
complex and less cluttered view of the system infra-
structure because the display of much of what is cur-
rently presented to an administrator is no longer nec-
essary. Examples of such simplifications include:

1. Allowing the system to self-query for information
rather than prompting the administrator. Through
the development of “autonomic widgets” for sys-
tem consoles, autonomic systems will be able to
query themselves for answers to questions that
today must be answered by the administrator. In-
formation about the system configuration, net-
work settings (such as IP addresses), and system
settings can all be gathered autonomically and not
require human intervention.

2. Raising the threshold for alerts delivered to the
administrator’s console. Autonomic computing
allows for advanced filtering of events and alerts
that occur in the system. Through pattern recog-
nition and similar technologies, an autonomic sys-
tem can filter out “false positives” before they
reach the console and handle many alerts auto-
matically.

3. Allowing the system to act using learned behav-
iors. An autonomic system monitors the actions
taken by administrators and “learns” from them;
that is, when a certain event occurs and the ad-
ministrator responds, this event/response associ-
ation is learned. The next time such an event oc-
curs, the system can make recommendations
regarding what action to take in response. Over
time, the system will be able to take many actions
without needing human intervention.

Autonomic computing has potential problem areas
with respect to ease of use, and systems need to be
designed with care. Adding autonomic capabilities
to a system can actually make the user experience
more challenging—exactly the opposite of what was
intended. As stated by Russell et al., “. . . autonomic
computing makes effective design of the user expe-
rience even more challenging and critical than it is
now. The reason is that autonomic actions taken by
the system must be understandable by the user and
capable of review, revision, and alteration. Because
such actions are often made autonomously, a heavy
burden is placed on the ability of the system to ex-
plain what it is doing and why.”3

As enterprises adopt and integrate more technology
components and realize greater production efficien-

IBM SYSTEMS JOURNAL, VOL 42, NO 4, 2003 TELFORD ET AL. 569

cies, their IT infrastructures grow in complexity.
Quite simply, there is a growing amount of hardware
and software to install and configure, many more el-
ements that need to work together properly, and a
great deal of pressure to keep it all up and running
on a daily basis. It is interesting to note that in such
complex, heterogeneous systems (as shown in Fig-
ure 1), the total cost of ownership (TCO) is increas-
ingly dominated by human costs.

Through autonomic computing, system management
is simplified not only by improved ease of use, but
also by a marked reduction in problems caused
through human error, and the subsequent reduction
in human interaction required for corrective action.
A brief examination of the causes of system crashes
(though certainly only a subset of possible system
errors) is illustrative. Recent projections suggest that
the percentage of system failures caused by human
error has grown since 1985 from 15 percent to an
estimated 69 percent in 2001, as shown in Figure 2.
Through autonomic computing, many of the config-
uration and maintenance operations that human ad-
ministrators previously had to perform can be au-

tomated, resulting in fewer system failures (because
the autonomic system will neither forget nor make
random errors), and, therefore, a reduction in out-
ages. Of course, autonomic systems can make mis-
takes as well. The advantage of autonomic comput-
ing is, in part, the notion of consistent control—that
is, that the autonomic system never forgets and never
suffers from random faults, as human administrators
certainly do. Patterson et al. 4 suggest that the sharp
increase in human-related causes for system crashes
is due largely to the increased complexity of heter-
ogeneous systems and middleware. Autonomic com-
puting offers a paradigm for computer systems to
deal with this complexity in ways that human beings
simply cannot.

A number of initiatives within IBM and the IT indus-
try5 are currently focused on using autonomic com-
puting as a way to address system complexity and
overall ease of use. The experience of IBM’s database
technology team offers an excellent example of how
a system can be transformed and ease of use can be
improved through autonomic computing.

Figure 1 Complex heterogeneous systems

SCHEME 6

HUNDREDS OF
COMPONENTS

THOUSANDS
OF TUNING
PARAMETERS

EXISTING
APPLICATIONS AND

DATADOZENS OF
SYSTEMS AND
APPLICATIONS

DIRECTORY
AND SECURITY

SERVICES

BPs AND
EXTERNAL SERVICES

STORAGE
AREA NETWORK

BUSINESS
DATA

DATA

INTERNET
FIREWALL

WEB
SERVER WEB

APPLICATION
SERVER

DATA
SERVER

INTERNET
FIREWALL

LOAD
BALANCER

CACHE

DNS
SERVER

TELFORD ET AL. IBM SYSTEMS JOURNAL, VOL 42, NO 4, 2003570

Why relational databases require ease of
use

Skilled database administrators and application de-
velopers have become increasingly rare, and, follow-
ing the law of supply and demand, increasingly ex-
pensive. A 2001 report from D. H. Brown Associates6

that compared two leading database products, for
both data-warehouse and online-transaction-pro-
cessing (OLTP) applications, found that a significant
portion of the TCO was represented by human ad-
ministration costs. As illustrated in Figures 3 and 4,
the cost for purchasing and support (including the
cost of the product licensing) is significantly less than
the “build and maintain” cost (which includes the
installation, deployment, and ongoing administration
of the product.)

Given that human costs have been shown to dom-
inate the TCO of complex IT systems, it is reasonable
to ask what keeps the administrators of such systems
so busy. In general, the significant advances in da-
tabase functionality and the burgeoning require-
ments for database size, connectivity, availability, and
heterogeneity increase the administrative burden.
For example, data warehouses containing tens of ter-
abytes of data are not uncommon. Popular applica-

tions such as SAP (Systems, Applications, Products
in Data Processing), which typically create more than
20 000 tables, can be used to support thousands of
users simultaneously. In addition, administrators
grapple with complex decisions about hardware plat-
forms; shared-nothing, shared-everything, or SMP
(symmetric multiprocessing) cluster topology;
schema design; constraints and referential integri-
ty; primary keys and indexes; materialized views; and
the allocation of tables to disks. Once designed, da-
tabases require substantial human input to build,

Figure 2 Causes of system crashes

1985 1993 2001 (EST)

15

15

50

20

18 21

53

69

18

10
5
5

P
E

R
C

E
N

TA
G

E
 O

F
C

R
A

S
H

E
S

OTHER (APPLICATION,
POWER, NETWORK
FAILURE)

SYSTEM MANAGEMENT:
ACTIONS

OPERATING
SYSTEM
FAILURE

HARDWARE
FAILURE

Figure 3 Results of D. H. Brown TCO study for data
 warehousing

10 2 3 4 5 6

TCO (IN MILLIONS OF DOLLARS)

BUILD
AND

MAINTAIN

TOTAL
(PURCHASE

AND
 MAINTAIN)

ORACLE

DB2

ORACLE

DB2

ORACLE

DB2

PRICE
AND

SUPPORT

Figure 4 Results of D. H. Brown TCO study for OLTP

1000 200 300 400 500 600 700

TCO (IN MILLIONS OF DOLLARS)

BUILD
AND

MAINTAIN

TOTAL
 (PURCHASE

AND
 MAINTAIN)

ORACLE

DB2

ORACLE

DB2

ORACLE

DB2

PRICE
AND

SUPPORT

IBM SYSTEMS JOURNAL, VOL 42, NO 4, 2003 TELFORD ET AL. 571

configure, test, tune, and operate. Such ongoing ad-
ministrative tasks include, but are not limited to, ta-
ble reorganization, data statistics collection, backup
control, security administration, disaster-recovery
planning, configuration and performance tuning, and
problem analysis.

In this section we describe briefly the scope of tasks
for a database administrator, providing a very cur-
sory view which serves to illustrate the large scope
of tasks and responsibilities incurred today with typ-
ical RDBMS (relational database management sys-
tem) products. The scope of tasks is easiest to view
when imagined along a time line, as shown in Fig-
ure 5.

During the initial requirements planning and cap-
ital investment, the database designers must arrive
at a rough estimate of the performance and storage
requirements for the system and select product pur-
chases that will support these requirements. This in-
cludes the selection of the RDBMS and of server and
storage devices, a selection process often referred
to as “capacity planning.” During the second stage
of system development, the designers concentrate
on the logical and physical design of the database
(table layout, normalization, referential integrity, in-
dexes and materialized views, triggers, etc.), as well
as the overall process strategy for high availability
and disaster recovery, data distribution, security, and
user management.

During the third stage of development, the database
is created, populated, and tuned. Generally, there
is a substantial period of testing to validate the op-
eration of the new system with applications and to
ensure integration with other systems and opera-
tional processes. During the fourth stage, the sys-
tem goes into production. At this point, extensive
involvement is needed by human operators to mon-
itor system operational health, perform query tun-
ing, maintain data statistics, de-cluster/fragment data,

maintain storage systems, attend to system repairs
and outages, and modify the system design and con-
figuration to account for new operational require-
ments or to respond to increasing storage needs.
Handling system recovery may require management
of periodic backup and archival data. In large dis-
tributed systems, data replication (cloning) across
systems and data integrity checking are common
tasks. Moreover, almost all of the design and setup
operations performed in stages two and three as de-
scribed previously may need to be revisited during
operation to account for new requirements, data
growth, or poor performance. Many systems require
complex extra-database operations for data extrac-
tion, transformation, and loading and for data rep-
lication; these operations also require special tun-
ing and management.

During the fifth stage, the logical or physical design
of a database may need to adjust for changing ap-
plication or usage needs. This can require schema
changes and changes to system design and implemen-
tation as defined in phases two and three.

In large modern RDBMSs, the tasks described here
can be daunting responsibilities as database sizes
grow to sizes in terabytes, on systems containing hun-
dreds of CPUs, thousands of storage spindles, and tens
of thousands of database storage objects (relational
tables and their associated access structures, includ-
ing indexes, materialized views, and system catalogs).

Administrators of enterprise-class IT systems face
considerable challenges to keep their complex, het-
erogeneous systems up and running. Certainly, the
application of autonomic technology has the poten-
tial to greatly reduce the administrative effort in-
volved, to eliminate much of its complexity, and to
reduce human involvement in the day-to-day drudg-
ery of maintenance, problem determination and res-
olution, and performance tuning, thereby allowing
more time for tasks such as designing and planning.

Figure 5 Time line of database administration

TIME

DATABASE AND
DATA MANAGEMENT
DESIGN

DATABASE
CREATION AND
TUNING

MAINTENANCE
AND
ADMINISTRATION

CHANGE
MANAGEMENT

REQUIREMENTS
PLANNING AND
CAPITAL INVESTMENT

TELFORD ET AL. IBM SYSTEMS JOURNAL, VOL 42, NO 4, 2003572

Given the undeniable fact that traditional IT systems
won’t evolve overnight into advanced, autonomic sys-
tems, there is much value in understanding where
administrators could benefit most from automation
and “smarts.” Identifying the “pain points” where
much effort is expended can help indicate where the
application of automation and expert assistance can
provide the most benefit. Database administrators
can be polled as to which tasks are most difficult to
execute, which are executed most frequently, and
which are most time-consuming.

User-Centered Design approach

In 1994, at the advent of the development cycle for
DB2 UDB Version 5, IBM began a major effort in us-
ability analysis for relational databases, focused on
User-Centered Design (UCD). Prior to this effort, the
efforts of the DB2 UDB design team had focused on
the traditional bailiwicks of relational database tech-
nology: reliability, performance, and interoperabil-
ity.7 Given the focus of enterprises on the total cost
of ownership and quick return on investment, the
DB2 management team realized that being success-
ful in the marketplace required products that are us-
able, easy to learn, and easy to maintain. Thus
DB2 UDB Version 5 became the first version of the
product that used the IBM User-Centered Design ap-
proach8 in a comprehensive and consistent manner,
involving multiple disciplines and development
teams.

With the help of the User-Centered Design teams
in the Toronto and Silicon Valley IBM labs, the UCD
process provided the ability to tightly integrate the
DB2 design and development work with vigorous
gathering of user feedback, extensive iterative test-
ing of design alternatives, thorough evaluation of
prototypes and early code, and validation of the com-
pleted designs. The UCD involvement was significant
throughout the entire development cycle, starting
with understanding the users and their requirements
and continuing long after the beta versions of the
code and its general release.

The results of the increased UCD investment for
DB2 UDB Version 5 were extremely encouraging.7

The successful achievement of the usability objec-
tives set at the beginning of the project and the vig-
orous UCD involvement contributed to the overall
success of the product. The increased ease of use was
noted and made reference to by numerous press an-
alysts, and resulted in increased satisfaction ratings
from end users. The commercial success of the re-

lease proved the effectiveness of the adopted ap-
proach and provided a base for continuing the us-
ability focus in subsequent releases.

Database administration requirement survey. Dur-
ing the summer of 2000, IBM ran an extended online
survey of over 120 companies to understand their
database administration requirements. The survey
initially targeted numerous companies with single or
heterogeneous database environments. Users with
varied database and operating-system experience
filled in the questionnaire, which was published on
the Internet and distributed via targeted e-mails. The
survey was further expanded to include key database
applications by independent software vendors such
as SAP, Siebel, PeopleSoft, i2, Ariba, and Kana,
whose application-development and support per-
spective brought additional understanding of the key
challenges that autonomic computing needed to an-
swer. The majority of the participants were from the
United States, but responses also came from Can-
ada, the United Kingdom, Germany, France, Japan,
and several other countries. This kind of user-gen-
erated input has allowed the designers of DB2 to con-
tinue its focus on user-oriented priorities and to
clearly reflect this focus in the staging of autonomic
manageability features for ease of use.

The results of the survey helped direct the research
and development priorities for the autonomic com-
puting aspects of DB2 UDB. The team objective was
to deliver enhancements and new features support-
ing the most important user tasks as determined by
the survey, while reducing requirements for time and
expertise. This in turn would lead to an increase in
usability and significantly reduce the total cost of
ownership. As a result of the survey analysis and with
some consideration given to the strategic directions
of our products, the database group focused a us-
ability effort around three primary administrative ar-
eas:

● System health diagnosis
● Query and database tuning
● Maintenance and recovery environments

Scenario development and use. The key tasks in the
aforementioned areas were used to develop scenar-
ios that were critical in the design and development
of the product. Based on a series of phone interviews
with participants in the survey and scenario model-
ing sessions at the Toronto UCD lab in the IBM
Toronto lab, the UCD team developed a number of
scenarios focused on the key areas for autonomic

IBM SYSTEMS JOURNAL, VOL 42, NO 4, 2003 TELFORD ET AL. 573

computing. The scenarios underwent an extensive
review process by all members of the UCD team. Af-
ter consensus was reached, the project leads ap-
proved the scenarios, enabling the start of the de-
sign work. Subsequent to this, changes to the
scenarios were made through a carefully monitored
and reviewed change request process, which ensured
that the changes were in line with the accepted ob-
jectives and did not compromise the usability of the
tools.

DB2 UDB Version 8 was the first release to use sce-
narios as a fundamental tool in all stages of the plan-
ning, design, and development work, as follows:

Planning: Scenarios were used to bring forward ideas
for new functionality and tools and help the man-
agement team to prioritize.

Competitive Evaluation: Scenarios were used to iden-
tify major strengths and weaknesses of competitive
products.

Design: Scenarios helped in the conception and pro-
totyping of design alternatives.

Iterative Design Explorations: Scenarios were used as
a base for discussions with participants in user feed-
back sessions and helped in the selection of the best
options among design alternatives.

Design Evaluation and Validation: Participants were
asked to complete scenarios with early code drivers
to evaluate or validate designs and help identify po-
tential usability issues.

User adoption and acceptance of autonomic ad-
ministration. While it is technically possible to au-
tomate many database administration tasks, there
remains much that currently requires at least some
human intervention in the area of problem resolu-
tion. Identifying and resolving problems within a da-
tabase can be a complex and difficult process requir-
ing skills and experience that are sometimes beyond
those of a part-time database administrator (DBA).
Our questions to both the experienced and part-time
DBAs concerned how much autonomic database ad-
ministration would be acceptable to them in the area
of problem resolution. Their answers showed there
was a difference of opinion between those who work
full-time on a database and those who maintain a
dual role such as a DBA who is also an application
developer.

We conducted numerous sessions with users of da-
tabases from all of the major vendors. These sessions
comprised focus groups, scenario generation ses-
sions, interactive design sessions, and, later, software
evaluation and validation sessions. Through these

sessions, we could see a distinct pattern regarding
the acceptance of automated problem resolution in
the database. When the concept of automating sys-
tem-generated recommendations was raised with
participants, the two groups (full and part-time DBAs)
diverged. Both user groups welcomed the concept
of providing recommendations (with the less expe-
rienced users being particularly enthusiastic).

Those who work full-time on databases are typically
highly skilled database users and rely heavily on their
previous experience to solve problems. When full-
time users were questioned about the level of da-
tabase automation that they were willing to accept,
they typically opted for very low levels. Full-time
DBAs were not willing to trust decisions that could
affect the performance of their database to an au-
tomated solution. They were, however, interested in
the system’s ability to offer recommendations. The
experienced users wanted to view the recommended
commands in detail and have the ability to directly
edit them before their execution.

Full-time DBAs differed from their part-time coun-
terparts in that they were much more concerned with
the detailed content of the recommendations and
were very much averse to the idea of complete au-
tomation. Full-time DBAs are generally employed in
companies where database performance is imper-
ative and any performance drop can have large ef-
fects upon scheduling and work flow. There were very
few scenarios where experienced full-time DBAs
would accept an automated solution to a problem;
they preferred, instead, to be notified and provided
with recommendations.

Database users who did not have a high level of expe-
rience (part-time DBAs tend to fit into this group)
differed significantly from those who work on a da-

How much autonomic
database administration would

be acceptable for
problem resolution?

TELFORD ET AL. IBM SYSTEMS JOURNAL, VOL 42, NO 4, 2003574

tabase on a full-time basis. A part-time DBA tends
to come from a non-database-oriented background.
The most common combination we encountered was
a DBA who was also a developer. Developers tend
to treat the database purely as a storage resource
and are not particularly concerned with optimizing
performance; instead, their primary concern is keep-
ing the database running at overall speed levels that
do not impair application performance. Trouble-
shooting is handled on an “as needed” basis, and per-
formance tuning, often considered only as an after-
thought, becomes a priority only if there are
significant performance issues filtering up to the ap-
plication level.

Part-time database users were significantly more in-
terested in database automation capabilities than
their full-time counterparts. The part-time DBAs were
happy to accept system-generated recommendations;
these DBAs were willing to take them at face value
and did not require a complex explanation of the pro-
posed commands.

The reason for acceptance or non-acceptance of the
automation of recommendations lay in whether the
participants were willing to trust a machine to pro-
vide safe recommendations. Experienced DBAs were
reluctant to believe that a machine could understand
their systems and provide recommendations that
were intelligent enough to counteract the problems,
due to the complex nature of their environments and
concerns over the consequences of errors. Part-time
DBAs were very willing to trust the system to provide
accurate recommendations and were happy to have
a piece of work (that is often not central to their ac-
tivities) taken off of their hands, even if this meant
the system was not optimally tuned. Part-time DBAs
held the opinion that they would trust recommen-
dations until they found them to be incorrect.

These findings show that for an autonomic solution
to be accepted by both part-time and full-time ad-
ministrators, user trust must be addressed with at
least as much care as the autonomic solution itself,
raising potential issues for the future, such as the of-
fering of varied levels of automation.

Autonomic computing and DB2 Universal
Database Version 8

The DB2 autonomic computing project is clearly a
step in the direction of providing an advanced au-
tonomic database product. This section describes the

major elements of DB2 UDB Version 8 that incorpo-
rated autonomic computing functionality.

Design considerations. Our objective was to auto-
mate challenging and difficult tasks and to make the
database self-managing and self-tuning—ensuring
constant availability and optimal performance. How-
ever, this does not mean that the need for database
administrators will be eliminated, at least not in the
near future.

The feedback during the course of the project proved
that the changes introduced by autonomic comput-
ing will have a significant impact on the requirements
for knowledge and expertise, in particular for resolv-
ing database health issues. By automating many of
the time-consuming tasks, DBAs will be made more
efficient. At the same time, the participants clearly
proved that complex environments need their atten-
tion and their judgment before an action is taken.

Advanced DBAs have significant responsibilities re-
lated to the availability and the performance of the
databases. The dynamic business environment today
requires that application end users have instant ac-
cess to data. Millions of users are browsing the Web
for information that resides in databases, and un-
available data would affect their satisfaction and
jeopardize a company’s ability to generate revenue
or get the attention of potential clients.

DBAs need to understand the details of what is hap-
pening in their environment and what the ramifica-
tions of a database change are from a business per-
spective. This understanding enables them to make
changes based on the business requirements for the
particular enterprise. Therefore, for a database to
be autonomic, it needs to be able to “think” not only
in technical, but also in business terms. This is the
next goal of the DB2 autonomic-computing initiative
and will require further work with users, using con-
textual inquiries and building conceptual models of
the different business environments and their rela-
tion to the technical capabilities and configuration
of the database product.

Management by exception and Health Monitor.
Monitoring the health of the database system was
clearly identified as a very important feature for the
users of the database. DBAs need to do this on a con-
stant basis, and it requires extensive understanding
of the system parameters, configuration, and re-
source utilization. Advanced knowledge is required
to react to a problem identified through monitoring

IBM SYSTEMS JOURNAL, VOL 42, NO 4, 2003 TELFORD ET AL. 575

or end-user reporting—the database administrator
needs to assemble more detailed information and
determine what steps need to be taken to resolve the
issue. All of this happens in a time-restricted envi-
ronment, requiring the DBA to work under pressure
and deliver the resolution in a timely manner.

With this in mind, the DB2 autonomic computing
team focused on providing DBAs the ability to man-
age the system health of the database without the
need for constant monitoring and helping them to
resolve any potential issues proactively and quickly.
This management-by-exception approach, wherein
system health is monitored and managed automat-

ically unless the DBA’s attention is required, repre-
sents a paradigm shift away from the historical
method of DBA polling. System health monitoring
has been implemented by the development of a re-
liable autonomic health analysis mechanism, which
detects problems without user intervention and no-
tifies administrators via e-mail, pager, or other
means. The new Health Center GUI (graphic user
interface) tool has been introduced, providing tools
for the detailed analysis of problems that have been
autonomically sensed. It should also be noted that
the supported management-by-exception model pro-
vides the user with the ability to periodically poll the
system status.

Table 1 Usability benefits of the management-by-exception model (Part A)

Health Monitoring before DB2 UDB Version 8 Health Monitoring in DB2 UDB Version 8

Determine which database system parameters
need to be monitored.

Low-cost automatic health monitoring of important database
system parameters begins immediately after installation.

Determine which database objects will be
monitored.

All DB2 Version 8 instances and databases are monitored with
a low performance impact (less than 1 percent).

Identify/create a snapshot of event monitors
needed to collect data for the health of the
database system.

The Health Monitor is available to the user immediately after
installation.

Determine the threshold values that indicate
health problems for the monitored parameters.

Set of default system parameters to be monitored, based on
study of typical database environments, is specified at
installation.

Implement notification mechanisms and start
monitors.

The Health Center notifies users of issues by means of a DB2
message or an animated status icon (Health Center Beacon,
available in the DB2 GUI tools). Notification by e-mail is also
available and can be configured after installation.

Table 1 Usability benefits of the management-by-exception model (Part B)

Health Issue Management before DB2 UDB
Version 8

Health Issue Management Using the Health Center in DB2 UDB
Version 8

Identify an issue from the performance or event
monitor data.

The Health Center registers potential health issues and notifies the
user.

Find more details and review them—monitor
and “drill down” in the available information
further.

The details of the alert are provided in the Health Center.

Determine one or more alternative actions to fix
the problem (use help information and
manuals to do this), and determine how other
parameters will be affected.

The Health Center provides one or more recommendations for
resolving the issue.

Write scripts (if necessary) to execute the actions
or invoke the needed tools.

Click one button to execute the recommendations.

Verify that the problem has been resolved (by
running a script or checking the affected
objects).

The Health Center confirms the result of the action. Health
monitoring continues, and after a refresh occurs, the resolved issues
are removed from the alerts, confirming the resolution.

TELFORD ET AL. IBM SYSTEMS JOURNAL, VOL 42, NO 4, 2003576

The key characteristics of the management-by-ex-
ception approach in DB2 UDB Version 8 are:

● DB2 monitors the health of the database system by
default. It measures key health indicators and no-
tifies the DBA when there is a potential health is-
sue that needs attention.

● The Health Monitor is available to run immedi-
ately after installation. No additional configura-
tion is necessary.

● The Health Center provides details about the
health issue and suggests one or more actions that
can be taken to resolve or prevent the problem.
Thus, the user, even the novice DBA, can maintain
a healthy environment and high performance with-
out the need to seek expert help or consult exten-
sive documentation (as with some of the existing
database products).

● The functionality of the Health Center is available
for users who prefer working from a command line
interface (a significant number of DBAs).

● This functionality is available for the mobile user
as well. The DB2 Web Health Center and a PDA
version of the Health Center are available in Ver-
sion 8.

Our objective in implementing the management-by-
exception model was to enable even less experienced
users to maintain a healthy and high-performing da-
tabase environment. At the same time, the tool had
to be useful for experienced users as well by allow-
ing them to increase the efficiency of their work, by
allowing them to focus on objects that need atten-
tion (rather than trying to identify which objects need
attention), and by allowing them to react quickly to
the challenges of the complex environments in which
they work.

Table 1 (Parts A and B) clearly demonstrates the
benefits of the management-by-exception model in
system health monitoring compared to the traditional
approach. Part A of the table shows the usability ben-
efits in setting up health monitoring, and Part B does
the same for reacting to a health issue. With the new
model, most of the tasks that require expertise and
involvement from the DBA have been automated. In
addition, this model serves as a basis for completely
automating the tasks of monitoring and problem res-
olution.

A key element of the management-by-exception
model is getting the DBA’s attention when it is nec-
essary. Indeed, the objective of the Health Center
is to be invisible unless there is something that needs

attention. After the Health Monitor discovers an is-
sue, it notifies the DBA via a DB2 message (see Fig-
ure 6), pointing the user to the Health Center. Al-
ternatively, an animated icon, the Health Center
Beacon, has been integrated with the rest of the
DB2 GUI tools. If there is a new alert in the Health
Center, the Beacon flashes to get the user’s atten-
tion. The user can invoke the Health Center by click-
ing on the icon. Finally, e-mail notification function-
ality is available to the user, in which a message is
sent to the selected addresses (which could be pag-
ers as well), to alert the user that there is a new is-
sue.

To help the user determine the severity of the par-
ticular alert, the Health Center categorizes the is-
sue as a warning, alarm, or attention, based on dif-
ferent thresholds. These thresholds, like the
notification options, are configurable. The thresh-
olds all have default values, allowing even the nov-
ice user to keep the database healthy.

A key function of the Health Center is to provide
recommendations for resolving health issues. Indeed,
while its functionality automates most of the health
monitoring tasks, the autonomic functionality lies in
knowing what needs to be done in order to return
the system to a healthy state. To determine the rec-
ommendations for resolving issues related to the dif-
ferent health indicators, the team relied on the ex-
pertise of numerous internal experts from DB2
development, DB2 support, and DB2 services. After
the set of recommendations was determined, the
UCD team ran a series of user feedback sessions with
internal users to evaluate the efficiency of the pro-
posed actions.

Figure 6 Health Monitor message

IBM SYSTEMS JOURNAL, VOL 42, NO 4, 2003 TELFORD ET AL. 577

To complement the standard Health Center, a Web-
based version was also included, to facilitate remote
administration. The benefits of this interface can be
exploited by remote workers, who can view the health
of the databases for which they are responsible and
apply recommendations to resolve problems with-
out having to come into the office.

Query optimizer. Query optimizers are one of the
most autonomic features of today’s relational data-
base systems, automatically determining the best way
to execute a declarative SQL (Structured Query Lan-
guage) query. Since its inception, DB2’s query opti-
mizer has automatically optimized even the most
complex decision-support queries—without any of
the “hints” from the user required by some compet-
itors’ optimizers. It performs this optimization us-
ing a combination of: (1) powerful query rewrite rules
to transform queries written by the user (or, more
commonly, a query generator) into standardized, eas-
ier-to-optimize queries,9,10 and (2) a detailed cost
model to generate and evaluate a rich set of alter-
native plans for executing the query.

The optimizer automatically determines whether any
existing Materialized Query Tables (MQTs, i.e., ma-
terialized views) could benefit a query, and if so,
“routes” the query to use the MQT without having
to alter the query in the user’s application program.
It collects statistics on the size of each table and the
distribution of each column to model how many rows
must be processed by any query a user might sub-
mit. It adapts its model to the environment in which
it is optimizing, automatically factoring in the speed
of the CPU, the storage devices, and the network-con-
necting machine clusters (in a shared-nothing envi-
ronment) and/or sites (in a federated environment).
In most cases, the optimizer minimizes the total over-
all resource consumption; in parallel environments,
it automatically uses the minimal elapsed time as the
optimization criterion.

The cost model includes detailed modeling of the
availability of various memory categories (multiple
buffer pools, sort heap, etc.) versus the amount
needed, hit ratios, the cost to build temporary ta-
bles versus the cost to re-scan them, various flavors
of prefetching and big-block I/O, non-uniformity of
data distributions, and so forth.11

Configuration Advisor. This component configures
the major memory areas of the database, as a sys-
tem configuration task. The configuration of a da-
tabase system is critical to system performance, as

it includes allocation of system memory for major
database operations, such as data caching, sorting,
and networking. Database configuration also defines
a number of database operational parameters, such
as the number of database server agents, I/O sub-
agents, logging frequency, and so forth. The advisor
configures over 35 configuration parameters. To do
this, the advisor is designed to evaluate the setting
of each configuration parameter based on charac-
teristics of the database system. The characteristics
used in the database model include system environ-
ment data, which the advisor senses automatically
(including the size of the system RAM, number of
storage disks, and number of CPUs), and data spec-
ified by the user. The gathering of user-specified in-
formation is specifically designed with the assump-
tion that the user has a very low skill level. The
combined set of characteristics is then used to de-
rive the value of each configuration parameter as a
weighted function of the system characteristics.

Allocation of the system memory to the memory-
consuming components (data cache, sort, network
memory, etc.) is assumed to be a zero sum process,
and therefore the values of these parameters are de-
termined in a combined model, taking careful ac-
count of each component’s requirements, the data-
base system architecture, and the available system
memory.

The advisor can be invoked in DB2 UDB through ei-
ther a GUI or a programmable API. A number of com-
mercial database applications that use DB2 for their
relational store invoke this advisor through the pro-
grammable API.

Research and development continues on the Con-
figuration Advisor, enhancing its modeling for a fu-
ture release of DB2. Recent experiments with the re-
modeled algorithms have shown dramatic results,
particularly with OLTP and batch database systems.
Figure 7 shows the results of two experiments using
an industry standard OLTP benchmark. The exper-
iments were performed on two distinct servers. The
diagram illustrates for each experiment how the sys-
tem throughput was improved over the default set-
tings after running Configuration Advisor. The
throughput was then compared to the performance
achieved by a human expert, who was given an ex-
tended period of several days to adjust the database
configuration for improved performance. In the first
experiment, the Configuration Advisor achieved 91.3
percent of the throughput performance of the same
system tuned by an expert. During the second ex-

TELFORD ET AL. IBM SYSTEMS JOURNAL, VOL 42, NO 4, 2003578

periment, the Configuration Advisor achieved 98.4
percent of the throughput of the expert-tuned sys-
tem. In both cases, the Configuration Advisor out-
performed the default settings significantly. These
early results suggest that autonomic performance
configuration is an achievable goal in the near term
for an important class of database workloads.4

Design Advisor. Database designers grapple with
several physical database design problems, relating
to how the data is stored and accessed. Some of these
physical design problems include: selection of fast
lookup indexes, materialized view selection, storage
topology, clustering keys, and partitioning keys. De-
termining the optimal set of indexes to create has
been a long-standing database research problem and
the topic of numerous papers over the past two dec-
ades. The DB2 Design Advisor, which has been part
of DB2 since Version 6 (released in 1999), aids phys-
ical database design by recommending indexes for
tables through analysis of a specific workload for one
or more SQL statements (including INSERTs,
UPDATEs, and DELETEs). The workload may be au-
tomatically captured or supplied by the user.5 The
Design Advisor exploits the detailed performance
model of the query optimizer to evaluate the poten-
tial benefit of virtual (simulated) candidate indexes
for the target workload. Using the database’s inter-
nal cost model not only allows DB2 to evaluate the
potential cost benefit of each virtual index, but also
provides some reasonable assurance that the newly
recommended indexes are likely to be selected by
the database during access plan selection. Current
research is extending the Design Advisor to provide
recommendations on a number of addition physical
design problems.

Automatic specification of query parallelism. DB2
can automatically determine at run-time the most
effective degree of query parallelism to use to im-
prove query performance across SMP CPUs as a main-
tenance task. Parallel access can prove inefficient for
short-duration operations by adding more overhead
in context switching and communication costs than
benefits. Automatic specification of parallelism
means that during execution complex queries can
benefit from parallel processing, while simple que-
ries can bypass the overhead of the parallel-process-
ing infrastructure. The decision on the degree of par-
allelism can be made dynamically during execution.
This dynamic ability to determine a near-optimal de-
gree of parallelism for query execution makes much
of the past literature on load-balancing obsolete.

Load utility automatic tuning. The DB2 load utility
performs mass insertion of data into a specified tar-
get table. To do so, it exploits a series of concurrent
(parallel) subagents for data prefetching, formatting,
and direct writing to database system storage. The
efficiency of the load process is heavily dependent
on whether optimal selections are made for mem-
ory consumption (used for buffering and sorting of
data), the number of parallel formatting subagents,
and the number of I/O subagents. The load utility re-
moves this burden from the user by automatically
selecting the degree of memory consumption, I/O par-
allelism, and SMP parallelism. This is accomplished
by examining the table characteristics, memory free
space, the number of table space containers (virtual
storage devices), and the number of system CPUs on-
line.

In addition, the load utility maintains table indexes
defined for the target table. These index structures
can be maintained in one of two ways, either by com-
pletely rebuilding them or by incrementally extend-
ing them with the new data tuples. A tuple consists
of a number of values separated by commas, for in-
stance: S � {12345, 6789, ‘hi’}. The choice of main-
tenance technique is not trivial, given that the per-
tuple maintenance cost is generally far more
expensive during incremental index maintenance.
The load utility selects the appropriate maintenance
mode automatically during execution, based on an

Figure 7 Configuration Advisor performance results

WORKLOAD 1 WORKLOAD 2
0

2500

5000

7500

10000

TR
A

N
S

A
C

TI
O

N
S

 P
E

R
 M

IN
U

TE

2023

8403

9206

3297

8136 8268

DEFAULT
WIZARD
EXPERT

IBM SYSTEMS JOURNAL, VOL 42, NO 4, 2003 TELFORD ET AL. 579

analysis of the index structure complexity and the
ratio of newly loaded data to existing table data.

Query Patroller. The DB2 Query Patroller acts as a
gate-keeper for DB2, accepting, analyzing, prioritiz-
ing, and scheduling database requests and (option-
ally) notifying users when their requests have been
processed. Guided by policies established by the user
in a profile, the Query Patroller limits bursts of ar-
rivals or long-running queries to the server, prevent-
ing its saturation and ensuring sufficient resources
for queries that are executing.

The Query Patroller first determines the relative cost
to execute each query, using the cost estimate pro-
vided by DB2’s Explain facility, which exploits a com-
plex cost model to estimate the resource consump-
tion for the access plan of a given query. Note that
the Explain facility is a model and does not actually
execute the specified SQL statements. It then uses
this estimated cost to determine when the query
should be run. If the cost exceeds a threshold estab-
lished by the user’s profile, the query is held for man-
ual intervention by the system administrator, and the
user is notified. Otherwise, Query Patroller sched-
ules the query for execution by an agent, taking into
account: (1) the current number of queries execut-
ing on the system, (2) the cost of all queries currently
executing, (3) the number of nodes in the system,
(4) individual user priorities, and (5) the number of
queries executing for each user. After a query has
completed execution, the user is notified via e-mail
and, if the job accounting status is active, a row is
added to the job accounting table. Information in
this table is used to provide reports and display da-
tabase usage history.

DB2 uses a patented technique to automatically pro-
tect the integrity of the data by ensuring that DB2
detects any corrupted data from incomplete I/Os
when it reads the disk. The method exploits consis-
tency bits to verify that a page being read into the
buffer pool from disk is neither a “partial page” nor
has it been changed by some form of disk corrup-
tion.

Consistency bits were introduced in DB2 Version 2.
A bit from each sector of storage on a page is set
to the same value before writing the page. When the
page is read, the DB2 Data Manager verifies that all
of the bits are the same. If some of the bits are dif-
ferent, it indicates a partial page write or disk cor-
ruption. The net result is continual automatic val-

idation of storage consistency as pages are read from
disk by the DBMS.

Conclusions and future work

Autonomic computing offers a fresh approach
toward ease of use, an approach focused on self-man-
agement rather than on the simplicity of the inter-
face. The autonomic computing work for DB2 has
included a focus on User-Centered Design, and has
resulted in the development of a number of pow-
erful usability enhancements for administrators. The
latest of these features support system integrity as-
surance, physical database design, and database tun-
ing. A number of additional features currently under
research and development will expand autonomic ca-
pabilities for physical database design, advanced
problem determination, and system tuning.

*Trademark or registered trademark of International Business
Machines Corporation.

Cited references and notes

1. Living in an On Demand World, IBM Corporation (2002),
http://www.ibm.com/ebusiness.

2. A. Ganek, A Letter from Alan Ganek, http://www.ibm.com/
autonomic/letter.html.

3. D. M. Russell, P. Maglio, R. Dordick, and C. Neti, “Dealing
with Ghosts: Managing the User Experience of Autonomic
Computing,” IBM Systems Journal 42, No. 1, 177–188 (2003).

4. D. Patterson, “ISTORE: A Server for the Post-PC Era,” Pre-
sented September 25, 2000, IBM Thomas J. Watson Research
Center, New York.

5. Sun Microsystems has an initiative known as “N1,” which is
focused on automating the data center. HP has a similar ini-
tiative known as “UDC” or “Utility Data Center.”

6. IBM DB2 Universal Database V8.1 vs. Oracle9iR2: Total Cost
of Ownership, D. H. Brown Associates Inc. (November 2002),
http://www-3.ibm.com/software/data/pubs/pdfs/dhbrown.pdf.

7. R. Sobiesiak, B. Jones, and S. Lewis, “DB2 Universal Da-
tabase: A Case Study of a Successful User Centered Design
Program,” International Journal of Human-Computer Inter-
action 14, Nos. 3–4, 279–306 (2002).

8. K. Vredenburg, S. Isensee, and C. Righi, User-Centered De-
sign: An Integrated Approach, Prentice Hall, New Jersey
(2002).

9. H. Pirahesh, J. M. Hellerstein, and W. Hasan, “Extensible/
Rule Based Query Rewrite Optimization in Starburst,” Pro-
ceedings of the 1992 ACM SIGMOD Conference, ACM, New
York (1992), pp. 39–48.

10. H. Pirahesh, T. Y. C. Leung, and W. Hasan, “A Rule Engine
for Query Transformation in Starburst and IBM DB2 C/S
DBMS,” Proceedings of the 1997 IEEE International Confer-
ence on Data Engineering, IEEE Press, New York (1997), pp.
391–400.

11. P. Gassner, G. M. Lohman, K. B. Schiefer, and Y. Wang,
“Query Optimization in the IBM DB2 Family,” IEEE Data
Engineering Bulletin 16, No. 4, 4–18 (1993).

Accepted for publication May 30, 2003.

TELFORD ET AL. IBM SYSTEMS JOURNAL, VOL 42, NO 4, 2003580

Ric Telford IBM Autonomic Computing, 4205 Miami Blvd., Re-
search Triangle Park, NC 27709 (rtelford@us.ibm.com). Mr. Tel-
ford is the Director of Architecture and Technology for IBM’s
autonomic computing initiative. He received his B.S. degree in
computer science from Trinity University in San Antonio, Texas,
where he graduated Phi Beta Kappa. He subsequently joined IBM
in Dallas, Texas where he worked on office systems development.
Mr. Telford has managed a number of software technology areas
throughout his career at IBM, including networking software, dig-
ital imaging, security, mobility software, directory services, and
business integration. He also served as Technology Director for
the IBM CIO, delivering technology solutions for the IBM in-
tranet.

Randy W. Horman IBM Data Management Division, IBM
Toronto Lab, 8200 Warden Ave, Markham, Ontario, L6G 1C7
(horman@ca.ibm.com). Mr. Horman is a Senior Technical Staff
Member on the DB2 development team at the IBM Toronto Lab.
He received a B.A. degree in mathematics, computer science, and
economics, as well as an M.Math degree in computer science from
the University of Waterloo in 1994 and 1995, respectively. He
subsequently joined IBM at the Toronto Lab, where he began
working on the parallel database system, DB2 Parallel Edition.
Recently, Mr. Horman has focused his attention on database man-
ageability, and in particular, the applicability of autonomic tech-
nology. Mr. Horman is a member of the Association for Com-
puting Machinery and the Computer Society of the Institute of
Electrical and Electronics Engineers.

Sam Lightstone IBM Data Management Division, IBM Toronto
Lab, 8200 Warden Ave, Markham, Ontario, L6G 1C7 (light@
ca.ibm.com). Mr. Lightstone is a senior technical development
manager with IBM’s DB2 Universal Database development team
within the IBM Data Management Division. He leads the auto-
nomic computing research and development effort for DB2 and
is a member of IBM’s Autonomic Computing Architecture Board.
His current research includes numerous topics in autonomic com-
puting and RDBMSs. Prior to his current position, Mr. Light-
stone worked as development manager and technical lead for the
DB2 load-and-sort development components and was overall proj-
ect manager for the first production-ready shipment of the DB2
UDB version 7.1 release. Mr. Lightstone has published and lec-
tured on topics including autonomic computing, database systems,
voice encoding, image processing, object-oriented design, intel-
lectual property, and software testing and speaks frequently at
DB2 conferences. He has been with IBM for eleven years.

Nikolay Markov IBM Data Management Division, IBM Toronto
Lab, 8200 Warden Ave, Markham, Ontario, L6G 1C7 (nikolay@
ca.ibm.com). Mr. Markov holds M. Sc. degrees in computer sci-
ence from the University of Sofia (Bulgaria) and in human-com-
puter interaction from Heriot-Watt University in Edinburgh,
Scotland. He joined the IBM User-Centered Design team at the
IBM Toronto Lab in 1995, where he initially worked on gath-
ering and analyzing user feedback for the DB2 UDB Version 5.
His work also included competitive analyses and evaluations of
competitive DBMS products. More recently, Mr. Markov has fo-
cused on IBM-wide initiatives like the autonomic database and
improving the database for small and medium size organizations.

Stephen O’Connell IBM Data Management Division, IBM
Toronto Lab, 8200 Warden Ave, Markham, Ontario, L6G 1C7
(soconnel@ca.ibm.com). Mr. O’Connell holds a B.S. degree in
industrial design and technology from Loughborough University

(1997) and an M.Sc. degree in work design and ergonomics from
Birmingham University (1998) where his thesis (working with Brit-
ish Telecom) examined multimodal interfaces in the context of
future communication devices. At EDS (1998–2000), he worked
on the software design and deployment of call centers for the Brit-
ish government. After working with Nortel (2000–2001) on an
integrated voice, e-mail and fax product, he joined the IBM
Toronto Lab in the DB2 User Centered Design team. While at
IBM, Mr. O’Connell has worked on projects including Web cli-
ents, DB2 GUI tools, cross-product problem resolution, and IBM-
wide-initiatives including the autonomic computing initiative.

Guy M. Lohman IBM Research Division, Almaden Research Cen-
ter, 650 Harry Road, San Jose, California 95120 (lohman@
almaden.ibm.com). Dr. Lohman is manager of Advanced Opti-
mization in the Advanced Database Solutions Department at the
Almaden Research Center in San Jose, California, and has 21
years of experience in relational query optimization. He is the
architect of the Optimizer of the DB2 Universal Database (UDB)
for Linux�, UNIX�, and Microsoft Windows�, and was respon-
sible for its development in Versions 2 and 5. During that period,
Dr. Lohman also managed the overall effort to incorporate into
the DB2 UDB product the Starburst compiler technology that
was prototyped at the Almaden Research Center. More recently,
he was a co-inventor and designer of the DB2 Index Advisor, and
co-founder of the DB2 SMART (Self-Managing and Resource
Tuning) project, part of IBM’s autonomic computing initiative.
In 2002, Dr. Lohman was elected to the IBM Academy of Tech-
nology. His current research interests involve query optimization
and self-managing database systems.

IBM SYSTEMS JOURNAL, VOL 42, NO 4, 2003 TELFORD ET AL. 581

