
Technical note—
XTABLES: Bridging
relational technology
and XML

by J. E. Funderburk
G. Kiernan
J. Shanmugasundaram
E. Shekita
C. Wei

Additional work completed after the
publication of “XTABLES: Bridging relational
technology and XML” (IBM Systems Journal
41, No. 4, 2002) indicated that a number of
figures containing XQUERY and XML
commands in that paper require modifications
or additions in order to be correct and
complete. We present the modified figures
and other queries, along with SQL commands
that can be used to generate the sample data
described in the original paper and those
produced by the modified queries.

The paper, “XTABLES: Bridging relational technol-
ogy and XML” described the design and implemen-
tation of the XTABLES middleware system, which was
intended to act as a bridge between legacy relational
database systems and the emerging number of XML
(Extensible Markup Language) -based applications.
XTABLES uses relational databases for storing and
querying XML documents.

An example carried throughout that paper con-
cerned a simple purchase order database. Views of
this database, both default and user-defined, could
be queried by the use of XQUERY expressions. The
sample data shown in Figure 1 (Figure 2 of the orig-
inal paper) can be generated by the Structured Query
Language (SQL) commands shown in this technical
note in Figure 2.

Figure 1 (Figure 2 in the original paper) shows the
default XML view for the purchase order database.
This view can be generated by the following query:

namespace xp �

"http://www.ibm.com/2001/12/xquery-functions"
�db�

{xp:table("EPURCHASE","ORDER")}
{xp:table("EPURCHASE","ITEM")}
{xp:table("EPURCHASE","PAYMENT")}
�/db�;

The user-defined XML view (a “create view” called
“orders”) shown here in an updated Figure 3 (Fig-
ure 4 in the original paper) transforms the default
view into an XML format as desired by the user.

Queries can be issued against this user-defined view.
The following two options for queries produce the
same results, extracting a list of “item” elements from
this view for a customer whose name begins with
“Smith.” In the original paper the “like” operator,
undefined in XQUERY, was used.

Query using the XQUERY “starts-with” function:
for $order in view("orders")
let $items :� $order/items
where starts-with(data($order/customer), "Smith") eq 'true '
return $items;

Query using the XQUERY “contains” function:
for $order in view("orders")
let $items :� $order/items
where contains(data($order/customer), "Smith")
return $items;

�Copyright 2003 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

FUNDERBURK ET AL. 0018-8670/03/$5.00 © 2003 IBM IBM SYSTEMS JOURNAL, VOL 42, NO 3, 2003538

These queries can be parsed and converted to XQGM
(XML Query Graph Model), then translated to SQL.
For the “starts-with” query, the SQL produced is
shown in Figure 4, including the “with” clause for
common subexpressions. Note that the “starts-with”
function is translated into a user-defined function

xperanto.“starts-with”, which is implemented by
XTABLES.
For the “contains” query, the SQL produced (includ-
ing the “with” clause for the common subexpres-
sions) is shown in Figure 5. Note that the “contains”
function is translated into the SQL “locate” function.

Figure 1 A purchase order database and its default XML view

<db>
 <ORDER>
 <row> <id>10 </id> <custname> Smith Construction </custname> <custnum> 7734 </custnum> </row>
 <row> <id> 9 </id> <custname> Western Builders </custname> <custnum> 7725 </custnum> </row>
 </ORDER>
 <ITEM>
 <row> <oid> 10 </oid> <desc> generator </desc> <cost> 8000 </cost> </row>
 <row> <oid> 10 </oid> <desc> backhoe </desc> <cost> 24000 </cost> </row>
 </ITEM>
 <PAYMENT>
 … (similar to <order> and <item>)
 </PAYMENT>
</db>

id custname custnum

10 Smith Construction 7734

9 Western Builders 7725

ORDER

oid desc cost

10 generator 8000

10 backhoe 24000

ITEM

oid due amount

10 01/10/01 20000

10 06/10/01 12000

PAYMENT

Figure 2 SQL commands for purchase order database sample data

drop table epurchase.order;
create table epurchase.order("id" int not null primary key, "custname" varchar(40) not null, "custnum" int not null);

drop table epurchase.item;
create table epurchase.item("oid" int not null, "desc" varchar(40) not null, "cost" int not null);

drop table epurchase.payment;
create table epurchase.payment("oid" int not null, "due" date not null, "amount" int not null);

insert into epurchase.order values(10,'Smith Construction', 7734);
insert into epurchase.order values(9, 'Western Builders', 7725);
insert into epurchase.item values(10, 'generator', 8000);
insert into epurchase.item values(10, 'backhoe',24000);
insert into epurchase.payment values(10, '2001-01-10', 20000);
insert into epurchase.payment values(10, '2001-06-10', 12000);

IBM SYSTEMS JOURNAL, VOL 42, NO 3, 2003 FUNDERBURK ET AL. 539

Figure 4 SQL produced by XQUERY using “starts-with” function

 WITH Q6 (c1) as (select q9."id" from EPURCHASE.ORDER AS q9
 where(xperanto."starts-with"(q9."custname", 'Smith') = 'true'))
 select q1.c1, q1.c2, q1.c3, q1.c4
 from table(
 select q2.c1, 0, cast (null as VARCHAR(40)), cast (null as INTEGER)
 from Q6 AS q2
 union all
 select q3.c3, 1, q3.c1, q3.c2
 from table(
 select q7."desc", q7."cost", q5.c1
 from EPURCHASE.ITEM AS q7, Q6 AS q5
 where (q5.c1 = q7."oid")
) AS q3(c1, c2, c3)
) AS q1(c1, c2, c3, c4)
 order by q1.c1, q1.c2;

Figure 3 User-defined XML view

 1. create view orders as (
 2. namespace xp = "http://www.ibm.com/2001/12/xquery-functions"
 3. for $order in xp:table("EPURCHASE","ORDER")/ORDER/row
 4. return
 5. <order>
 6. <customer>{ data($order/custname) }</customer>
 7. <items>{
 8. for $item in xp:table("EPURCHASE","ITEM")/ITEM/row
 9. where $order/id = $item/oid
 10. return
 11. <item><description>{ data($item/desc) }</description>{$item/cost} </item>}
 12. </items>
 13. <payments>{
 14. for $payment in xp:table("EPURCHASE","PAYMENT")/PAYMENT/row
 15. where $order/id = $payment/oid
 16. return
 17. <payment due={ data($payment/due) }>{ $payment/amount }</payment>
 18. sortby(@due)}
 19. </payments>
 20. </order>
 21. sortby(customer)
 22.);

FUNDERBURK ET AL. IBM SYSTEMS JOURNAL, VOL 42, NO 3, 2003540

General references

J. E. Funderburk, G. Kiernan, J. Shanmugasundaram, E. She-
kita, and C. Wei, “XTABLES: Bridging relational technology and
XML,” IBM Systems Journal 41, No. 4, 616–641 (2002).

Accepted for publication December 12, 2002.

John E. Funderburk IBM Software Group, Silicon Valley Lab-
oratory, 555 Bailey Avenue, San Jose, California 95141 (jfund@
us.ibm.com). Mr. Funderburk is a software developer at IBM’s
Silicon Valley Lab. He previously worked on the XML Extender
for DB2 and is currently working on XTABLES.

Gerald Kiernan IBM Research Division, Almaden Research
Center, 650 Harry Road, San Jose, California 95120 (kiernan@
almaden.ibm.com). Dr. Kiernan is a senior software engineer at
IBM’s Almaden Research Center. He previously worked on IBM’s
Object Broker, as well as the research version of XTABLES. He
is currently doing research on privacy preserving databases.

Jayavel Shanmugasundaram Cornell University, Department
of Computer Sciences, Ithaca, New York 14853 (jai@cs.cornell.edu).
Dr. Shanmugasundaram is an assistant professor of computer sci-
ence at Cornell University. He previously worked on the research
version of XTABLES while he was a visiting scientist at IBM’s
Almaden Research Center. He is currently doing research on P2P
indexing systems and query processing for unstructured data.

Eugene Shekita IBM Research Division, Almaden Research
Center, 650 Harry Road, San Jose, Califoirnia 95120 (shekita@
almaden.ibm.com). Mr. Shekita is a research staff manager at
IBM’s Almaden Research Center. He previously worked on DB2’s
query optimizer, as well as the research version of XTABLES.
He is currently doing research on query processing.

Catalina Wei IBM Software Group, Silicon Valley Laboratory, 555
Bailey Avenue, San Jose, California 95141 (fancy@us.ibm.com).
Ms. Wei is a senior software developer at IBM’s Silicon Valley
Lab. She previously worked on IBM’s Object Broker and is cur-
rently working on XTABLES.

Figure 5 SQL produced by XQUERY using “contains” function

WITH Q6 (c1) as (select q9."id" from EPURCHASE.ORDER AS q9
 where(locate('Smith', q9."custname") <> 0))
 select q1.c1, q1.c2, q1.c3, q1.c4
 from table(
 select q2.c1, 0, cast (null as VARCHAR(40)), cast (null as INTEGER)
 from Q6 AS q2
 union all
 select q3.c3, 1, q3.c1, q3.c2
 from table(
 select q7."desc", q7."cost", q5.c1
 from EPURCHASE.ITEM AS q7, Q6 AS q5
 where (q5.c1 = q7."oid")
) AS q3(c1, c2, c3)
) AS q1(c1, c2, c3, c4)
 order by q1.c1, q1.c2;

IBM SYSTEMS JOURNAL, VOL 42, NO 3, 2003 FUNDERBURK ET AL. 541

