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z/0S support for

the IBM TotalStorage
Enterprise Storage
Server

The IBM TotalStorage™ Enterprise Storage
Server® provides unique capabilities for
eServer™ zSeries™ and S/390® environments.
We describe two such capabilities, Parallel
Access Volume and I/O Request Priority, and
discuss the algorithms and mechanisms used
to implement and manage them. We show
how the new functions deliver significant
value to customers, particularly in the areas of
self-optimizing management of resources tied
to customer goals and reduced customer
configuration planning.

The 1BM TotalStorage™ Enterprise Storage Server™
(Bss) was introduced in 1999." Although ESS can be
used with other operating systems, we focus here on
its new capabilities that are supported by the soft-
ware for the eServer* zSeries* and S/390* environ-
ments (for brevity, we use “zSeries” to refer to both
the eServer zSeries and the S/390 environments).
Many of these are latent capabilities and provide no
value to the customer by themselves; software sup-
port is required in order to take advantage of these
functions. We describe in this paper two ESS func-
tions, Parallel Access Volume (PAV) and 1/0 Request
Priority (IORP), as well as the related capability, mul-
tiple allegiance (MA). Although MA does not require
software support, it is required for PAV and inter-
plays with both PAV and IORP. We discuss z/0S™ sup-
port for managing these capabilities, and in partic-
ular we describe the algorithms and metrics used by
the z/0S Workload Manager (WLM).?

The workload to be processed consists of various
types of work, with various completion and resource
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requirements. With WLM, the administrator defines
performance goals and assigns a business importance
to each goal. The goals for work are specified in bus-
iness terms, and the system determines the resources,
such as CPU and storage, to be dedicated to this task
in order to meet its goal. WLM continuously mon-
itors the system and adapts to changes in workload
and configuration in order to meet the specified bus-
iness goals.

The support for PAV and IORP is designed not only
to deliver better performance, but also to support
the requirements associated with each workload,
consistent with the philosophy of WLM. The z/0s func-
tions are designed to enhance the self-configuration
and self-tuning properties of the system according
to the autonomic computing vision.?

The remainder of this paper is structured as follows.
In the next section we give an overview of the three
main capabilities that are the focus of this paper: MA,
PAV, and IORP. In the section that follows we describe
z/OS support of aliases, the key mechanism that makes
PAV work. Then, two sections are dedicated to de-
scribing, respectively, WLM dynamic alias manage-
ment, and WLM I/O priority management. Next we
describe ESS /0 queuing and priority management,
and then we discuss some field experience that shows
the benefits of the capabilities introduced above. We
summarize our work in the final section.
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Overview

Historically, disk storage was based on physical disk
drives that could process only one 1/O request at a
time.* Moreover, in an environment with multiple
hosts and shared volumes of data storage, access to
a volume was limited to at most one /O request at
a time from all hosts. This resulted in the software
in a system queuing I/O requests for a volume when-
ever any host had one request active; this is the nor-
mal operating mode when the device can only do
one thing at a time. This scheme works in multisys-
tem environments with shared volumes, and oper-
ates without the need for direct communications be-
tween systems.

The introduction of cache controllers and RAID (re-
dundant array of independent disks) changed this,
allowing the simultaneous processing of multiple I/0
requests. With the single-threaded operation de-
scribed above, a request that encounters a cache miss
in the control unit continues to tie up the volume
until it is completed. Other requests for the same
volume, from the same system or other systems,
whose data may be resident in the cache, cannot start
because the volume remains in use.’

RAID breaks the one-to-one association of volumes
with devices. A logical volume is now the address-
able entity presented by the controller to the attached
systems. The RAID unit maps the logical volume
across multiple physical devices. Similarly, blocks of
storage on a single physical device may be associ-
ated with multiple logical volumes. Because a log-
ical volume is mapped by the RAID unit across mul-
tiple physical devices, it is now possible to overlap
processing for multiple cache misses to the same log-
ical volume, because these can be satisfied by dif-
ferent physical devices.

Multiple allegiance. Multiple allegiance (MA) is the
capability to support 1/0 requests from multiple sys-
tems—one per system—to be concurrently active
against the same logical volume if they do not con-
flict with each other.! Conflicts occur when two or
more I/O requests require access to overlapping ex-
tents (an extent is a contiguous range of tracks) on
the volume, and at least one of the 1/0 requests in-
volves writing of data. Requests involving writing of
data can execute concurrently with other requests
as long as they operate on nonoverlapping extents
on the volume. Conflicting requests are internally
queued in ESS. Read requests can always execute con-
currently regardless of their extents. Without the MA
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capability, ESS would generate a busy indication for
the volume whenever one of the systems issues a re-
quest against the volume.’ This would cause the 1/0
requests to be queued within the channel subsystem
(css).

Parallel Access Volume. Before PAV (Parallel Ac-
cess Volume) was available, the operating system al-
lowed only one request at a time for each volume.
Thus, when there was an active 1/0 request to a vol-
ume, its UCB (unit control block) was flagged as busy.
In order to support PAV, there are multiple unit ad-
dresses associated with the same logical volume, and
each such address is associated with a correspond-
ing subchannel within the zSeries CSS.* These ad-
ditional unit addresses are known as PAV aliases, or
simply aliases. Thus, a PAV volume is represented by
a base address and possibly one or more aliases. Be-
cause the zSeries I/0 architecture permits a unit ad-
dress and its associated subchannel within CSS to han-
dle only a single request at a time, PAV supports
multiple concurrent 1/0 requests from the same sys-
tem against the same logical volume.

Aliases can be associated with logical volumes in two
ways. With static assignment of aliases, the admin-
istrator specifies the aliases to be associated with a
particular volume; this assignment remains opera-
tional until a reconfiguration is manually performed
(static aliases were supported starting with 0S/390*
Version 1 Release 3). Static aliases work well for sta-
ble, well-defined workloads, including most perfor-
mance benchmarks. But modern workloads are be-
coming more and more dynamic, with less
predictable access patterns, in which case dynamic
management of aliases is preferred. (The WLM dy-
namic alias management function is supported start-
ing with 0S/390 Version 2 Release 7 and all z/OS re-
leases.) With dynamic alias management, the alias
addresses are managed as a pool, and the aliases in
the pool are available for allocation to volumes,
rather than being statically associated with specific
volumes. The number of aliases associated with any
particular volume is dynamically adjusted by WLM
either to achieve the workload goals, or to improve
overall efficiency when all workloads are achieving
their goals. WLM manages aliases as a resource; as
work shifts dynamically from one volume to another,
the aliases needed to handle that work are also
dynamically shifted. This reduces or eliminates the
need to manually relocate data sets in order to man-
age contention, especially in combination with dy-
namic channel path management (DCM) and the In-
telligent Resource Director (IRD).®
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Figure 1 I/O request flow within z/OS on zSeries and ESS
with FICON channel
APPLICATIONS ISSUE I/0 REQUESTS.
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IN THE 1/0 REQUEST AND THE CURRENT
CSS ACTIVITY, CSS DETERMINES THE
CHANNEL TO BE USED. WHEN ALL
EIGHT CHANNELS ON A SUBCHANNEL
ARE BUSY, CSS QUEUES THE REQUESTS.

FICON CHANNEL  IF THERE ARE MORE THAN 32 REQUESTS

AND PER CHANNEL, I/0 PRIORITY IS IN EFFECT.
HOST ADAPTER
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WHEN TWO I/0 REQUESTS FOR
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CONTROL UNIT AN EXTENT CONFLICT, I/0 PRIORITY
IS IN EFFECT.

1/0 request priority. IORP is a means for associating
a priority with each 1/0 request. With PAV, ESS ar-
chitecture allows more work to be sent to it. Indeed,
there are usually multiple physical interfaces between
each system to ESS. The FICON* (Fiber Connection)
channel also allows multiple 1/0 requests to execute
concurrently on the same physical interface.” (Fibre
Channel Connection Architecture is a channel-to-
control-unit interface architecture based on the Fi-
bre Channel standard.®)

The priority value is used when ESS is dealing with
internal queuing; this occurs for cache misses and
for extent conflicts. For those cases, IORP is used
when selecting requests to be serviced that are no
longer in conflict, or when scheduling cache miss ac-
tivity. It is also used when selecting requests for ac-
cess to previously busy resources, such as reconnect-
ing on ESCON* (Enterprise Systems Connection)
interfaces, which support only a single active request.
(s/390 Enterprise Systems Connection architecture
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is a channel-to-control-unit-interface architecture.”)
FICON interfaces support multiple active I/O requests
and also use priority. ESS can take advantage of the
multiplexing capability of FICON by immediately pro-
cessing requests according to their priority when the
cause of the queuing has ended; that is, data have
been staged following a cache miss, or an extent con-
flict is resolved. Priority also affects data transfers
on FICON; ESS uses the priority value to manage its
data transfer queue on FICON. Higher priority re-
quests get more of the link bandwidth than lower
priority requests. In addition, with FICON interfaces,
MA and PAV permit higher priority requests to con-
tinue to be sent to ESS from multiple systems or a
single system, respectively, beyond the number of
physical interfaces available. In this case, priority is
used by ESS when workload contention exists be-
tween the ESS FICON adapter and the ESS control unit.

Figure 1 illustrates the flow of I/O requests in a zSeries
machine with z/OS, FICON, and ESS. Multiple appli-
cations within an operating system image may issue
1/0 requests concurrently. The 1/O supervisor (10S)
component of z/0S queues the work for each target
logical volume in order of priority. As many of these
requests are started as there are PAV aliases avail-
able. They are initiated by sending them to the ¢ss.*
The css will order them by priority on its internal
work queue. Once an available channel path is found,
the 1/0 request is sent to it, where again it is started
in priority order. The 1/O requests are transported
through the 1/0 fabric (e.g., Fibre Channel”) to the
control unit where the higher priority work is allo-
cated greater portions of the bandwidth available on
the FICON channels.

With the ability to push more work out to ESS, there
is less opportunity for queuing within the software,
and thus less opportunity to exploit priority. Instead,
z/OS with ESS now provide end-to-end management
of 1/0 priorities, coordinated across the multiple sys-
tems of a sysplex. Priorities are now used in the op-
erating system, CSS, the FICON channel, and ESS; the
priority values specified for these do not have to be
the same (IORP in ESS is supported starting with
08/390 Version 1 Release 3 and in all zOS releases).
IORP provides a means for the software to associate
a priority value with 1/0 requests passed to ESS. This
priority value has a larger scope than the priority
value used earlier; the scope of the earlier priority
value was a single volume within a single operating
system, whereas this priority value is global, span-
ning all volumes and including requests from all at-
tached systems.
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Figure 2  I/O processing metrics with zSeries, ESS, and FICON channel
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Monitoring I/O operations. Figure 2 shows the se-
quence of events that typically occurs during the ex-
ecution of an I/O operation. The lettered entities rep-
resent the various metrics associated with 1/0
operations. The numbered steps in the figure are de-
tailed below (the term “control unit” below refers
to ESS).

1.

An71/0 request is issued by an application or sub-
system. The request arrives at the 10S and is
queued at the (PAV-base) UCB representing the
logical volume.

The SSCH (start subchannel) instruction is issued
against the first subchannel that becomes avail-
able. An I/O priority is passed to CSS with the 1/0
request for use by €SS, channel, and control unit.

. The /0 request is received by €SS and placed on

a work queue with the assigned 1/O priority.

. A channel path that has available resources to

execute the 1/0 request is selected. The channel
will execute higher priority requests ahead of
lower priority requests.

. The channel begins processing of the channel

program by opening an outbound exchange.’
The request may encounter contention delays
in the switching fabric.

The channel program is streamed out to the des-
tination control unit using the channel program
pipelining feature of the FICON protocols for up
to 16 information units’ (1Us).
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INITIAL CU BUSY OR
DEVICE BUSY

10.

11.

12.

13.

14.

15.

o

. The control unit acknowledges that the first

command has begun execution by sending back
a command response (CMR) to the first com-
mand.

. For read commands, data begin to arrive from

the control unit.

. The 1U pacing function of FICON allows the con-

trol unit to use CMR to signal the channel that
the channel program has reached the point
where the next set of IUs should be sent to the
control unit.

The channel responds to the TU pacing CMR by
sending another eight 1Us.

The channel program execution is complete and
ending status is sent from the control unit to the
channel.

CSs receives the ending status from the device,
makes the appropriate final calculations, and
stores all the measurement data into the appro-
priate fields.

The 1/0 interrupt is presented to the software
and the subchannel/UCB changes to the status-
pending state.

The software retrieves the ending status via the
TSCH (test subchannel) instruction.’

The subchannel/UCB changes to the idle state.

The measurements captured during the execution
of the channel program are as follows.
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* JOSQ (A) is the time that an I/O request is queued
in software waiting for the subchannel associated
with the device to become idle.

* Function-pending time (B) is the time interval be-
tween the acceptance of the start function (or
resume function if the subchannel is in the sus-
pended state) at the subchannel and the accep-
tance of the first command associated with the
initiation or resumption of channel-program ex-
ecution at the device.’

* Device-connect time (C) is the sum of the time in-
tervals in which the device is logically connected
to a channel path while the subchannel is active
and the device is actively communicating with the
channel path.

e Device-disconnect time (D) is the sum of the time
intervals in which the device is logically discon-
nected from €SS while the subchannel is subchan-
nel-active. The device-disconnect time also includes
the control-unit-defer-time intervals reported by
the device during the /0 operation.

o Control-unit-queuing time (E) is the sum of the time
intervals measured by the control unit in which the
device is logically disconnected from CSS while the
device is busy with an operation initiated from a
different system.

* Control-unit-defer time (F) is the sum of the time
intervals measured by the control unit in which the
device is logically connected to CSS during an 1/0
operation but is not actively communicating with
the channel because of device-dependent delays
in channel program execution. Control-unit-defer
time is subtracted from the device-connect-time
measurement and is added to the device-disconnect-
time measurement reported for the operation.

e [Initial device or control unit busy (G) is the time
spent waiting for device and control unit busy to
subside and is accumulated as part of function-
pending time.

Prior to PAV, multiple requests for a volume from
a single operating system would result in the OS queu-
ing all requests after the first one was scheduled to
the volume; the time that requests were queued
within the operating system was reported as I/O su-
pervisor queue (10SQ) delay in Resource Measure-
ment Facility® (RMF*) reports. PAV extends the abil-
ity to push the work requests for that volume out to
ESS rather than leaving the work queued within the
operating system.

The queuing time spent by an I/O request within the
Css is reported as pending time (PEND) in reports
from RMF or other performance monitors. ESS will

284 MERITT ET AL

subsequently generate a no-longer-busy indication,
which causes CSS to reinitiate the request. MA effec-
tively eliminates the queuing in the CSS that resulted
from multisystem contention against a volume. If re-
quests do conflict, they are queued within ESS; this
represents a shift in PEND delay from the CSS to ESS
and is reported back as control-unit-queuing time.*’

These device measurements, such as PEND time and
control-unit-queuing time, are now critical for work-
load management. Over the years $/390, and now the
zArchitecture®, has built into the system a number
of features that have allowed efficient management
of multiple workloads. The z/Architecture features
for 1/0 include the channel path measurement facil-
ity (CPMF), which gathers performance data on chan-
nel path resources, and Channel Monitoring Mode,
which allows, through the creation of channel mea-
surement blocks (CMB), the collection of data on 1/0
resource usage and 1/0 contention at the individual
device level. In addition, RMF provides detailed re-
porting on other 1/O-related statistics and resource
contention for capacity planning and problem anal-
ysis. These facilities also support accurate account-
ing and billing by tracking the consumption of 1/0
resources. WLM has been frequently upgraded in or-
der to exploit the zSeries I/O instrumentation capa-
bilities. The current objective is to create systems that
are self-tuning, require fewer specialized skills to per-
form installation planning and configuring, and op-
timize the use of 1/0 resources. The measurement
facilities in zSeries provide the metrics needed in or-
der to implement these autonomic capabilities.?

Benefits from PAV and IORP. The queuing of re-
quests in €SS and software, reflected in PEND and
10SQ, is an indication of the maximum throughput
achievable through storage subsystems. With ESS,
those queues have been substantially reduced or
eliminated. MA and PAV break the serialization of
access to a volume, permitting the simultaneous pro-
cessing of requests by ESS. If there is no conflict, these
may execute concurrently rather than serially; if there
is a conflict and the requests are queued within ESS,
IORP determines the order in which these requests
are serviced. Total response time is reduced for re-
quests that do not conflict because they execute con-
currently rather than serially. Response time is re-
duced even for requests that do conflict and thus
execute serially, because there is less overhead when
ESS accepts and queues the request, rather than hav-
ing the software queue the requests. Providing
shorter response times improves productivity, per-
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mits batch work to be completed in less time, pro-
vides for better handling of peak or unpredictable
1/0 workloads, reduces the need for performance tun-
ing by reducing or eliminating 1/0 bottlenecks, and
reduces the need to replicate data for performance
reasons.

Consider the case of heavily updated DB2* databases.
In DB2 applications, deferred writes or checkpoint
processing can cause multiple requests to be queued
within software, driving up I0SQ time. DB2 accumu-
lates changed data in its buffers until the deferred
write threshold is reached, at which time many ran-
dom updates are written to the databases. In the past,
when these long-running writes were performed, they
serialized access to the volume from all attached sys-
tems. If a new transaction needed to read data, even
data in cache, it may have been delayed by writes
that were already active or queued. These delays
showed up as queuing time in an RMF report. IORP
allows the read requests to get to the head of the
queue, and PAV makes it possible to start the read
1/0 on the first available alias, even if writes are tak-
ing a long time, and MA permits the read to start even
if the writes are occurring from another system. Thus,
PAV ameliorates the impact some DB2 utilities have
on the transaction response time, for example, util-
ities that run concurrently, such as copies and da-
tabase reorganization.

z/OS PAV support

The z/0s support for PAV aliases includes how they
are defined and initialized and the mechanisms for
dynamically changing the association of aliases with
base volumes; these are performed by the 10S com-
ponent of the z/OS operating system. The algorithms
and metrics that utilize these mechanisms will be dis-
cussed in the section “WLM dynamic alias manage-
ment.”

Aliases are not directly visible to applications,
middleware, or even most system components that
perform 1/0. This is a critical aspect of the design
because it permits the system to change the associ-
ation of a base to an alias in a way that is transpar-
ent to users of the volume; these users are only con-
cerned with accessing the data, not with the
mechanisms that enable such access.

Defining the I/0 configuration. zSeries systems with
ESCON or FICON require that the 1/0 configuration
be defined to the processor and the operating sys-
tem.® This step allows the administrator to control

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003

and customize various features. User-friendly names
can be associated with I/0 resources for the purpose
of access control, resource monitoring, and event re-
porting. Security policies can be enforced by limit-
ing the resources accessible by the machine, the log-

Aliases and their dynamic
association with base volumes are
transparent to applications.

ical partition (LPAR), and the operating system.
Bandwidth can be managed by designating which 1/0
adapters may be used by which control units and 1/0
devices.

The definition methodology was extended to include
pAv-related features such as specifying base and alias
addresses. An attempt was made to preserve the con-
sistency with existing concepts and tools, to minimize
additional work for the administrator, and to allow
multisystem configuration changes without impair-
ing the accessibility of the volume to any running ap-
plications. Therefore, the association of aliases with
base volumes is not explicitly defined by the admin-
istrator. Instead, base volumes and aliases are de-
fined, and the operating system dynamically discov-
ers the relationships between the base volumes and
their aliases, as follows.

First, the administrator defines two new logical de-
vice types to the operating system, base devices (e.g.,
3390B) and alias devices (e.g., 3390A). These def-
initions must match the configuration customization
of the ESS setup by the StorWatch* Ess Specialist. °
(The StorWatch ESS Specialist is a Web application
that provides the interface for customizing and con-
trolling ESS.) A logical subsystem (LSS) is a logical
structure internal to ESS that consists of up to 256
addresses to be used for base volumes and aliases.'
An alias can only be associated with a base within
the same LSS. ESS supports up to 16 logical sub-
systems for zSeries. Bases and aliases are managed
within the scope of each LSS. Thus, the administra-
tor is designating a certain number of devices based
on the amount of data that needs to be held by the
LSS—base volumes are currently limited to about 27
GB.

Next, the customer designates the number of aliases
needed for accessing those base devices within each
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LsS. Each alias device allows an additional concur-
rent I/0 request to be issued to the base with which
the alias is currently associated. To the software, they
appear as distinct UCBs that attach to their own sub-
channel. The CSS is not aware of any distinction be-
tween base devices and alias devices. The ability to
determine the number of aliases to use is analogous
to the ability to specify the queue depth for com-
mand tag queuing for Small Computer System In-
terface (SCSI) attached devices'' (attached via the
Fibre Channel Protocol, FCP).

Initial assignment of aliases. The initial setup using
the StorWatch ESS Specialist designates the number
of alias devices for each base device within the LSS.
z/0s discovers the specific association of PAV alias
devices to PAV-base devices only after ESS undergoes
its initial microcode load; subsequently, the associ-
ation may be dynamically changed numerous times
by different z0S systems. Therefore, the customer
has no practical way of specifying any specific bind-
ing to z/OS; z/OS must be able to discover any asso-
ciation that may exist. The discovery of the existing
binding of aliases to their respective base devices is
performed during system initialization.

A base device is initialized by the system like any
other on-line disk device; the same processing also
occurs when a base device is varied on-line after sys-
tem initialization. An additional step, however, is re-
quired for base devices: a command is issued to ESS
informing it that the device is a PAV device. When
alias devices are initialized, there is no association
between an alias and a base in the software config-
uration definition; the association must be discov-
ered. Self-description information is read for each
alias defined to the system, to allow the software to
determine to which corresponding base the alias is
bound.'? All zSeries devices that attach to ESCON and
FICON interfaces are required to support the device
self-description architecture.'?

Once system initialization is complete, all alias de-
vices should be bound to their corresponding base
device, as shown in Figure 3. Each base and its set
of bound aliases can be thought of as a single logical
unit to which I/0 requests are initiated; a request to
start /O to a PAV volume will cause 10S to initiate
the request to the base or any of its bound aliases.

The middle column in Figure 3 shows the subchan-
nels that have been defined for the configuration and
reside in the machine storage within the channel sub-
system. These subchannels contain the physical ad-
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dressing information that is used by the system to
communicate with a specific unit address in ESS. For
each alias UCB in the operating system (e.g., alias
UCB 2077), the configuration data are read from ESS
for that unit address, and the information is used to
bind the alias UCB to the correct base UCB (see the
section “Binding an alias to a base”). The right col-
umn in Figure 3 shows a zSeries-oriented LSS in
which a UA mapping from base and alias device UAs
to the corresponding logical volume (e.g., V1) is il-
lustrated. (ESS LSSs can be either zSeries-oriented,
denoted by ECKD* (extended count key data), or
scst-oriented.) The software issues a read configura-
tion data command to ESS (bottom blue arrow in Fig-
ure 3) and receives a configuration data record that
contains enough information for the operating sys-
tem to determine the base devices with which the
alias device should be associated.

Binding an alias to a base. Device self-description was
originally created to allow the operating system soft-
ware to validate that the physical configuration
matched the configuration definition in the CSS, in
order to guarantee data integrity. This zSeries fea-
ture in combination with the reset event architec-
ture* allows for the real-time notification of config-
uration changes and the checking needed to make
sure that errors are not introduced into the config-
uration while the device is in use.

The operating system also takes advantage of the de-
vice self-description data to dynamically discover
which alias devices currently bind to a correspond-
ing base device to form a logical volume. The data
structure corresponding to a logical volume is used
to access the data on the device, to report errors,
and to aggregate measurement data for accounting,
hot spot analysis, capacity planning, and WLM dy-
namic alias management.

When 108 initiates self-description processing for a
device, the read configuration data (RCD) command
is issued to retrieve the configuration data record*?
(CDR) of the device. For an alias, this contains the
unit address of the base with which this alias should
be associated.

To bind the alias to its base, the system must first
find the correct base by examining the CDRs for base
devices in the same LSS as the alias, and by matching
unit address fields. After the correct base has been
found, the alias is bound to the base by adding the
alias to the chain of alias control blocks associated
with this base. Because the alias represents the same
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Figure 3  PAV initial assignment of aliases
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volume as the base, other information from the base
is also copied to the alias control block, such as cur-
rent path status.

In addition, timestamp information is updated so
WLM knows when an alias was last bound to a base.
Notification is provided for monitor programs, such
as RMF, that an alias has been bound to a particular
base, since this affects how they accumulate and ag-
gregate performance information.

The alias devices are transparent to applications and
middleware, which always allocate to the base de-
vice. The transparency of alias devices affords the
operating system the flexibility to use whatever re-
sources it chooses to keep track of state informa-
tion in the most efficient ways possible. For exam-
ple, in z/0S, devices are represented to the software
by a UCB. Some applications are sensitive to whether
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the UCB has a 3-digit device number representation,
or a 4-digit device number representation. Addition-
ally, some applications require the UCB to reside in
24-bit addressable system storage instead of 31-bit
or 64-bit storage. Because alias UCBs are in general
not visible to the applications, the customer can
choose to use 4-digit device numbers and 31-bit stor-
age to minimize impact on system constraints. In fact,
PAV devices allow the customer to combine many
small volumes (e.g., the 3GB 3390 Model 3) into a
larger volume (the 3390 Model 9 has up to 27 GB)
with multiple aliases. The result is to consume less
24-bit virtual storage (one UCB for the base).

Bind events. After system initialization, bindings can
be done in one of two ways. PAV devices can be
dynamically added to the configuration. Then, the
bind process described earlier is initiated immedi-
ately in order to enable the use of the new PAV alias.
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Alternatively, WLM can manage the alias devices.
WLM interfaces with 10S in order to gather informa-
tion on PAV aliases, which it then uses to determine
what PAV bases will benefit from additional alias de-
vices. I0S is instructed to transfer a bound alias from
one base to another, or attach an unbound alias to
a base, in order to react to workload needs.

Unbinding an alias from a base. Unbinding an alias
from a base removes the association between an alias
and a base. Following the execution of an unbind
for an alias, 10S no longer sees that alias associated
with any logical volume. When WLM is managing
aliases, this alias may be transferred to another base,
as needed.

A request to unbind a base causes all aliases cur-
rently bound to that base to become unbound. When
unbinding an alias from a base, the alias UCB is re-
moved from the UCB chain of aliases associated with
this base. In addition, timestamp information is up-
dated so that WLM can determine when an alias was
last unbound from a base. In addition, notification
is sent to monitor programs, such as RMF, that an
alias has been unbound from a particular base, so
that the monitors stop including this alias with the
performance information for the base.

Unbind events. Unbinding can occur either when a
base device is taken or forced off-line (by the op-
erator or by the system), or when WLM manages alias
devices. Depending on workload needs, a bound alias
may be transferred from one base to another, or an
unbound alias may be bound to a base. In the course
of transferring a bound alias to a new base, the alias
will make a transition through an unbound state be-
fore 10S binds the alias to the new base.

Dynamic changes to PAV devices. The alias-to-base
relationships can be dynamically changed in one of
two ways. First, the ESS Specialist provides an inter-
active Web-based user interface for ESS customiza-
tion, where the alias-to-base relationships can be al-
tered.'® This can be done while the logical volumes
are in use; this is a critical requirement to avoid hav-
ing to shut down the application and thus impact the
users. Whenever an alias is transferred from one base
to another, ESS first quiesces the 1/0 activity to the
alias. If there is an active request to the logical vol-
ume through the alias, ESS waits for the request to
finish. After the alias is idle, further requests to ac-
cess the alias are held in abeyance by ESS. Next, the
alias is attached to the new base. ESS notifies all shar-
ing systems that a change has occurred for this alias
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by presenting an unsolicited device-state-transition
(DST) interrupt ™ (a special status combination); this
also flushes any requests against the alias that ESS
held in abeyance. This unsolicited interrupt is en-
sured to be presented to each sharing host before
the alias will accept an 1/0 request from that host,
in order to ensure that all sharing systems are aware
of the change regarding the binding of this alias.
Upon acceptance of the DST interrupt, the operat-
ing system is responsible for quiescing the 1/0 activ-
ity to the logical volume until the device self-descrip-
tion data can be reread to determine the current alias
binding. If the alias binding has changed, the alias
is unbound from the base (logical volume) and then
re-bound to the correct logical volume (base UCB).
This synchronizes this operating system’s view of the
alias-base relationship with ESS when changes may
have been initiated by other systems or the ESS
Specialist.

All events that could indicate the loss of this inter-
rupt are visible to zSeries operating systems. These
events result in the operating system assuming that
a DST may have been lost and cause the reverifica-
tion of the alias-to-base bindings. Finally, as a last
safety measure, each 1/0 request to the logical vol-
ume includes a token representing the base device
for the logical volume. ESS verifies that the z/OS view
of the base is consistent with the current base as-
sociation in ESS. No I/O request will be processed
when the token provided by software does not match
the actual state. If the software token does not match,
the request is rejected, indicating a mismatch has oc-
curred. The operating system reacts to this by re-
building the association of this alias to the base. Fail-
ure to recognize when base-to-alias bindings have
changed results in data corruption.

The alias-to-base relationships can also be dynam-
ically changed, under the control of the system soft-
ware. This is the mechanism used by WLM dynamic
alias management. WLM, based on workload require-
ments, interfaces with 10S in order to either transfer
a bound alias from one base to another, or bind an
unbound alias to a base. Once a transfer request is
honored, the Manage Alias command is issued to
instruct the ESS to transfer an alias from one base
to another. When the Manage Alias command is is-
sued from a system, steps are performed by ESS sim-
ilar to the case in which an alias transfer was initi-
ated through the ESS Specialist. Thus, /0O activity is
held in abeyance until the alias is idle; systems shar-
ing the device are informed that the alias has changed
state, including the initiator of the Manage Alias
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Figure 4 WLM dynamic alias management in a sysplex enviroment
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command. The appropriate systems are notified of
the change so that they can resynchronize their ta-
bles representing both the original and new base vol-
umes. Figure 4 summarizes the WLM dynamic alias
management process.

Shown in Figure 4 are steps 1 through 6 as follows:

1. WLM detects that a service class is missing goals
because its I/O requests are suffering 10S queue
delay. One WLM uses its sysplex-wide view of de-
vices and its local view of service class perfor-
mance to decide to move a PAV alias to another
PAV base.

2. Only one system (top WLM) requests that the lo-
cal 108 move a PAV alias from a donor base de-
vice to the required receiver.

3. 10Sissues the Manage Alias I/O-command request
to the ESS to move the alias from one base to an-
other.

4. Before any new I/O requests can be executed by
the alias, ESS informs all the systems that have
aliases enabled that the PAV alias is associated
with a new PAV base.

5. Each 10s obtains the current configuration data
of the alias device.

6. Using the current configuration data, each 10S up-
dates the software configuration in order to as-
sociate the PAV alias UCB with the correct PAV
base UCB.
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Initiating an I/0 request. When an application issues
an I/0 request to a volume, 10S may direct the re-
quest either to the base or to any alias bound to the
base. Certain conditions may temporarily preclude
the use of aliases for I/O requests: during processing
of a device reserve or release, during various I/O re-
covery actions, or when the device state indicates that
an alias association with the base may have been
changed (a DST interrupt is being processed, as pre-
viously described). In order to initiate an I/O request,
10S scans the base and its list of bound aliases and
looks for the first alias that is not currently active.
If such an alias is found, priority values are assigned
by wWLM—including the priority value to be sent to
ESS for the 1/0 request and the priority value to be
sent to €SS.° The start subchannel (SSCH) instruc-
tion is issued to the alias subchannel.* If an 1/0 re-
quest cannot be started (e.g., all the aliases are ac-
tive), the request is queued on the 10S queue—this
queuing is tracked in 108 queuing time (10SQ) and
used by WLM as a metric for changing alias associ-
ations.

WLM dynamic alias management

The z/0S Workload Manager (WLM) can be used to
dynamically manage the assignment of alias devices
to base devices and thus ensure the concurrency in
1/0 processing provided by PAV is available where it
is most needed.? This section describes the current
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implementation of the WLM algorithms for dynamic
alias management with ESS. '

ESS supports up to 16 LsSs for zSeries'; the combined
number of alias and base devices in each LSS is lim-
ited to 256. The pool of alias devices for an LSS is
managed by WLM. Because aliases can be viewed as
resources within ESS shared by multiple systems, the
WLM management of aliases is at a sysplex level. "
The WLM policy specified by the administrator de-
termines whether dynamic management of aliases
for a z/0S sysplex is to be activated. With WLM man-
aging aliases, the customer does not need to deter-
mine how many aliases to assign to each base device
and does not need to manually change this assign-
ment when workloads change. WLM performs these
tasks automatically. WLM uses two mechanisms to
manage the number of aliases. Both these mecha-
nisms use sysplex-level device activity information
to drive the decision to transfer an alias from one
device to another.

The first mechanism, based on the goal algorithm, '
attempts to allocate additional aliases to a base de-
vice (the receiver device) that is experiencing 10S
queuing delay and is servicing a workload that is miss-
ing its customer-specified goal in the WLM policy. >
A donor device is found among the devices used by
workloads that have equal or less business impor-
tance than the receiver device. If such a donor de-
vice is found, then an alias can be transferred from
it to the receiver even if it means increased 10S queu-
ing for the donor. However, if the donor device is
used by a workload of equal importance to the re-
ceiver, the donor device must not suffer increased
queuing as a result of losing the alias. These restric-
tions simplify the algorithm because then WLM does
not need to predict how much an alias transfer will
help or hurt the attainment of business goals. An alias
transfer requested by the goal algorithm does not
necessarily decrease overall 10S queue delay. It does
help a higher importance workload do better, but it
could be at the expense of a lower importance work-
load, which is consistent with the philosophy for other
WLM-managed resources. '°

The second mechanism, based on the efficiency al-
gorithm, transfers alias devices from low contention
base devices to high contention base devices with-
out regard to the business importance of the work-
loads involved. The objective is to minimize the to-
tal 10S queuing within an LSS. This algorithm
transfers an alias only when the goal algorithm did
not result in an alias being transferred, for reasons
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having to do either with the receiver or with the do-
nor device.

The goal algorithm is invoked more frequently than
the efficiency algorithm. This gives the attainment
of business goals precedence over simply reducing
total 108 queuing. High contention base devices are
those that have significant 10S queue delay. Low con-
tention base devices are those that have no signif-
icant 10S queue delay and can give up an alias with
no increase in queue delay. The efficiency algorithm
is conservative because it will not make a transfer
that could potentially cause more harm to the do-
nor than benefit to the receiver. The WLMs in the
sysplex act as peers with respect to the efficiency al-
gorithm: any of them may use the sysplex-level PAV
device data to initiate alias transfers regardless of
who is using the devices.

Sysplex view of device activity. Because moving an
alias from one base device to another affects every
system using those devices, the algorithm making that
determination should have a sysplex view of the log-
ical volume, including the appropriate performance
data. To build a sysplex view, each z/OS system in the
sysplex broadcasts its local performance data to all
other z/OS systems. A peer approach is used by WLM
for managing aliases under the efficiency algorithm.
Any system in the sysplex is able to make alias trans-
fer decisions based on the sysplex view. The goal al-
gorithm is “locally-oriented” because each system
tracks the PAV devices that are causing the most 10S
queue delay for each service class on the local sys-
tem.

Both the goal algorithm and the efficiency algorithm
are invoked periodically, albeit with a different pe-
riod. The invocation will result in action only if the
time since the last action is greater than a specified
value. It has been observed in laboratory testing that
one system in the sysplex tends to take over most of
the adjustment decisions. For example, if on a par-
ticular system the efficiency algorithm is invoked 60
seconds or more since the last time the efficiency al-
gorithm ran, the first system to detect that the 60
seconds have expired is likely to be the same system
every time. This works very well because each sys-
tem has the same view of the PAV device activity data,
and any of the peer WLMs can make alias transfer
decisions on behalf of the sysplex, even if it is not
itself using ESS at the time.

Efficiency algorithm. We describe here the WLM ef-
ficiency algorithm in more detail. Although the goal
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algorithm is invoked before the efficiency algorithm,
we discuss the efficiency algorithm first in order to
introduce some new concepts that are more easily
described in this context.

The WLM efficiency algorithm takes aliases from base
devices with low contention and transfers them to
base devices with higher contention, the contention
being measured by the 10S queuing delay. The re-
sult is to minimize overall IOS queuing against an LSS.
In a sysplex, invocations of the algorithm are sched-
uled at least 60 seconds apart. Note that this algo-
rithm is invoked less frequently than the goal algo-
rithm, for which the period is about 30 seconds.

A table listing all base volumes, as well as the un-
bound aliases, in an LSS, sorted by 10S queue length,
is used to find the most “needy” receiver devices as
well as the “richest” donor devices (unbound aliases
are treated as having zero queue length). When a
receiver-donor pair is identified, I0S is instructed to
unbind the alias from the donor device and bind it
to the receiver device. The efficiency algorithm can
transfer multiple aliases in one pass but will not trans-
fer more than one alias to or from a particular base
device more often than once per cycle.

Searching for a receiver-donor pair. WLM creates a
table listing all base devices in an LSS. The table is
sorted in descending order by sysplex 10S queue
length. For ties on I0S queue length, the table en-
tries are in ascending order with respect to the num-
ber of aliases assigned to the base device. Devices
at the top, at the high-10S-queue-length end of the
table, are potential receivers of aliases. A device must
have a sysplex 10S queue length above a threshold
of 0.5 to be considered as a receiver; for example,
an average queue length of 0.5 would be calculated
when an 10s device queue is sampled 40 times and
when, on 20 of those samples, there was one request
queued. The value of 0.5 was empirically chosen af-
ter experimentation. Note that if no receiver device
is found on the first pass, that is, if there are no de-
vices with an I0S queue length greater than 0.5, a
second pass is made in which receiver devices with
lower levels of queuing are considered.

Devices at the bottom, at the low 10S queue length
end of the table, are potential donors. Unbound
aliases are placed at the very end of the low-
10S-queue-length end of the table. Unbound aliases
are the first choice as donors because they represent
unused resources, possibly unbound from base de-
vices now off-line and therefore idle. The efficiency
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Figure 5 The WLM PAV data table for a sysplex
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Table 1 Deciding on the suitability of a device to be a
donor of aliases

Number of Acceptable
Remaining Aliases Utilization
1 20%
2 35%
3 47%

algorithm attempts to transfer one alias from a do-
nor to a receiver, but only if taking the alias from
the donor is not expected to cause a significant in-
crease in queue delay for the donor device. Figure
5 shows the WLM PAV data table, the sorted table
used for searching for receiver-donor pairs.

Assessing the impact on a donor device. The effi-
ciency algorithm takes an alias from a donor device
only if the action will not result in a significant in-
crease in 10S queuing for the device. The more aliases
the device has, the higher its utilization can be and
still remain an acceptable donor. Table 1 shows an
example on how the decision is made on the suit-
ability of a donor.

According to this table, when a potential donor is
taken down to one alias, its utilization must be be-
low 20 percent. When the potential donor is taken
down to two aliases, the current utilization must be
below 35 percent. The table was generated from a
multiserver queuing model used to estimate the im-
pact on device queuing based on the number of
aliases and the average utilization per alias. The uti-
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lization figures in the table were selected to ensure
minimal impact on the performance of the donor de-
vice. Here, the definition of minimal impact on queu-
ing is the point at which the probability of an 1/0 re-
quest encountering the base and all aliases in use is
less than 20 percent. Thus, if the projected impact
of removing an alias keeps the device below the uti-
lization that would cause a 20 percent chance of
queuing, then the alias can be transferred.

Goal algorithm. In many cases, the efficiency algo-
rithm is sufficient to optimize alias placement in a
logical subsystem and minimize overall I0S queue
delay. However, there is one obvious case that the
efficiency mechanism cannot handle. This is the sit-
uation in which an alias needs to be taken from a
high activity device being used only by work of lower
importance and given to a high activity device that
is delaying work of high importance. For example,
suppose there is a transaction processing workload
of high importance being delayed by I0S queuing on
a device, and there is a second device in the same
logical subsystem that has multiple aliases and is be-
ing used only by a batch workload of lower impor-
tance. Then aliases should be taken from the sec-
ond device and transferred to the first in order to
decrease the queuing delays for the first device, even
at the expense of increased queuing delays for the
second device.

The goal algorithm is designed to handle such cases.
Moreover, the goal algorithm runs before the effi-
ciency algorithm in order to ensure that when the
number of donor devices is limited, goal-attainment
alias transfers take precedence over efficiency trans-
fers. Because the service-class-delay information
used by the goal algorithm is only available to the
local system, it is the local system that will make the
alias transfer decision in order to help a local ser-
vice class that is missing its goals.

The goal algorithm runs every 30 seconds on each
system in the sysplex. Because the goal algorithm
runs more frequently than the efficiency algorithm,
it can be more responsive to situations where work
of high importance is missing its goal. Specifically,
the algorithm looks for a service class missing its goal
and also experiencing a significant amount of 10S
queue delay on the local system. For each such ser-
vice class, an attempt is made to find additional
aliases for up to three devices among those contrib-
uting the most to the delay of the service class on
the local system. For each one of these three devices,
the algorithm attempts to find a donor device.
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Although the search for a donor is performed in the
same order used in the efficiency algorithm, only de-
vices used by service classes of the same or lower
importance can qualify as donors. The device-to-
service-class mapping is used to make this determi-
nation. If the donor device is being used by less im-
portant service classes than the receiver, the trans-
fer is made even if 10S queuing will increase on the
donor device. If the donor is being used by work of
equal importance, a more conservative approach,
similar to that used in the efficiency algorithm, is
used. The alias transfer is made only if there will be
no increase in I0S queuing on the donor.

Pacing of alias transfers. Alias transfers are paced
in order to prevent overreaction to transient fluc-
tuations in /0 workload. Any particular base device
gets no more than one alias action, either added or
removed, per minute. The exception is when an alias
is needed by the goal algorithm to help a more im-
portant service class than the last service class helped
in the subsystem. In this case, the minimum time be-
tween alias transfers is lowered to 30 seconds. This
allows a more important workload to get first chance
at taking aliases from devices that have had a recent
alias transfer. If the pacing interval were one minute
in all cases, the efficiency algorithm on one system
in the sysplex could always be the first to run after
the minute had expired; it could transfer several
aliases from a donor base device and delay the goal
algorithm on another system from helping work that
is missing its goal.

Limiting the number of aliases. There is no pre-
scribed maximum or minimum number of aliases that
can be assigned to a base. The adjustment algorithms
heuristically determine the optimal number of aliases
needed to reduce or eliminate 10S queuing. This
means WLM needs to recognize the point at which
adding more aliases will not improve /O perfor-
mance. Additional aliases do not help if the 10S queu-
ing would simply be replaced by increased channel,
control unit, or device contention. WLM will not add
aliases to a device if its average pending time, con-
trol unit queuing time, or disconnect time are over
a threshold. The current thresholds are 20 millisec-
onds for average control unit queuing plus discon-
nect time and 20 milliseconds for average pending
time. (These threshold values were empirically de-
rived based on experimentation.)

Handling of the pending time threshold is different

from handling of the CU queuing/disconnect time
threshold. Average pending time for a PAV device
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could be high on one system and low on another if
it is caused by a channel constraint local to a system.
In this case, aliases would still be added to reduce
10S queuing for the system with low pending time
even though the other system has high pending time

The automatic management
of aliases by WLM saves the customer
the need to mannually adjust
the use of this resource when
workload changes.

and cannot benefit from the additional alias. A pend-
ing device reservation is handled as a special case.
WLM will not take action against delays that are a
result of pending device reserves on the volume be-
cause adding an alias will not decrease this type of
I10S queuing or pending time.

Administrator control of PAV management. There
are two ways for the administrator to control dynamic
alias management, either a sysplex level option in
specifying the WLM policy? or a device level option
in the z0S Hardware Configuration Definition®
(HCD). The sysplex level option in the WLM policy
is a YES/NO corresponding to whether dynamic alias
management is active (for the entire sysplex) or not.
The default is NO so that the administrator has a
chance to prepare the configuration and upgrade to
the required software release levels before switch-
ing on the dynamic alias management. The device
level option in HCD enables or disables dynamic alias
management for a particular PAV base device. A de-
vice is enabled by default.

The device-level option in HCD is used to stop WLM
from adjusting the number of aliases for a device that
is shared by systems that do not support dynamic alias
management. Such systems include systems earlier
than 08/390 Version 2 Release 7, systems running in
WLM compatibility mode, systems from another sys-
plex, or systems running an operating system other
than z/0OS, such as VM. If a customer were to allow
dynamic alias management for such shared devices,
the WLM alias transfer decisions would factor in only
the device usage by the systems that are participat-
ing in dynamic alias management. These decisions,
based on a partial view of device usage, are at risk
of causing less than optimal alias allocation. The HCD
device-level option is also used to disable dynamic
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alias management for base devices that are off-line
to some systems in the sysplex. If a device is on-line
to some systems in the sysplex but off-line to others,
WLM does not make valid alias transfer decisions.

Details on PAV metrics. The measurements used to
drive the PAV adjustment algorithms are accumu-
lated across a 60-second interval on each system in
the sysplex. Thirty-second measurements are used
if the goal algorithm needs to make an alias adjust-
ment to help work of high importance before the full
minute has elapsed. The values maintained are as
follows.

* Sysplex I0S queue length—I0S queuing on a base
device is measured by WLM for dynamic alias man-
agement because it is the indicator that the device
has more outstanding requests than its current
number of aliases can handle concurrently. The
average 10S queue length for each base on a sin-
gle system is calculated by sampling the 10S queue
every quarter second and averaging the queue
length across the samples. The sysplex 10S queue
length for each base is the sum of the average
queue lengths on each system in the sysplex. The
sum is used rather than an average across the sys-
tems to ensure WLM properly handles the case
where only one system out of many in a sysplex
has a nonzero queue length. Using a sum ensures
appropriate action is taken for the device to re-
lieve the contention within that one system. Av-
eraging the queue length across the systems, es-
pecially in a large sysplex with many systems, could
dilute the value so much that WLM would not rec-
ognize that action is needed.

Total service time—The device utilization over the
measurement interval is calculated for each sys-
tem based on the total service time on the base
device and all its current aliases. The sysplex de-
vice utilization is calculated as the maximum uti-
lization observed by any system in the sysplex. This
utilization is then used in a formula to determine
if removing an alias would increase 10S queuing
for a device. See “Assessing impact on a donor de-
vice” in the subsection “Efficiency algorithm” for
more information.

Average device delay time per request—This value
includes control unit queue time and disconnect
time. It is compared against the threshold of 20
milliseconds. If the sum is higher than the thresh-
old, it indicates the device cannot benefit from ad-
ditional aliases, and WLM stops transferring aliases
to the device.

e Average pending time per request—This value
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represents channel contention. It is compared
against a threshold of 20 milliseconds. If this value
is higher than the threshold on the local system,
it indicates the device cannot benefit from addi-
tional aliases.

¢ Device-to-service-class mapping—This is an array
indicating which service classes are using which
PAV devices during the minute being measured.
Each service class is assigned an importance level
in WLM policy. The goal algorithm determines the
most important service class using a device and en-
sures that a donor device has a lower importance
than or equal importance to the receiver device.
Certain special 1/0s are ignored for the purposes
of creating this mapping so that the mapping rep-
resents only application-level 1/0 activity.

The automatic management of alias devices by WLM
makes the most efficient use of this valuable resource
in ESS under changing workload conditions. Letting
WLM manage aliases saves the customer from hav-
ing to continually make manual alias adjustments in
order to match resources to work requirements. Be-
cause WLM takes into account the business priority
of the work in the z/0S sysplex, it can make alias ad-
justments to ensure that business-critical work gets
the resources it needs to meet its goals, and that over-
all 10S queuing is minimized.

WLM 1/O priority management

Dynamic management of I/O priorities by WLM com-
plements dynamic alias management. The greater
parallelism provided by PAV has the effect of trans-
ferring the queuing of requests from the software
(10S) to the channel (CSS) or to ESS. Further improve-
ment in achieving workload goals can be obtained
by enabling WLM to control the order in which the
competing requests are handled within ESS.

Manual control of /O priority has been available in
z/0S and 0$/390 for years. 1/O priority management
by WLM was introduced in 0S/390 Version 1 Release
3 for 10S queuing within a single system. When ESS
was released, I/O priority management was extended
to queuing within ESS for handling, for example, ex-
tent conflicts and reconnects after cache misses. The
priority values used for 10S queuing are passed now
to ESS to be used in queuing situations. In both cases,
the queuing is at the volume level. More recently in
z/OS Version 1 Release 1, the Intelligent Resource
Director (IRD) introduced CSS priority manage-
ment.® The objective is to manage 1/0 priority end-
to-end so that the most important work in the sys-
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tem has the best possible chance of meeting its goal.
In this section we describe 1/0 priority management
in both 10S and ESS.

Why manage /O priorities? In the earliest releases
of WLM, 1/O priorities were not directly managed, but
instead were set to equal the CPU dispatching pri-
orities. This worked fairly well because interactive
workloads usually have a higher dispatching prior-
ity than batch workloads. However, it is easy to en-
vision cases where a service class has few CPU delays
but is missing its goals because its I/O priority is too
low, perhaps because it is competing with work in
another service class for the same device, and the
other service class is dominating the device. In such
a case, the 1/0 priority should be different from the
dispatching priority.

The setting of 1/O priorities is done at the sysplex level
in order to handle the case where devices are shared
among systems in a sysplex, and there is queuing
within ESS. The mechanism used to manage 1/O pri-
orities is similar to dispatching priority management
with some notable exceptions. First, only eight pri-
ority values are used because management of 1/O re-
quires fewer levels than dispatching. Second, unlike
dispatching priority, I/O priority is considered a sys-
plex-wide attribute. That is, a service class has the
same I/O priority across the sysplex. Therefore, when
considering 1/O priority changes, WLM takes into ac-
count the effect of the change on the work across
the sysplex.

In managing 1/O priorities we use the concept of a
device cluster, a set of service classes competing for
the same set of devices (a more accurate name would
be service class cluster based on device usage). Each
device is part of a single device cluster and each ser-
vice class period is associated with a single device
cluster. This allows 1/0 priorities to be set indepen-
dently for service classes that are not competing for
the same 1/0 resources.

The eight 1/0 priorities used by WLM are given in Ta-
ble 2.

Sampling. 1/O priority management uses //O-using
samples and 7/0-delay samples in order to identify a
service class that is missing its goal due to 1/O con-
tention, and that can be helped by increasing its I/O
priority relative to another service class. I/O-using
samples are the samples in which a work unit is mak-
ing use of a device and could be causing delay to
other work. I/O-delay samples are the samples in
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which a work unit is delayed when it tries to use a
device that another work unit is using. I/O-using time
(computed from the I/O-using sample count) consists
of device connect time, reported by CSS. [/O-delay
time is the combination of 10S queue time, CSS de-
vice pending time, and control unit queuing time. In
the original design, disconnect time was counted as
part of I/O-using time because it was considered to
be productive time. An I/O request may be discon-
nected from the channel for a variety of reasons, such
as an extent conflict or a cache miss during data trans-
fer from disk to cache. However, very high discon-
nect times usually represent high contention in the
device, and not a large amount of useful work being
done. Therefore, disconnect time has been dropped
from the I/O-using calculation. Some customers ob-
serve very high disconnect times due to device con-
straints, and in these cases, it is not appropriate to
count disconnect time as productive time. Doing so
would make a service class look as if it were doing
well when in fact it was suffering high delay. This
would prevent WLM from helping the service class
when needed.

There are two approaches to gathering 1/0 samples.
Traditional sampling is used for measuring delay due
to 10S queuing. In addition to sampling 10S queue
length, WLM also tracks the devices each service class
is using in order to determine which groups of ser-
vice classes are competing for the same 1/0 devices
(device cluster).

An alternate method is used to gather samples rep-
resenting 1/O-using time (device connect time) and
the portion of 1/0 delay samples represented by sub-
channel-pending and control-unit queuing delays. In-
stead of using direct sampling, WLM derives equiv-
alent sample values from measured times which are
reported by the channel subsystem to the operating
system. These are the same measurements reported
in RMF device reports.

Tracking device clusters. Managing 1/0 priorities is
different from managing other resources in that work
doing 1/0 does not necessarily compete with other
work in the system doing 1/0. If application X is us-
ing a set of devices that is disjoint from the set of
devices used by application Y, the 1/0 for X has min-
imal effect on the 1/0 for Y. This is different from
managing CPU priority, for example, where all the
work in the system competes for the same pool of
CPU resource.
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Table 2 1/O priorities used by WLM

Value Description Used By

EE SYSTEM service class System tasks

EE SYSSTC service class  High-importance
application

F9 to Managed priorities Service classes with goals

FD

F8 Discretionary work Low-importance work

Thus, when WLM considers changing the 1/0 priority
for a service class, it needs to know what other work
will be affected by this change, and for this it uses
the previously defined concept of device cluster. The
device clusters are defined based on sysplex-wide I/O
samples for each service class. One of the systems
in the sysplex, usually the first to initialize, takes the
responsibility for defining the device clusters and
broadcasting the information around the sysplex. The
other systems send their samples to the “clustering”
system once a minute. Every 10 minutes, the clus-
tering system consolidates the samples from each sys-
tem, creates the device clusters, and broadcasts them.
Each system then has the same sysplex-wide view of
I/0 usage when making 1/0 priority decisions that af-
fect other systems in the sysplex. Because any I/O pri-
ority change is also broadcast, 1/O priorities for ser-
vice classes remain consistent across the sysplex.

Table 3 shows the combined number of 1/0-using
samples and I/0-delay samples (taken every 0.25 sec-
onds) for each one of five service classes and a set
of devices. The use of device 500 by Class 3 is con-
sidered “insignificant.” The device clusters to be de-
fined based on these samples are (1) Classes 1, 2, 3,
and (2) Classes 4, 5.

Adjusting I/0 priorities. Every 10 seconds, WLM in-
vokes its policy adjustment logic.' Tt looks at each
service class period, starting with the most impor-
tant, until it finds a service class period that is miss-
ing its specified goal. This service class period is
known as the receiver. If the most important bot-
tleneck is 1/0 delay, then WLM considers making an
1/0 priority change to help the receiver meet its goal.
The action taken is to either raise the priority of the
receiver service class period or lower the priority of
a competing service class period, known as the do-
nor. Both the donor and the receiver periods must
belong to the same device cluster. Before making a
priority change, WLM estimates the performance gain
to the receiver as well as the performance cost to
the donor. WLM makes the change only if the value
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Table 3 Samples collected for a set of service classes and a group of devices

Service Dev Dev Dev Dev Dev Dev Dev

Class 200 201 202 500 501 502 503
Class 1 100 150 150 0 0 0 0
Class 2 0 90 100 0 0 0 0
Class 3 0 100 100 5 0 0 0
Class 4 0 0 0 100 100 100 100
Class 5 0 0 0 0 150 0 150

to the receiver is sufficient, and if it will not cause
more important work to miss its goal. Projections
are in terms of the number of using and delay sam-
ples to be expected following the change. For exam-
ple, when the 1/0 priority of a receiver is raised to
be equal to or above that of a donor priority, the
using samples of the receiver will go up and its delay
samples will go down. The result is that the receiver
period will be closer to meeting its goal.

WLM’s management of I/O priority complements its
dynamic management of aliases. Although PAV in-
creases parallelism for I/O requests and reduces a ma-
jor cause for 1/0 delays, there still can be contention
for resources at some level, either in the operating
system, in CSS, or in ESS. I/O priority management
ensures that when there is contention, the work is
processed in the appropriate order; that is, the work
with the highest business importance receives pre-
ferred access to the I/O resources as needed to meet
its performance goals.

1/0 priority within the ESS FICON adapter. The fi-
nal part of the end-to-end priority management pro-
vided is within ESS. Without ESS supporting the end-
to-end I/O priority management, discretionary I/0O
requests would be managed and executed within ESS
with the same priority as system 1/0 requests; when
contention exists, this can seriously impact the per-
formance of system I/O requests, as well as all the
service classes being managed by WLM (see Table 2
for 1/0 priorities used by WLM).

ESS uses I/O priority in two of its functional areas:
the FICON adapter and the ESS control unit. /O pri-
ority is used at the FICON adapter when contention
exists between the FICON adapter and ESS control
unit, and it is used for managing data transfers on
the FICON interface. It is also used within the cluster
controller when an extent conflict exists for the log-
ical volume, independent of the type of path. We fo-
cus here on the handling of priority for 1/0 requests
within the ESS FICON adapter.
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ESS FICON adapters can perform multiple concurrent
I/0 requests between the adapter and cluster con-
troller, and between the adapter and FICON chan-
nel. Because of this, FICON adapters provide a very
effective additional place where the priority is used
when workload contention exists.

The FICON adapter uses the 1/0 priority value sent
from z/OSs for the duration of the request (i.e., a FICON
request can consist of a chained set of commands)
in order to (1) allow a high priority request to pro-
ceed before lower priority requests, and (2) prevent
extended aging of low priority requests within the
FICON adapter. When the initial command for the
I/0 request is received and during command execu-
tion of each subsequent command in the chain, the
command will be queued in priority order on the
adapter-to-cluster controller queue between the
FICON adapter and the appropriate ESS cluster con-
troller. When the adapter-to-cluster controller in-
terface is free, the adapter will select the next ele-
ment of work from the active queue. After the
command request has been passed to the cluster con-
troller, the FICON adapter selects another element
of work (a command from another 1/0 request) and
passes it to the appropriate cluster controller, pro-
viding the adapter-to-cluster path is not busy. The
selection of work elements from the active queue
continues until it is empty; at that point, all other
elements of work of lower priority are promoted one
priority level, and the highest priority nonempty
queue will become the active queue. Work is pro-
cessed as described above; when that priority queue
is empty, the queue promotion process is repeated.
After processing for acommand is completed for one
command in a chain, the next command in that chain
is queued on the adapter-to-cluster queue based on
the priority initially associated with that 1/0 request.

While the dequeuing process is proceeding (based
on priority and the availability of the adapter-to-
cluster path), new I/O requests can be received at the
FICON adapter from FICON channels; this is in con-
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trast to the way the ESCON adapter works, where only
a single element of work could be handled per
adapter. As a result, high priority work on FICON
adapters will not be blocked by lower-priority long-
running requests. These new 1/O requests will be
queued on the adapter queue based on the priority
value sent with them. If no priority value is sent, the
I/0 request in placed on the lowest priority in the
queue; automatic priority promotion ensures that the
1/0 request will execute.

Field experience

In this section we discuss field experience with PAV
and IORP and present some related experimental
data.

MA and PAV. For each volume managed by ESS, I/0
requests may be overlapped: MA supports one 1/O
request from each of the attached systems, whereas
PAV permits multiple requests from the same sys-
tem. MA is beneficial in environments where a vol-
ume is shared by multiple systems, such as a Parallel
Sysplex*.1® The overlapped execution of requests re-
duces the response time. The situations described
below apply to multisystem environments sharing a
volume, single systems with multiple requests against
a volume, and the combination of these.

Consider a common situation in which a cache miss
is followed by a request for data resident in cache.
Before MA and PAV, the second request had to wait
for the cache miss to be serviced, resulting in delays
of milliseconds, the time typically required for a sim-
ple cache miss to be resolved. PAV allows subsequent
requests to be serviced while the control unit stages
the data for the miss to cache from the physical disks,
so the cache-hit request is no longer delayed behind
the longer-delay cache miss. Similarly, requests for
small amounts of data, which may be in the cache,
need not be delayed by a long-running sequential
transfer.

Figure 6 shows some experimental data from a sys-
tem running a standard database workload using
multiple volumes spread across several RAID arrays. '
This is a typical “cache-hostile” z/0S workload. The
I/O rate increases as additional users are added, each
accessing his or her own “working set” in the large
database stored across many logical devices. Figure
6 shows the performance improvement with PAV.
The solid curve represents the behavior without PAV,
and the dashed curve shows the behavior of the da-
tabase volumes with aliases. The graph also illustrates

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003

Figure 6 Cache-hostile database workload with and
without PAV
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that PAVs cannot increase the aggregate maximum
capabilities of an 1/O subsystem. PAVs will improve
the response time for I/0 requests by reducing 10SQ,
the time queued in the 10S component of z/OS for
volumes with aliases, until some other resource in
the subsystem becomes the limiting factor. The lim-
iting resource could be the set of channels, the num-
ber of aliases available, or the internal bandwidths
of other resources, such as device adapters or RAID
ranks. As these other resources saturate, the 1/0 re-
sponse time will increase in spite of PAVs, appearing
as either device pending time (PEND), time queued
in either the channel subsystem or in the control unit,
or device disconnect (DISC) time, usually the time
spent waiting for a cache miss to be resolved. As
queue depths continue to increase, 10SQ time may
reappear, as well.

Sequential data can experience significant improve-
ment from PAVs, either as increased data rate or de-
creased elapsed time for multiple job streams. That
translates into reduced batch windows. In one QSAM
(queued sequential-access method) experiment, mul-
tiple read and write streams were directed to differ-
ent data sets on the same logical volume. In Table
4, there were six jobs reading or writing data sets on
a single logical volume. The number of aliases for
the volume varied from 0 (no PAV) to 4; the work-
load was for 27 KB records with BUFNO=5. The jobs
were designed to make sure the data were read and
written all the way to the disks in the array group
that contained the logical volume. For these sequen-
tial cases, we see the limiting sequential capability
of a single RAID5 rank near 40 MB/sec.
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Table 4 QSAM Experiment 1 involving six simultaneous
jobs writing or reading different data sets on a
single volume

Number of MB/sec
Aliases

Write 0 12.34
1 24.66
2 31.7
3 39.69
4 40.56

Read 0 13.5
1 29.96
2 33.46
3 41.68
4 42.2

Table 5 QSAM Experiment 2 involving one data set on a
single logical volume with eight read streams

Number of MB/sec MB/sec/stream
Aliases
0 13.6 1.7
1 27.28 3.41
3 53.54 6.69
6 83.52 10.44

In a subsequent experiment (see Table 5) a volume
with six aliases, in addition to the base address, was
defined. Over 80 MB/sec were read from a data set;
the workload had 27 KB records with BUFNO=5. In
this case, the eight channels to the logical device were
the limiting resources in the subsystem. '

Experiments to demonstrate the value of PAV were
performed using the Commercial Batch Work Load
(CB84) of the Large Systems Performance Reference "
(LSPR) on z/0S Version 1.2 with ESS Model 800. The
goal of the measurements was to determine how
large volumes performed as an increasing number
of cB84 Batch 3390 Model 3 work volumes were con-
solidated. The IBM LSPR method is designed to pro-
vide relative processor capacity data for System/390
and zSeries architecture processors, both 1BM and
IBM-compatible. The CB84 workload is a moderate
commercial batch job stream consisting of 130 jobs,
with 610 unique job steps. The work done by these
jobs includes various combinations of compile, link-
edit, and execute steps. Utility jobs, primarily for data
manipulation, are also included. The CB84 job stream
isreplicated to assure a reasonable measurement pe-
riod, and the job queue is preloaded. Enough ini-
tiators are activated to ensure a high steady-state
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utilization level, approaching 100 percent. The mea-
surement is started when the job queue is released,
and ended as the last job is completed. Each job in
the job stream uses its own data sets in order to elim-
inate data set contention.' On average, each CB84
database volume contained about 380 MB of data.
Ultimately, 70 3390 Model 3 volumes were consol-
idated, from different LSSs onto the single 27-GB vol-
ume, before the 27-GB-disk space was exhausted,
and the large volume continued to perform well.

As shown in Figure 7, the large volume response time
does increase as the SSCH rate to the volume in-
creases. However, while the 1/0 rate to the volume
increases twentyfold, the response time increases
only by a factor of two, and there is no negative ef-
fect on system transaction rate.

IORP. MA and PAV provide the capability for ESS to
support more work by eliminating the volume as a
serialization point. z/0S support for ESS provides the
means to feed more 1/0 requests to ESS. As ESS is fed
more work, it becomes increasingly important to pro-
vide a means for the €SS and ESS to understand the
priority of the work and to exploit that priority.

IORP can also be used to greater advantage with
FICON channels than with ESCON channels, because
it can help prevent more important work from be-
ing delayed behind less important work. When a
long-running 1/0 request is started on an ESCON chan-
nel, it blocks additional work on the interface until
it completes; work with a higher IORP must wait un-
til the active request is completed before that ESCON
channel can be used. Although contention can still
occur for a FICON channel, FICON eliminates the I/O
interface as a serialization point and hence comple-
ments the ability to move more work between zSeries
and ESS; new requests can be sent to ESS while other
requests are already active on the interface, and ESS
can resume previously queued requests that become
ready for execution without waiting for the interface
to become available. The value of multiple simul-
taneous data transfer on a FICON interface is en-
hanced by ESS recognizing priorities.

MA, PAV, and IORP should not be viewed as totally
separate, isolated capabilities; rather they should be
viewed as a set of related complementary enhance-
ments, further enhanced by other capabilities such
as FICON and DCM, and all brought together by z/OS
support and WLM management. IORP allows WLM to
assign more important work a higher priority and
less important work lower priorities to affect the re-
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sponse times of I/O requests, given the 1/0 resources
that are available at any specific instant. This makes
the most effective use of the resources, given the bus-
iness goals. WLM dynamic alias management allows
the system to dynamically move additional 1/0 re-
source to or from a logical volume in order to in-
crease or decrease the number of concurrent /0 op-
erations that can be performed on that volume. If
important work is suffering because of a lack of avail-
able bandwidth, DCM can be used to increase or de-
crease bandwidth by redefining the use of the exist-
ing channel path in the configuration. All these
capabilities work together, coordinated by WLM, al-
lowing the system to tune itself to meet workload
goals.

The administrator’s view of storage management.
In the past, when serialization of 1/0 activity to a vol-
ume could cause a bottleneck, administrators in-
vested effort into relocating or replicating data sets,
or both. As they attempted to spread the data across
different volumes, they had to anticipate the work-
load demands against the data, or else one or more
volumes could remain a bottleneck. Workload ac-
tivity is generally not uniformly spread across vol-
umes, and thus some volumes have higher activity
than others. However, because workloads are dy-
namic, the spots of high activity shift over time from
volume to volume. To deal with this changing envi-
ronment in the past, volumes were kept at low uti-
lizations so that they could absorb increased work-
load if and when that occurred; this resulted in
inefficient use of storage capacity, and increased the
complexity of the configuration process. PAV and MA
have significantly ameliorated these problems, espe-
cially with WLM dynamic alias management. Alias
resources are now managed automatically to han-
dle the changing workload.

The configuration planning and data placement ac-
tivities previously undertaken were intended to avoid
hot spots or bottlenecks. They required both time
and skills on the part of the customer staff. With the
new functionality provided through MA, PAV, and
IORP, people have been spending less time analyz-
ing device configurations or data placement. As the
focus of workload activity moves from device to de-
vice, WLM dynamic alias management manages re-
sources toward achieving the specified goals, thereby
preventing any individual device from becoming a
hot spot; as the device gets “hot,” resources are
moved to “cool” it if it is affecting workload goals.
Alias resources are also reallocated in order to im-
prove overall efficiency, even when goals are all be-
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Figure 7 Response time of a large volume vs the
number of participating 3390 Model 3 volumes
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ing achieved. Thus, the dynamic alias management
has reduced the need for customers to analyze their
workload and data access patterns. In effect, the gran-
ularity that the customer must deal with is decreased
from the volume level to the subsystem level; instead
of ensuring enough resources are configured for each
individual volume to handle peak workloads, the cus-
tomer only needs to configure enough resources to
handle the maximum peak workload for the entire
subsystem.

For database applications, the storage management
tasks usually associated with achieving high levels of
parallelism are also simplified. Administrators no
longer need to manually manage DB2 partitions; in-
stead, the operating-system storage-management fa-
cilities can be used to place the DB2 partitions, and
WLM management of PAV can support high parallel
query throughput regardless of the particular data
placement. In fact, multiple DB2 partitions can even
be placed on the same volume; with PAV, when a par-
allel query scans multiple partitions simultaneously
on the same volume as opposed to scanning a single
partition, ESS shows virtually no degradation.

PAV has enabled the use of larger volumes. Larger
volumes mean more storage capacity with less stor-
age or configuration management. Use of larger vol-
umes enables larger database partitions, resulting in
fewer partitions needed for a database of a given ca-
pacity; this results in less effort for planning and con-
figuring the database. Larger volumes have also re-
sulted in fewer “out of space” conditions. Before PAV,
performance was one of the major inhibitors to the
use of larger volumes; because requests against a vol-
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ume were performed serially, the achievable access
rate against a large volume was limited. In order to
obtain a specified access rate against data, custom-
ers needed to spread the data across multiple vol-
umes. By doing away with this serialization, PAV al-
lowed higher access rates to be achieved. For
example, to provide 27 GB of capacity using 3390
Model 3 volumes of 3 GB each, nine separate vol-
umes would be required, including nine separate vol-
ume labels, unit addresses, and subchannels; this per-
mits a maximum of nine requests to be active
concurrently from the system, but only one active
request within each 3-GB volume. With PAV, cus-
tomers now provide one base address and subchan-
nel for a single 27-GB volume, and subchannels are
assigned for aliases as the workload requires. This
results in the number of alias subchannels being as-
sociated with the base from zero to nine, or larger.
Furthermore, concurrent requests are now serviced
within 3-GB extents of the larger volume. When nec-
essary, an even greater level of concurrency can be
achieved. As a result, as long as an adequate num-
ber of alias subchannels is provided, performance is
no longer an inhibitor to large volume sizes.

Conclusion

The z/0s support for PAV and IORP unlocks the value
of these ESS capabilities, which in turn provides value
to customers. The functions complement each other,
as well as other 1/0 capabilities such as CSS priority,
FICON priority, and DCM. The z/OS support, which is
self-configuring and helps the system to be self-mon-
itoring and self-tuning, is consistent with the auto-
nomic computing vision.® The z0s support is global
in scope, coordinated across multiple logical parti-
tions and multiple machines within a Parallel Sys-
plex.
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has been in the z/OS development and service area his entire IBM
career, involved in many programming projects as a developer,
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tester, development team leader, and designer. Mr. Staubi was
instrumental in providing the z/OS support for the IBM Total-
Storage project. Additionally, he received an Outstanding Inno-
vation Award for his work in zSeries software development.

Kenneth M. Trowell IBM Systems Group, 5 Tallara Place Terrey
Hills, NSW 2084, Australia (kennetht@us.ibm.com). Mr. Trowell
is a Senior Technical Staff Member. He joined IBM in the United
Kingdom in March 1965. He has worked on every generation of
IBM mainframe products from System/360™ to the present
zSeries including, most recently, the system design for FICON
Cascading. Mr. Trowell has received numerous awards including
an Outstanding Technical Achievement Award for his contribu-
tion to System/370-XA.

Gail S. Whistance 324 Dewitt Mills Road, Kingston, New York
12401 (whist@hvi.net). Ms. Whistance recently retired after 30
years with IBM. She was a senior software engineer in the former
Server Group. She joined IBM in 1972 after receiving her B.S.
degree with high honors in mathematics and English education
from the University of Illinois at Urbana. She contributed to the
early develogment of the System Resources Manager component
of the MVS™ operating system and more recently, the Work-
load Manager. She was responsible for verifying the Workload
Manager algorithms that manage the IBM TotalStorage ESS Par-
allel Access Volume for ESS resources.

Harry M. Yudenfriend IBM Systems Group, 2455 South Road,
Poughkeepsie, New York 12601 (harryy@us.ibm.com). Mr. Yuden-
friend is a Distinguished Engineer. He joined IBM in 1980 after
receiving his B.S. degree in computer science from Columbia Uni-
versity, School of Engineering and Applied Science. He is the
chief architect for I/O on z/OS. Mr. Yudenfriend received an Out-
standing Innovation Award for his contributions to Parallel Ac-
cess Volume for ESS and an Outstanding Technical Achievement
Award for the architecture and design of FICON. He was named
an IBM Master Inventor in December 2001.
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