
IBM TotalStorage
Enterprise
Storage Server:
A designer’s view

by M. Hartung

In this paper, we describe the background,
objectives, and major decisions associated
with the design of IBM TotalStorageTM

Enterprise Storage Server� (ESS), IBM’s high-
end disk storage system. We first present a
brief history of disk storage development over
the past three decades and then describe
ESS architecture and basic functions. Next
we discuss the goals associated with the
design of ESS and the methods used to
achieve these goals. We then explore some
design decisions that significantly affected
ESS architecture and performance, and we
conclude with some comments about
possible future enhancements.

In the 1960s and 1970s, control units served as gate-
ways that provided attachment of various input and
output devices to a relatively small number of host
channels. This technology was used primarily in
System/360* and System/370*.1 In addition to pro-
viding attachment for a variety of devices, the con-
trol unit provided the conversion between the chan-
nel protocol and the protocols for the attached
devices. The control unit also permitted multiple
channels from the same host, or from different hosts,
to attach to the devices it controlled. The control
units provided limited error recovery, as well as er-
ror detection and isolation.

In 1981, a read cache (also known as write-through
cache) was introduced into storage control units in
the 3880 Models 11 and 13. In 1988, a write cache
(write-in cache) was introduced into storage control
units in the 3990 Model 3.2 In the late 1980s and

early 1990s, control units included RAID (redundant
array of independent disks) technology to provide
additional reliability for the attached storage.3 By
this time, storage control units had powerful micro-
processors, a large read cache, and a large write
cache. Next came adding storage-based functional-
ity to the storage control units.

A storage control unit provides sole access to the
attached devices and all access to the associated
storage/data flows through the storage control unit.
Because the storage control unit was uniquely po-
sitioned to provide function associated with the
stored data, and because it could be equipped with
needed processing capability (i.e., processor and
memory), it became the focal point for new storage-
oriented functionality. A result was replication ser-
vices, which in effect means creating copies of data
for various purposes. The addition of replication ser-
vices to the function already present (function that
exploited the read cache, the write cache, and RAID),
completed the transition from the control unit as
gateway and aggregator to the storage server, a sys-
tem whose advanced functions far exceed the stor-
age access function.

Networked storage was the next major development
in storage systems. Storage area networks (SANs) en-
able multiple hosts to work with a common set of
storage systems. Both SANs and network attached

�Copyright 2003 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003 0018-8670/03/$5.00 © 2003 IBM HARTUNG 383

storage (NAS) permit multiple servers to share stor-
age systems and facilitate the sharing of the stored
data. Networked storage contrasts with “direct-at-
tached” storage, where a storage device is available
to just to a single server. With direct-attached stor-
age, no opportunity exists for sharing the storage re-
source or the data stored on it.

The storage consolidation enabled by storage net-
working provided an important shift in host-and-
storage topology for the UNIX** and Microsoft Win-
dows NT** environments. Historically, the UNIX and
Microsoft Windows NT storage environments con-
sisted of direct-attached disks, either internal or ex-
ternal. Disks attached to a host were owned by that
host, and unused disk space was not shared with any
other server. The relationship was so close, in fact,
that the storage could rarely be moved to a dissim-
ilar server. Because storage resources across hosts,
be they homogeneous or heterogeneous, could not
be pooled together, the purchasing decision for a host
was irreversibly tied to the purchasing of storage
components. Storage consolidation, however, sep-
arates the two purchasing decisions and allows cus-
tomers to upgrade or replace hosts (even to new plat-
forms) without purchasing new storage. Conversely,
storage can be upgraded without installing new hosts.

Another important consequence of storage consol-
idation is the introduction of storage-based functions,
such as replication services. Using the function pro-
vided by the storage system, an enterprise can build
a single set of procedures and processes for data-
related activities, such as disaster recovery or data
archiving. These processes and procedures are the
same for all data in the enterprise and are applied
uniformly across heterogeneous hosts. Such pro-
cesses cannot be completely independent of the host
platform, but the core function consistency is of sig-
nificant value in that all data have the same high level
of usability and protection.

Storage has seen dramatic price reductions of 40 to
60 percent per year. This cost reduction makes pos-
sible a rapid increase in configured storage, and more
data being immediately accessible to the enterprise.
As the configured storage grows, the cost of man-
aging this storage becomes a significant inhibitor to
adding more storage. Management costs can grow
exponentially with storage capacity. These costs are
primarily the cost of human resource, first as pay-
roll, but also as the cost of acquiring and maintain-
ing the required skills.

In order to alleviate the problem of the rising cost
of managing storage systems and enable continued
growth of installed storage, systems management
software for storage systems is being enhanced. Pol-
icy-based storage management (PBSM) is directed at
reducing the cost of managing storage. PBSM auto-
mation maps enterprise policy to various constraints
and self-optimizing mechanisms to be used when im-
plementing software components. Ideally, the enter-
prise policies and goals are formulated as input to
PBSM in the language used to manage the enterprise.
In contrast, today administrators must define con-
figurations by manually translating business require-
ments into system requirements. The PBSM software
enlists the appropriate technologies and resource
controls (e.g., service level agreements, quotas) to
support enforcement of enterprise policies through
the operation of the information processing system.
PBSM usually operates with most of the solution com-
ponents. It can also provide overall monitoring and
a feedback control loop to support consistent deliv-
ery of the requested policies.

Another major factor in the evolution of storage sys-
tems is the increasing role of autonomic computing
(i.e., self-healing, self-optimizing, self-configuring,
and self-protecting).4 For over 30 years, self-heal-
ing has been a recognized requirement in enterprise-
class storage systems and has come to be known as
“continuous availability.” The premise of continu-
ous availability is that no single failure will result in
loss of data, access to data, or functionality. Sched-
uled events such as maintenance and microcode load,
as well as unscheduled events such as failures, must
be accomplished without impacting system availabil-
ity or functionality. While the self-healing require-
ment has been relatively constant over the past 30
years, the self-healing requirement for scheduled
events has become more stringent. New business re-
quirements such as 24-hour operation and worldwide
accessibility have led to the loss of the weekly or
monthly batch windows that were once available for
scheduled activity.

Self-optimizing has become a more important re-
quirement for storage systems since the introduction
of read caching, write caching, and advanced func-
tions. The system must allocate system resources
(e.g., read cache, write cache, and processor) based
upon the current demands on the system. This re-
quirement is now prominent in storage system de-
velopment.

HARTUNG IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003384

Self-configuring and self-protecting became more
important requirements with the introduction of
storage area networks (SANs). The additional com-
plexities of configuring networked storage led to in-
creasing requirements for intelligent self-configur-
ing. The “universal” access provided by networked
storage led to a dramatically increased requirement
for self-protecting, as only those with proper autho-
rization could be allowed to access data stored within
the system data.

In summary, over the decades, storage evolved from
the simple role of media, where hosts stored data,
to powerful storage servers. The declining cost of
physical storage led to a greater focus on the cost
of managing storage, because this remains the pri-
mary inhibitor to the growth of the installed stor-
age. In delivering storage the focus has become the
storage system that can contain the management
costs. The realization of such function is based on
new techniques (e.g., PBSM) implemented in the host
as well as in the embedded software of the latest stor-
age servers. IBM TotalStorage Enterprise Storage
Server (ESS) is a premier example of a storage server
designed to meet these requirements.

The rest of this paper is organized as follows. In the
next section we describe ESS architecture, discuss its
server-based design, and describe the basic opera-
tion. Then we discuss the ESS objectives and the
methods used to achieve them. In the following sec-
tion we explore some design decisions that signif-
icantly affected ESS architecture and performance.
We conclude with some comments about possible
future enhancements.

ESS hardware and embedded software

ESS is IBM’s most powerful disk storage server. It sup-
ports a multitude of hosts in a heterogeneous open-
systems environment. ESS supports direct connection
to SANs and provides a number of advanced func-
tions for data duplication and backup and disaster
recovery. We first discuss the server-based design of
ESS and then describe its basic operation.

Server-based design. ESS is a server-based storage
system configured from two IBM pSeries* symmet-
rical multiprocessors (SMPs).5 The SMPs cooperate
to provide and support the function, performance,
and continuous availability so critical to high-end
storage. Each SMP has one or more host adapters
that provide host connectivity. Each SMP also has one
or more device adapters that attach to disk devices.

The pSeries SMPs are the same as those used in the
pSeries processor family. Using SMPs as the primary
processing engine sets ESS apart from its two main
competitors, Symmetrix** from EMC Corporation6

and Hitachi Freedom Storage Lightning 9900 V Se-
ries** from Hitachi Data Systems.7 The SMPs are
powerful processor systems that incorporate state-
of-the-art server technologies. The pSeries develop-
ment group designed a balanced and tightly inte-
grated set of memory, bussing, processor, and cache
components that is ready for use as the ESS process-
ing core. Although other vendors use standard parts,
such as processors, in their storage systems, they de-
velop in-house the rest of the server infrastructure.
ESS has a carefully tested and tuned processing core
which includes the read cache (the SMP memory is
used as the ESS cache). To this core, the ESS team
added host adapters, device adapters, and embed-
ded software. The ESS team focused on delivering
system functionality—the embedded software and
adapters—important to customers. The consistency
of the pSeries architecture from one generation to
the next enables the embedded software to be ported
to a new platform with little change to the established
software base. This greatly reduces the possibility that
the port will introduce instability into the system.
Moreover, ESS introduces new core technology with
each enhancement of the pSeries product line. The
resultant improvement in price and performance is
further leveraged by the increasingly stable software
base. Function is added at an annual rate of about
200000 to 300000 lines of embedded code.

The first two generations, ESS Model E and Model
F, used the SMPs as designed for the pSeries plat-
form. Starting with Model 800, however, ESS archi-
tects and developers collaborated with the pSeries
team of architects and developers so that the SMPs
had capabilities that directly benefit ESS. Increased
interaction between the two teams has led to an ex-
amination of the various infrastructure elements
(e.g., the hardware management console, power,
packaging) in order to determine whether the com-
monality of function could be extended. Platform
convergence, the endpoint for extended common-
ality, is leading to storage servers that consist of the
pSeries server and its support structure along with
the embedded software and the hardware adapters.

Significant benefits have resulted from merging the
development of pSeries and ESS. ESS benefits from
a fully assembled, leading edge processor and mem-
ory system. Both ESS and pSeries benefit from the
shared knowledge and the efficiencies gained in the

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003 HARTUNG 385

joint effort. The pSeries architects bring more ex-
tensive experience in systems management and au-
tonomic computing, whereas the ESS team brings
more extensive experience in autonomic computing
(particularly self-healing and self-tuning), reliabil-
ity, and serviceability. The improvements derived
from this pooling of experience enhance both prod-
uct families and directly benefit those who buy these
products.

Basic operation. As shown in Figure 1, each ESS unit
consists of two nodes, where each node has an SMP,
one or more host adapters, one or more device adapt-
ers, a (read) cache, and a nonvolatile storage (NVS).
There are two nodes in the ESS unit, for redundancy.
In the unlikely event of a node failure, the other node
is capable of taking over the resources of the failed
node and continues the system operation until the
failed node is repaired and restored to full opera-
tion. The transition from two operational nodes to
a single-node operation on failure is known as fail-
over; the restoration of two-node operation is called
failback.

The SMP, the host adapter, and the device adapter
include powerful processors with embedded soft-
ware. The embedded software on the SMP provides
most of the ESS unit functionality. The main mem-

ory of the SMP also serves as the read cache for the
node. The storage resource is presented to hosts ei-
ther as logical units (UNIX, Windows NT, iSeries*)
or as volumes (zSeries*). We use the term virtual disk
to refer to both logical units and volumes. Each vir-
tual disk is owned by one of the nodes. Each node
processes all requests for its virtual disks and caches
data associated with those virtual disks in its read
cache. Modified data is mirrored in the nonvolatile
storage on the other node (see Figure 1). Mirroring
of modified data helps avoid loss of data or damage
to data in the event of a potential failure.

A host adapter provides host connectivity. It con-
tains one Fibre Channel SCSI (small computer sys-
tem interface) port, one FICON* (Fibre Connection)
port, two ESCON* (Enterprise System Connection)
ports, or four parallel SCSI ports. The embedded soft-
ware, which runs on a PowerPC*, provides the in-
terface protocol. Host adapters also perform the dual
write, one to the read cache on the owning node and
one to the nonvolatile storage on the non-owning
node (for mirroring of modified data).

The division of tasks amongst the various compo-
nents is designed to help optimize performance. One
can get a notion of how this is done by considering
some simple operations. Consider, for example, a

HA HA HA HA HA HA HA HA HA HA HA HA HA HA HA HA

DA DA DA DA DA DA DA DA

Figure 1 A representation of an ESS unit with two SMP nodes

 HA = HOST ADAPTER
 DA = DEVICE ADAPTER
NVS = NON-VOLATILE STORAGE

SMP

CACHE

COMMON PARTS INTERCONNECT (CPI)

SMP NVS

NVSCACHE

A AA AA AS A

B BB BB BS B

RAID

RAID

HARTUNG IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003386

read cache hit. The host adapter receives the request,
interprets the received command, and determines
that the request is a read. The host adapter passes
the request to the SMP that owns the virtual disk rep-
resented by the logical unit number (LUN).8 The SMP
locates the requested data in the cache and passes
a pointer to that data back to the host adapter. The
host adapter completes the read request by sending
the data to the server and the I/O request is termi-
nated (some details were omitted in this description,
for brevity).

Consider now a write operation. The host adapter
receives the request, interprets the received com-
mand, and determines that it is a write request. The
host adapter sends the request to the SMP that owns
the virtual disk, and the SMP searches the cache to
determine if the data to be written have space al-
located in the cache. If not, cache space is allocated
for the data that are to be written. The SMP also al-
locates space for the data to be written in the non-
volatile storage on the other node. The SMP passes
both the cache and nonvolatile storage addresses to
the host adapter, and the host adapter writes the data
received from the host in both the cache and the non-
volatile storage. The I/O request is then terminated.

The device adapters provide for attachment of phys-
ical drives to the node. Figure 2 shows the opera-
tion of the serial storage architecture (SSA), a high-
performance serial connection technology for disk
drives. Data are sent from the adapter to the first
disk drive on the loop and then passed around the
loop until the data arrive at the target disk. Figure
2 shows the multiple simultaneous data transfers that
can take place on an SSA loop (the loop may have
local groupings of disks called domains). Two de-
vice adapters, one from each node, are paired on a
serial storage architecture (SSA) loop, providing two
loops on each device adapter pair. Both device adapt-
ers in a pair are active. In case of a node failover,
the device adapter on the surviving node is capable
of taking over all of the physical devices that were
owned by its partner device adapter on the failed
node. The device adapters also provide the available
RAID capability, which includes both RAID 5 and
RAID 10.9 A RAID configuration uses multiple drive
spindles to provide data redundancy or error cor-
rection, or both.

The embedded software on the SMP provides for
management of both the read cache and the non-
volatile storage. Management of the read cache has
at its core a least-recently-used (LRU) algorithm for

space allocation. With LRU, the least recently ref-
erenced entry in the cache is the one chosen for re-
placement. The embedded software contains many
enhancements to LRU, such as predictive staging of
data when a sequential reference pattern is recog-
nized, or sequential limiting, which selects data that
was referenced sequentially for replacement as soon
as the sequential reference moves past the data.

Error recovery procedures are found in most ESS
components. Because of the stringent requirements
for fault tolerance associated with continuous avail-
ability, about half of the embedded software involves
error recovery.

Goals and methods to achieve them

The goals associated with an ESS include virtualiza-
tion, transparent incorporation of new technology,
continuous availability, high performance, portabil-
ity of code, support for continued growth of func-
tion, support for function integration into ready-to-
use solutions, and lowering the total cost of
ownership.

Virtualization. ESS uses all its resources, such as read
cache, write cache, and physical devices, to present
the storage resource to hosts as virtual disks. Al-
though the realization of a virtual disk requires the
allocation of various such resources, the particulars
of this allocation do not affect how servers access the
virtual disk or the result of such access on its data.
For each virtual disk, ESS can read and write cache
its data, provide RAID 5 or RAID 10 modes, and per-
form an automatic RAID build in the event of a de-

Figure 2 SSA operation

DADA

DA = DEVICE ADAPTER

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003 HARTUNG 387

vice failure. On failover, the virtual disk of a failed
node is designed to transfer to the working node
without affecting the virtual disk properties or its
data.

Transparent incorporation of new technology. A key
ESS strategy is to provide a consistent architecture
that covers the ESS generations already delivered and
those yet to come. This strategy is intended to in-
crease the ability of customers to develop policies

and practices that span multiple product generations.
Virtualization is an important factor in this strategy
as it permits the introduction of new technologies
without affecting the virtual disk interface. This per-
mits the ESS team to select the best combination of
technologies for delivering the storage system func-
tionality. IBM is thus better able to deliver a bal-
anced set of technologies that are optimized for stor-
age serving without requiring customers to
understand or accommodate the underlying techni-
cal aspects.

An example of incorporation of new technology that
remains transparent to applications is offered by SSA,
a device attachment method introduced by IBM for
its performance, reliability, serviceability, and avail-
ability features.10 There are three prominent meth-
ods for attachment of high-end devices to storage
systems: SSA, parallel SCSI, and fibre-channel-arbi-
trated loop (FCAL). The drive vendors delivered the
device attachments in the order of the amount
shipped of each type that was sold: parallel SCSI first,
FCAL second, and SSA third. ESS uses SSA for device
attachment. Thus the drive technology required by
ESS was delayed from the initial delivery of that tech-
nology for parallel SCSI. In the spirit of delivering
the best technologies available, a chip was built that
can bridge between SSA and parallel SCSI, and it was
deployed with each ESS parallel SCSI drive. Because
each device has its own private SCSI bus, the limi-
tations of parallel SCSI do not affect the previously
mentioned attributes of the SSA fabric. Thus ESS de-
livers the values of the SSA device fabric connection

while delivering the most current device technolo-
gies. With this approach, ESS offered both 10K RPM
(rotations per minute) 146 GB (gigabyte) drives and
15K RPM drives before its two main competitive
products, Lightning7 and Symmetrix.6

Continuous availability. Continuous availability re-
quires that single points of failure be avoided so that
there is no loss of data, loss of access to data, or loss
of function. The continuous availability requirement,
however, does not exempt all multiple failures. Mul-
tiple simultaneous events, for example, can result in
loss of continuous availability. One must consider
the repair time for determining whether multiple
events are indeed “simultaneous.” If the system con-
tinues to operate without the failed part, then sub-
sequent failures occurring before repair of the orig-
inal failure are not viewed as simultaneous. The
probability of occurrence must be included in the
calculations to determine the continuous availabil-
ity achieved by the design. If a second failure is likely
to occur as a result of the original failure, it cannot
be considered as independent. Thus a continuous
availability solution must account for the simulta-
neous occurrence of the dependent failures.

The basic strategy employed to support continuous
availability is the use of redundancy and highly re-
liable components. The various ESS components are
designed for early failure detection, and for failure
isolation of the smallest possible component of af-
fected hardware. The number of hardware compo-
nents affected determines the scope of failure. Lim-
iting the scope of failure to those components that
must be deactivated limits the effect of running with-
out the hardware. Limiting the scope of failure is an-
other design objective for ESS. In a similar vein, the
hardware that is unavailable during repair deter-
mines the scope of repair. Limiting the scope of re-
pair is another important ESS objective.

The basic design covers early detection of failures,
limiting the scope of failure to the smallest extent
possible, and reconfiguring the system to continue
operating until the repair is performed. After con-
current repair is performed, the hardware is recon-
figured to include the newly restored components
as part of the system, and operation then continues.

Failover and failback at the node level exemplify the
design of error recovery functions within ESS. The
hardware and software components provide for early
detection and isolation of failures. Thus loss of a node
is frequently detected and identified as a failure. To

The basic strategy employed to
achieve continuous availability

is the use of redundancy
and highly reliable components.

HARTUNG IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003388

complement these direct notifications of failure, each
node performs a “heartbeat” on the other node to
confirm that it is operational. The heartbeat mech-
anism uses two independent hardware paths to en-
sure that heartbeat path failures do not erroneously
show up as “node failure.” Should the heartbeat
mechanism determine that a node is not operational,
the surviving node records the failure. Whether fail-
ure is reported by failure detection code or as a re-
sult of the heartbeat, the surviving node updates con-
trol data in well-known areas on shared disks (status
tracks) so that the node declared “failed” does not
inadvertently try to continue or resume operation.
Such mechanisms support system integrity. Two
nodes operating independently could have unpre-
dictable consequences on the system operation and
on the data stored with the system.

The left half of Figure 3 shows a two-node system
in normal operation. The ensemble consists of sub-
system A (runs with SMP 1 and NVS 2) and subsystem
B (runs with SMP 2 and NVS 1). The right half of Fig-
ure 3 shows the failover of node 1 onto node 2. The
surviving node assumes ownership of all host adapt-
ers (initially ownership is shared), the nonvolatile
storage on the node, and all physical devices in the
system. The surviving node then restores redundancy

by destaging (writing modified user data from cache
to the disk arrays) all modified data—data in its read
cache and data in the local nonvolatile storage be-
longing to the failed node. The node then allows the
host adapters to recognize that all virtual disks are
owned by the surviving node, and the node resumes
operation using the local nonvolatile storage as its
nonvolatile storage. Operation continues in this way
until the failed node is repaired. Following repair,
all elements—the virtual disks, nonvolatile stores,
read caches, device adapters, and physical devices—
are restored to their original ownership, and oper-
ations resume. Both failover and failback are de-
signed to take place while the system continues to
operate. Activity is suspended for a matter of sec-
onds and then immediately resumes, without signif-
icant disruption to the system operation.

Another example of concurrent repair is the auto-
matic RAID rebuild that occurs upon the failure of
a physical device that is part of a RAID. A typical de-
vice configuration includes one or two spare devices
per SSA loop. When a device that is part of a RAID
fails, the device adapter that owns the RAID assigns
a spare device, reads the data from the surviving de-
vices, and rebuilds the contents of the spare device.

Figure 3 An ESS unit with two nodes

NVS 2 NVS 1

NODE 1 NODE 2

SS-A SS-B

SMP 1 SMP 2

NORMAL OPERATION

NVS 2

NODE 1 NODE 2

SS-A AND SS-B

SMP 1

NVS 1

SMP 2

FAILOVER OF NODE 1 ONTO NODE 2

SS-A = SUBSYSTEM A
SS-B = SUBSYSTEM B

NVS = NON-VOLATILE
 STORAGE

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003 HARTUNG 389

This activity occurs concurrently with normal read
and write activity to the RAID undergoing the rebuild.

Thus, ESS failure recovery is designed to be auto-
nomic—not requiring human involvement—and
nondisruptive. The system then records the infor-
mation that enables service personnel to perform the
repair.

Performance. ESS is designed to optimize both
throughput and response times. All work performed
by the system should “spread” so that all the pos-
sible hardware components are processing useful
work as often as possible. The read cache and write
cache support multiple simultaneous data transfers.
The RAID configurations, RAID 5 and RAID 10, in-
clude striping of the data from a virtual disk across
multiple physical devices, increasing the chance that
multiple requests for that virtual disk will access dif-
ferent physical devices. The SSA loops provide for
multiple simultaneous data transfers on the loop,
known as spatial reuse, unlike bus arbitration, which
permits only one operation at a time on the bus. The
SSA-to-SCSI bridge on each SCSI device provides a pri-
vate SCSI bus for each device. Because there is only
one target on the bus, the bus arbitration associated
with SCSI, one operation at a time, does not affect
throughput. The two ESS SMPs are either 4-way or
6-way, and all of these elements operate in parallel.
The host adapters and the device adapters, likewise,
all operate in parallel. In addition, all of these el-
ements and more are designed to operate simulta-
neously. The virtual disks are mapped onto the hard-
ware in a way that enables concurrency in the
execution of a logical operation.

ESS architecture attempts to make all work items “vis-
ible” and thus enable the work to be executed as soon
as synchronization requirements permit and resourc-
es—such as physical devices—are available. Tag
command queuing (the support of multiple concur-
rent outstanding requests to the same virtual disks)
for the SCSI protocol permits multiple requests us-
ing the same LUN to be issued to the system at one
time. Thus, the system can view the work and ex-
ecute the requests as resources become available. Or-
dered writes to the same LUN can be specified in this
case, with the order taking precedence over resource
availability. Otherwise, resource availability deter-
mines when work can be completed.

Parallel access volumes (PAVs) provide similar func-
tionality for zSeries I/O requests. PAVs help eliminate
an artificial point of contention that has existed in

the zSeries architecture since its inception as
System/360. In the original System/360* I/O archi-
tecture, disk drives performed one operation at a
time, seek and read or seek and write. The control
units could not queue multiple requests and because
the control unit could execute the operations only
in the order received, queuing at the control unit
would not have improved system operation. Oper-
ations were designed to be queued in the operating
system where the resources (e.g., processors and
memory) existed to manage the queues. The device-
busy status was used to indicate to one host (an op-
erating system) that another host was using the same
volume. The device-available status would later in-
dicate that the volume had become available. Within
a single host, the I/O system used a software struc-
ture—the unit control block (UCB)—as part of the
meta-data for controlling I/O operations. UCBs were
designed so that only one I/O could be in execution
on a given volume at a time. If an application issued
an I/O request to a volume that had an outstanding
I/O from that same system, the I/O operation was
queued with UCB-busy status until the volume was
free to execute the queued operation. These two
mechanisms, device busy and UCB busy, were among
those that enforced the architectural requirement
that a volume have only one I/O operation active at
a time. The restriction was not an issue for volumes
until the 1980s. In 1981, read caching made it phys-
ically possible for reads from cache to overlap with
other read hits, read misses, or writes for a single
volume. In 1988, write cache made it physically pos-
sible for writes to overlap with other writes or with
reads for a single volume. In the early 1990s, intro-
duction of RAID striping of a logical volume across
multiple physical devices made it physically possi-
ble for physical device reads for the logical device
to overlap with other physical device reads for the
same volume. However, in all cases, the I/O archi-
tecture prevented the overlap because the system
could not see the multiple requests for a volume.
Therefore, no chance existed for overlapped execu-
tion.

Two new ESS features were introduced in 1999 that
were intended to eliminate the artificial bottleneck
created by the zSeries I/O architecture. One, mul-
tiple allegiance (MA), provided for “simultaneous”
I/O to a single volume from multiple systems. The
other, PAV, provided the same capability from a sin-
gle system. In both cases, ESS is designed to enforce
access restrictions that are necessary to help preserve
the integrity of the data. For example, multiple reads
can execute in parallel without restriction, writes

HARTUNG IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003390

and/or reads to different volume areas can execute
in parallel without restriction, and reads or a write
to an area for which a write is pending must wait for
the write to complete before the next request can
execute. Beyond the necessary synchronization, op-
erations can execute in parallel as the system per-
mits.

For ESS and the zSeries operating system, introduc-
ing PAVs involved significant changes. Each volume
has a base address and 0 to 255 alias addresses, and
each address (base or alias) can be used to issue an
I/O request to the volume. Thus, a volume can re-
ceive up to n � 1 (n being the number of aliases)
I/O requests before another request gets queued in
the host. Whereas significant performance enhance-
ments can result from PAVs, they also introduce an
additional burden for the storage or system admin-

istrator. Yet another set of limited resources—the
256 device addresses—must be allocated according
to the expected usage of the volumes in the system.

A more autonomic solution was provided by dynamic
alias management, or dynamic PAVs.11 With dynamic
PAVs, the total set of aliases for a logical subsystem
is treated as a pool. The Workload Manager com-
ponent of the zSeries operating system works with
ESS to allocate the aliases to the volumes that are
currently the busiest. Thus the limited resource is
allocated automatically according to the current de-
mand. This allocation provides the best of PAV per-
formance without putting the allocation burden upon
the administrator.11 In addition, dynamic allocation
of the aliases results in a more efficient resource use.
In an experimental environment designed to repre-
sent real workloads, a configuration with a pool of
dynamically allocated aliases of between 0.25 to 0.5
alias per 3 GB volume, the performance benefit was
equivalent to an environment in which each 3 GB
volume had three statically allocated aliases. Dy-
namic PAVs has provided one of the most significant
performance enhancements for the zSeries I/O at-
tachment since the introduction of read caches.

Dynamic PAVs, MA, and other parallelism built into
ESS are intended to provide many significant ben-
efits. Experience has shown that hot spots (intense
activity against specific logical volumes, data sets, or
files) are alleviated. The autonomic handling of re-
source allocation eliminates a significant manage-
ment cost that plagued many environments. ESS par-
allelism also enables maximum exploitation of the
installed hardware, helping to provide a significant
price performance advantage to the customer.12 Ar-
tificial contention and the resultant impact on
throughput and response time are eliminated. For
example, cache hits execute simultaneously with
cache misses rather than sequentially. Likewise, ran-
dom transfers of small blocks of data need not queue
behind unrelated activities that are moving large
amounts of data in each request and therefore caus-
ing long delays. Also, dynamic PAVs permit additional
pathing to be provided as needed for very large vol-
umes. This facilitates introduction of 9 GB and 27
GB volumes for zSeries, permitting more storage to
be configured with the 256 device addresses avail-
able for a system.

Responsiveness and throughput are also driving the
ESS design. Although AIX* provides a rich set of func-
tions—system bringup, hardware diagnostics, some
hardware reconfiguration—it does not provide the
response time and throughput necessary for a high-
end disk storage system. Response time and through-
put considerations led to the introduction of a ker-
nel mode extension (extensions to the operating
system) to address these performance requirements.

Portability of code. The portability of the embed-
ded software from one ESS generation to the next
is essential. Each function, implemented once, is de-
signed to be easily ported to the new product. Thus
the embedded software continues to grow in stabil-
ity and function. The chosen pSeries platform archi-
tecture and AIX* provide the infrastructure stability
that helps support this capability. In addition, an
added layer of code, called platform code, provides
the primary interface to the hardware and to AIX.
This layer, which is less than 10% of the entire em-
bedded software, absorbs most changes (cost of port-
ing) from one generation to the next.

Support for continued growth of function. ESS has
added new functions at a significant rate. In 2000,
Fibre Channel SAN capability was introduced and
replication services were extended. In 2001, FICON
was introduced, replication services were further en-
hanced, and new devices were supported. 2002

With dynamic PAVs,
the set of aliases

for a logical subsystem
is treated as a pool.

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003 HARTUNG 391

brought a new hardware platform, new physical de-
vices with improved performance or capacity, or
both, new SCSI devices, and more replication services.
ESS offers, with each hardware generation, a grow-
ing functional base, increased stability, and increased
speed (history shows a doubling of speed with each
generation).

Replication services are used for both data and stor-
age management and for disaster recovery. They pro-
vide for creating copies of data that can be used for
data sharing, disaster recovery, and restart in the
event of human or application error. The replica-
tion services use two major techniques: point-in-time
copy and continuous copy. Point-in-time copies, as
the name implies, capture an image of the storage
contents at a specified time and preserve that image
for any desired purpose. Point-in-time copies are
used for checkpoint, archive, disaster recovery, and
data sharing. Continuous copies, on the other hand,
are used primarily for disaster recovery, where a copy
of the data is kept relatively current and geograph-
ically separated from the original data. The copy can
be used to restore operations should the original copy
of the data be destroyed or become inaccessible or

unusable. The simplest version of continuous copy
is synchronous continuous copy. The target is in-
tended at all times to be the same as the source copy.
Synchronous copy covers most of the requirements
for continuous copy solutions, but distances between
the source and target are limited by application per-
formance requirements and the effects of the speed
of light. Figure 4 illustrates the ESS advanced copy
functions. FlashCopy* is a point-in-time copy; the
resulting virtual disk may be the source for an op-
tional copy to tape or disk. Concurrent Copy, also
a point-in-time copy, is a z/Series function that works
with either volumes or data sets. Peer-to-Peer Re-
mote copy (PPRC) is a synchronous continuous copy.
Extended Remote Copy (XRC), a zSeries function,
is an asynchronous continuous copy suitable for large
distances.14

In order to accommodate the longer distances that
customers require, ESS also includes asynchronous
continuous copy. Asynchronous continuous copy al-
lows the distance between the source and the target
to be increased without affecting the performance
at the source. The target is a coherent copy of the
source data; that is, write sequence is preserved at

Figure 4 ESS advanced copy functions

zSERIES AND OPEN SYSTEMS zSERIES

FLASHCOPY CONCURRENT
COPY

PEER TO PEER
REMOTE COPY

EXTENDED
REMOTE COPY

HOST

SOURCE
VIRTUAL DISK

TARGET
VIRTUAL DISK

ESS

HOST

ESS

HOST

ESS

TAPE OR
DISK

HOST

ESS

HOST

SOURCE
VIRTUAL DISK

ESS

TAPE OR
DISK

HOST

ESS

HARTUNG IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003392

the target. In the event of a complete loss of the
source, the target is designed to be a consistent ver-
sion of the source at some point in the past. The max-
imum age of data is specified by the recovery point
objective for the data. For the asynchronous contin-
uous copy solution, recovery point options range
from seconds to days but are frequently in seconds
or a small number of minutes. Asynchronous con-
tinuous copy solutions are constructed from integrat-
ing point-in-time copies with data mover solutions,
as well as by grouping time-contiguous sets of writes
and permitting each specific set of writes to be re-
flected atomically (either all writes occur or none oc-
cur) at the target. Replication services are provided
at many levels in the solutions that we integrate. They
are provided, for example, by intelligent systems, by
middleware, by file system and NAS, and by virtual-
ization engines.13

Support for function integration into ready-to-use
solutions. Although the value of delivering ESS func-
tion is important within information technology so-
lutions, it does not represent the main goal. The ESS
team jointly with application and services vendors
(both IBM and non-IBM) strive to integrate ESS into
ready-to-use solutions for the enterprise.

Cost. Business efficiency as represented by cost is
key to the adoption of information technology in-
itiatives. Storage purchase cost is particularly crit-
ical as it can represent up to 75 percent of total IT
purchase costs. What’s more, because the cost of
managing storage dominates the total cost of own-
ership, elements such as autonomic features and pol-
icy-based storage management are receiving a lot of
attention. For implementations of policy-based stor-
age management, in particular, see References 15
and 16.

Major design decisions

Countless decisions are made when a storage server
as complex as ESS is designed and implemented. We
present in this section some of the design decisions
which significantly affected ESS architecture and per-
formance.

SMP main memory as the read cache. The decision
to use SMP main memory as the read cache went
counter to the IBM experience with high-end stor-
age servers. Since the first read cache in a control
unit was delivered in 1981, the storage system de-
signers had architected, designed, and implemented
the cache separately from the processor. The cache

had been designed as a single memory unit with re-
dundant components and with a nonvolatile storage
for mirroring modified data. Redundant processing
units attached to the “single shared” cache provided
the embedded software that delivered system func-
tion.

Following the decision to use SMPs as the processing
engines, a choice was to be made between building
a single shared cache as before, or using the SMP main
memory as the read cache. Building the single shared
cache would likely require that for each significant
delivery of new SMP technology, the ESS team de-
sign a new cache that matched the new SMP capa-
bilities. On the other hand, using the main memory
of the SMP as the cache led to a partitioned cache.
Each SMP has access to its main memory but not to
that of the other SMP. Thus, internally, ESS would
work better with two separate subsystems, each cach-
ing its own subset of the virtual disks and each at-
taching a subset of the physical devices.

Although the simpler environment is a shared cache,
working to provide a new cache for each new ESS
generation was redundant, given the pSeries devel-
opment efforts. The pSeries already included a large
volatile memory that was balanced with the rest of
the technology in the SMP. Although a separate cache
provides fast access, it cannot match the access speed
of the SMP main memory. The decision to use the
SMP main memory as the cache proved itself in three
different generations of the product. The perfor-
mance roughly doubled with each generation. This
performance improvement can be traced to the ca-
pabilities of the completely integrated SMP, the pro-
cessor speeds, the L1/L2 cache sizes and speeds, the
memory bandwidth and response time, and PCI bus
performance.

Adopting the main memory of the SMP as the read
cache had many consequences. The two ESS nodes
are nearly independent entities if one looks below
the level of the host adapters. Each node supports
its virtual disks and manages its physical disks. Al-
though the nodes use the heartbeat mechanism and
store data in the nonvolatile storage on the other
node, these mechanisms affect system operation only
in the event of node failures. The effects of work-
load imbalance between the two nodes was consid-
ered. Because of the amount of resource available
in each node and the volume of work that would be
going to each node in situations where the nodes
might be stressed, our projections indicated that
workload imbalance would not be a problem. Nearly

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003 HARTUNG 393

four years of experience with thousands of installed
systems have proven this to be the case.

The split cache had consequences for failover and
failback. Since the surviving node has no access to
the cache of the failed node, it must store all virtual
disks in its cache during the period of single node
operation. The split cache also affected the decision
that host adapters will be shared dynamically, as dis-
cussed next.

Dynamically shared host adapters. Shared host
adapters were adopted for reasons of performance,
functionality, reliability, availability, and serviceabil-
ity. During the initial design we explored several
methods for providing host attachment to the two
nodes that make up an ESS system. The split cache
decision had already been made. There were two op-
posing choices: (1) dedicated host adapters that at-
tached to only one node, and (2) dynamically shared
host adapters that attach to both nodes.

Providing dedicated host adapters represents a sim-
pler design, but it has some undesirable conse-

quences. Mirroring the write data would have re-
quired that the owning node receive the data from
the host adapter and then forward it across the con-
nection fabric to the partner node. The response time
and the additional activity on the fabric made this
a less attractive choice. Moreover, channel selection
algorithms that rotate among the available paths
from a host to a virtual disk would also have to be
limited in order to avoid sending requests for a vir-
tual disk to the non-owning node (such an alternate
path is acceptable for error recovery but not for nor-
mal operation). Also, node failover would result in
loss of one half of the server attachments, an unac-
ceptable scope of failure. For fabric redundancy, an
attaching host requires four paths to the ESS, two to
each node. Dynamically shared host adapters mir-
ror the write data by sending a copy to the read cache
and a second copy to the nonvolatile storage. Thus,
it is not necessary to “store and forward” the copy
across the fabric. The dynamically shared host adapt-
ers also provide a level of switching which allows two
paths between ESS and a host to provide full redun-
dancy. This switching means that host attachments
are able to be maintained on failover. Finally, all

Figure 5 Future: ESS architecture with logical partitions

RAID

RAID

ADAPTERS

RAID

ADAPTERS

HOST
ADAPTERS

HOST
ADAPTERS

HOST
ADAPTERS

HOST
ADAPTERS

HOST
ADAPTERS

HOST
ADAPTERS

CLUSTERING FABRIC

APPLICATION LPARs

ESS LPARs

PROC

PROC

PROC

PROC

PROC

PROC

PROC

PROC

MEM

MEM

MEM

MEM

MEM

MEM

MEM

MEM

HARTUNG IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003394

paths can be used for both normal operation and er-
ror recovery.

Both nodes active. The decision to run with both
nodes active was motivated by price/performance
and therefore fairly obvious. Although the decision
had a great impact on price/performance, it has not
added significantly to ESS complexity.

Device striping. All ESS RAID offerings involve strip-
ing data and parity across the physical disks in the
RAID array. Activity to a logical entity (virtual disk,
data set, or file) thus tends to spread uniformly across
the physical drives in the RAID. This distribution of
requests means that accessing physical drives is faster
and more efficient. Some RAID technologies (e.g.,
RAID 1 and RAID 4) do not stripe the data but rather
map the virtual disks onto the physical storage viewed
as a linear space. This may create increased conten-
tion if two or more particularly active virtual disks
are mapped to the same physical device.

Use of parallel SCSI devices in an SSA device fab-
ric. Whereas competitive products incorporate the
latest technology on parallel SCSI devices before FCAL
devices, ESS introduces the latest device technolo-
gies into the SSA fabric and thus delivers the most
current device technology as early as possible. For
the last two product generations, ESS has been de-
livered earlier than the two main competitive prod-
ucts.

Future

The pSeries platform offers logical partition (LPAR)
capability. LPAR enables an instance of an operating
system (AIX, LINUX**, or OS/400*) to run on a full
virtual machine that simulates the real hardware.
LPAR also provides complete isolation between the
many operating systems that may be running on a
single SMP. This isolation means that one operating
system does not interfere with the operation of an-
other. One virtual machine could crash and reboot
without impact on the other virtual machines run-
ning. IBM is looking to use the pSeries infrastruc-
ture to deliver LPAR capability within ESS. Storage-
oriented middleware will then be able to run within
ESS and provide an integrated, high-function solu-
tion (see Figure 5). For example, NAS gateways,
Tivoli Storage Management, and Tivoli Storage Re-
source Management could be delivered in ESS LPARs.
Over time, this capability could be enhanced with
increasingly dynamic allocation of the resources

available to the various LPARs and with virtualiza-
tion of the communication paths between the LPARs.

ESS continues to deliver improved price-performance
with every generation by incorporating state-of-the-
art technologies from servers, communication fab-
rics, and devices. Its function is also expanding over
time as new function is added to the embedded soft-
ware. Both its modular design and its code porta-
bility lead to improved stability over time. ESS im-
plements policy-based storage management as well
as other storage management solutions. In addition,
the ESS team works with middleware, application,
and services providers to offer integrated solutions
that can be rapidly deployed. This combination, en-
hanced by LPAR capability, could radically alter the
landscape of storage offerings.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of their respective own-
ers: The Open Group, Microsoft Corporation, EMC Corpora-
tion, Hitachi Data Systems, or Linus Torvalds.

Cited references and notes

1. These systems date back to the late 1960s, when an System/360
was utilized in the Apollo 8 mission to the moon. For a dis-
cussion on the early System/360, see C. J. Conti, D. H. Gib-
son, and S. H. Pitkowsky, “Structural aspects of the
System/360 Model 85,” IBM Systems Journal 7, No. 1, 2–14
(1968).

2. For a more in-depth discussion on cache history, see D. A.
Burton and B. McNutt, “Storage control cache resource man-
agement: Increasing diversity, Increasing effectiveness,” IBM

3. D. Patterson, G. Gibson, and R. Katz, “A Case for Redun-
dant Arrays of Inexpensive Disks (RAID),” International Con-
ference on Management of Data, Chicago, IL, June 1988, ACM,
New York (1988), pp. 109–116.

4. For a good discussion of autonomic computing, see A. G.
Ganek and T. A. Corbi, “The dawning of the autonomic com-
puting era,” IBM Systems Journal 42, No. 1, 5–18 (2003).

5. G. A. Castets, D. Leplaideur, J. A. Bras, and J. Galang, IBM
Enterprise Storage Server, SG24-5465-01, IBM Corporation
(September 2001).

6. Symmetrix Networked Storage Systems, CLARiiON Net-
worked Storage Systems, EMC Corporation, http://
www.emc.com/products/platforms.jsp.

7. Global Storage, Hitachi Data Systems, http://www.hds.
com/products/systems/.

8. LUN, or logical unit number, is the physical ID of a device
in a SCSI chain of devices.

9. RAID 5 offers independent actuators with data and parity
spread across all drives, while RAID 10, the result of RAID
1 � RAID 0, offers data striping across several drives that
are mirrored by arrays of drives.

10. SSA provides for high-speed access to high-capacity disk stor-
age. In the mid-1990s, SSA was IBM’s proposed ANSI stan-
dard for a standard high-speed interface to disk clusters and

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003 HARTUNG 395

Journal of Res. and Develop. 40, No. 3, 331–340 (1996).

arrays. At that time, SSA allowed full-duplexed packet-mul-
tiplexed serial data transfers at rates of 20Mb/sec in each di-
rection. For an in-depth discussion of SSA, see I. D. Judd,
P. J. Murfet, and M. J. Palmer, “Serial Storage Architecture,”
IBM Journal of Research and Development 40, No. 6, 591–602
(1996).

11. A. S. Meritt, J. A. Staubi, K. M. Trowell, G. Whistance, and
H. M. Yudenfriend, “z/OS support for IBM TotalStorage En-
terprise Storage Server,” IBM Systems Journal 42, No. 2, 280–
301 (2003, this issue).

12. The parallelism also benefits responsiveness by eliminating
much of the need for queuing of I/O requests to volumes.
Additionally, the distribution of function amongst the ESS
components (the host adapter and the SMP) further ensures
the best possible response times.

13. C. Brooks, M. Bedernjak, I. Juran, and J. Merryman, Disas-
ter Recovery Strategies with Tivoli Storage Management, SG24-
6844-01, IBM Corporation (November 2002).

14. A. C. Azagury, M. E. Factor, and W. F. Micka, “Advanced
functions for storage subsystems: Supporting continuous avail-
ability,” IBM Systems Journal 42, No. 2, 268–279 (2003, this
issue).

15. L. L. Ashton, E. A. Baker, A. J. Bariska, E. M. Dawson, R. L.
Ferziger, S. M. Kissinger, T. A. Menendez, S. Shyam, J. P.
Strickland, D. K. Thompson, G. R. Wilcock, and M. W. Wood,
“Two decades of policy-based storage management for the
IBM mainframe computer,” IBM Systems Journal 42, No. 2,
302–321 (2003, this issue).

16. M. Kaczmarski, T. Jiang, and D. A. Pease, “Beyond backup
toward storage management,” IBM Systems Journal 42, No.
2, 322–337 (2003, this issue).

Accepted for publication March 28, 2003.

Mike Hartung IBM Corporation, 9000 S. Rita Road, Tucson, Ar-
izona 85744 (phoenix1@us.ibm.com). Mr. Hartung is one of the
lead architects responsible for defining the IBM midrange and
enterprise storage strategy and products. An expert in highly avail-
able, high performance storage subsystems, he has an extensive
patent portfolio in this area. Mr. Hartung is an IBM Fellow and
a Visiting Professor at the University of Arizona. He received an
M.S. degree in Electrical Engineering from Stanford University
in 1970.

HARTUNG IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003396

