
Two decades of
policy-based storage
management for
the IBM mainframe
computer

by L. L. Ashton, E. A. Baker, A. J. Bariska,
E. M. Dawson, R. L. Ferziger, S. M. Kissinger,
T. A. Menendez, S. Shyam, J. P. Strickland,
D. K. Thompson, G. R. Wilcock, M. W. Wood

Today, storage management vendors see the
need and business opportunity for an
enterprise-wide policy-based storage
management solution for their customers. In
the middle 1980s, IBM introduced the Data
Facility Storage Management Subsystem
(DFSMS) as a policy-based storage
management solution for large mainframe
computer systems. As an integral part of the
operating systems OS/390® and z/OSTM,
DFSMS continues to be enhanced. This paper
provides an overview of DFSMS and
describes a few of its recent enhancements.

The Internet, e-business, business-to-business inter-
actions, life sciences applications, and other new and
extended uses of computing are creating an explo-
sive demand for storage capacity. Using traditional
procedures and tools to manage this storage growth
requires an ever-increasing staff of storage admin-
istrators. More staff significantly increases the total
cost of ownership of storage. Storage hardware and
software vendors are turning to policy-based man-
agement technology to address these storage man-
agement needs and opportunities.

Large mainframe computer systems underwent rapid
growth in storage and the accompanying escalating
cost of storage ownership in the early 1980s. The IBM
response for customers to this requirement was a pol-
icy-based storage management offering named the
Data Facility Storage Management Subsystem
(DFSMS). Today, DFSMS is a set of components that
are integrated within OS/390* (Operating System/390)
and z/OS* (the zSeries* Operating System). The four

major components of DFSMS are: DFSMSdfp* (Data
Facilities Product), DFSMShsm* (Hierarchical Stor-
age Manager), DFSMSdss* (Data Set Services), and
DFSMSrmm* (Removable Media Manager). These
components and other terminology are defined in
the Appendix.

The z/OS data, storage, and input/output architecture
and the related terminology differ from the corre-
sponding items in the UNIX** operating system and
other nonmainframe operating systems. Here is a
brief explanation of a few basic z/OS terms that are
used in this paper: A z/OS data set is analogous to
a UNIX file. A z/OS volume is a logical container for
data. Data sets are stored in volumes. The data set
to volume mapping is not one-to-one. Many data sets
may be stored on a single volume. Parts of a single
data set may be stored on multiple volumes. The con-
tent of a volume is stored or recorded on a storage
device. There is a unique volume type for each
unique device type.

For disk devices, z/OS views the space and content
of a disk volume as mapping one-to-one to the space
and content on the corresponding disk device type.
When DFSMS was initially implemented, its view of
a disk volume and disk device matched the actual
data layout on the corresponding physical disk de-
vice. Through the years, disk and disk-storage-con-
troller technology have evolved. However, z/OS con-

�Copyright 2003 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

ASHTON ET AL. 0018-8670/03/$5.00 © 2003 IBM IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003302

tinues to use disk device type definitions that map
one-to-one to z/OS disk volumes. Today’s storage con-
trollers support the z/OS disk device types and inter-
nally map them onto physical disks.

Prior to DFSMS, the user was directly involved in
the data-set-to-volume placement. Since a volume
mapped to a physical device, the user was required
to choose a device type that met the requirements
of the data. A fundamental principle that DFSMS in-
troduced was the separation1 of the logical view of
data from the physical device characteristics. The
DFSMS policy definitions based on this principle and
the corresponding DFSMS policy-based storage man-
agement functions yielded a breakthrough reduction
in the total cost of ownership of mainframe storage.

The next section in this paper is an overview of DFSMS
policy-based storage management. The overview is
followed by descriptions of the following DFSMS en-
hancements: DFSMShsm reclamation of tape storage
media, DFSMShsm automatic reconnection of re-
called data sets, DFSMShsm common recall queue,
DFSMSdfp VSAM (Virtual Storage Access Method)
record-level sharing, and DFSMSdfp data striping. It
goes on to describe DFSMS support for business con-
tinuance and DFSMS disk copy services. Then follows
a discussion of the various levels of DFSMS testing.

Overview of DFSMS policy-based storage
management

The concept of policy-based storage management in-
volves defining policies that allow the system to take
over many storage management tasks that were pre-
viously performed manually.

DFSMS separates the logical view of data from the
physical view of data. The logical view of data is con-
cerned with what the data look like and what ser-
vices the data require. The physical view is concerned
with where the data actually reside. The policy types
that specify the logical view of data are: data class,
storage class, and management class. Storage group
is the single policy type for specifying physical stor-
age. An aggregate-group policy specifies a grouping
of data for purposes of backup and recovery in case
of a disaster. An additional policy called the base
configuration is used to specify a system-wide set of
default storage information. Following is a brief de-
scription of each of these policy types.

A data class policy specifies allocation2 defaults for
data. It supplies such information as space param-
eters and data attributes.

A storage class policy defines performance and the
availability requirements of the data. It supplies at-
tributes used for dynamic cache management, se-
quential data striping, and concurrent copy.

A management class policy supplies data migration,
backup, and expiration and retention values. It pro-
vides automatic storage management and availabil-
ity management capabilities.

An aggregate-group policy provides control informa-
tion and data set lists to define an application level
or other grouping of data. It contains lists of data
sets and backup criteria that are used as input to
DFSMShsm aggregate backup and recovery support
(ABARS).

A storage group policy specifies the physical storage
on which data reside. A storage group is a collection
of disk volumes or a collection of tapes within a sys-
tem-managed tape library. It allows a collection of
storage devices to be pooled and managed collec-
tively. It can also be used to define whether or not
automatic migration, backup, and dump are allowed
within the pool.

There is one base configuration policy per DFSMS con-
figuration. It identifies the set of systems to which
the configuration applies and contains a set of in-
stallation defaults.

An automatic class selection, or ACS, routine is a se-
quence of instructions through which the system as-
sociates DFSMS policies (classes and groups) with data
sets. The selection of specific classes and groups is
based on information from job control language
specifications (used to describe the input/output re-
quirements of a job) and other allocation parame-
ters. ACS routines may use parameters, such as data
set name, volume serial number, job name, and data
set size, to assign policy instances to data sets.

There is an ACS routine for each policy type: data
class, storage class, management class, and storage
group. The ACS routines are invoked whenever data
sets are created, either at initial allocation or as a
result of operations that cause them to be reallocated
or moved. As shown in Figure 1, the role of the ACS
routines is to assign specific policies to the data set
that is providing centralized administrator control
over data set allocation. Once a DFSMS configura-
tion has been created, it can be used as the set of
policies that automate storage management across
a z/OS sysplex. The next three subsections are brief

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003 ASHTON ET AL. 303

descriptions of DFSMS policy-based disk volume se-
lection, space management, and availability manage-
ment.

Disk volume selection. DFSMS automates the func-
tion of selecting the specific disk volumes used for
space allocation of a data set. DFSMS data set allo-
cation goes through a number of steps to select a
volume from the list of candidate disk volumes.3 The
list of candidates is made up of all volumes in all stor-
age groups that were provided by the ACS storage
group routine. Each candidate volume is placed on
a primary list or a secondary list, or on both.

The primary list contains volumes that meet all cri-
teria of the storage class and data class specifications
of the data set and have sufficient space so that they
will be below their high threshold after the data set
is allocated. The secondary list contains volumes that
do not meet all the criteria met by the primary list.
All volumes that are on the primary list are also on
the secondary list.

If the primary list of volumes is not empty, it is sent
to the OS/390 or z/OS System Resource Manager (SRM)
component to select a volume from the list. SRM pre-
fers volumes that are not already allocated to a job

or subsystem and that have the least I/O delay at the
time of allocation. If there are no volumes on the
primary list or if the system is unable to allocate space
on any of the volumes from the primary list, DFSMS
will attempt to select a volume from the secondary
list. During this stage of volume selection, DFSMS
does not make use of SRM. DFSMS groups the vol-
umes into bands where the top band contains the
most preferred volumes and the lowest band con-
tains the least preferred volumes. This banding is
done on the basis of the relative importance of dif-
ferent attributes. The volumes in the most preferred
band satisfy user-required attributes to a higher de-
gree than volumes in lower bands. After this group-
ing is done, a volume from the highest band is ran-
domly selected.

Volume selection is followed by volume allocation,
space allocation, and cataloging of the data set. If
any of these subsequent processes fail, volume se-
lection is repeated again and again until all candi-
dates have been exhausted, at which point the al-
location fails.

Space management. The DFSMS policies specify ser-
vice-level objectives for available disk space. The goal
is to avoid application failures caused by out-of-space

Figure 1 DFSMS policy-based storage management

AUTOMATIC CLASS SELECTION

STORAGE
ADMINISTRATOR

END USER
APPLICATION

DATA CLASS
- SIZE
- STRUCTURE

STORAGE CLASS
- PERFORMANCE
- AVAILABILITY

MANAGEMENT CLASS
- MIGRATION
- BACKUP
- RETENTION

PROCESSING
ATTRIBUTES

LOGICAL

PHYSICAL

STORAGE
GROUP

STORAGE HIERARCHY

MEMORY

COUPLING
FACILITY

DASD CACHE
DASD
TAPE

DATA

ASHTON ET AL. IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003304

conditions. DFSMShsm is the DFSMS component that
provides policy-based space management functions.
Using storage group and management class at-
tributes (policies), it automates space management
at the data set level.

The DFSMShsm space management algorithms at-
tempt to maintain free space within the disk storage
groups. The primary method used to keep disk space
occupancy within policy-specified thresholds is to mi-
grate data sets from the DFSMS storage group disk
space into a separate DFSMShsm-owned disk-tape
storage hierarchy. The data sets to migrate are se-
lected based on the policy-specified time period since
last reference. The migration process is automati-
cally invoked on a periodic basis. Although the data
have been moved, the name of a migrated data set
remains cataloged. If a migrated data set is subse-
quently referenced, DFSMShsm automatically recalls
the data set into a disk storage group ready for ap-
plication access.

In addition to data set migration, DFSMShsm frees disk
space within storage groups by deleting expired data
sets, deleting temporary data sets unintentionally left
at the end of a program, releasing unused space al-
located to individual data sets, and when permitted
by policy, reblocking data during data set recall and
recovery processing.

Other space management functions available in
DFSMS include the release of over-allocated space
when a data set is closed and defragmentation of
space on disk volumes. The first may be specified as
a management class attribute and is provided by
DFSMSdfp; the second is provided by DFSMSdss. De-
fragmentation is used to consolidate free space on
disk volumes.

Availability management. Availability management
maintains recent backup copies of disk data sets. The
purpose is to allow lost or damaged data sets to be
restored to the most current backup level.

Using storage group and management class policy
specifications, DFSMShsm provides automatic and pe-
riodic data backup. Both volume-level and data-set-
level backup are provided. Volume-level backup ex-
pedites recovery when an entire volume of data is
lost or damaged. DFSMShsm also supports command-
initiated backup with DFSMS policies applied to the
backup.

One function of DFSMShsm allows backup versions
of the data to expire. This function is invoked man-

ually to clean up excess or unwanted backup versions.
Backup versions are deleted when the specified num-
ber of versions to keep has been exceeded, when a
data set has been deleted, or when an authorized user
issues a command to delete unwanted versions.

DFSMS provides an aggregate backup and recovery
function. This function creates backup copies of a
user-defined group (aggregate group) of data sets
for recovery at another site or at the same site. Com-
plete entities, such as applications, can be recovered
in the event of a disaster.

DFSMSdss is the DFSMS component that provides vol-
ume-level and data-set-level copy services. It ex-
ploits the advanced copy functions of disk storage
subsystems. DFSMSdss works in conjunction with
DFSMShsm to provide availability management func-
tions.

Advantages of DFSMS policy-based storage man-
agement. Without policy-based management, stor-
age-management-related parameters must be set in-
dividually for each volume. This operation requires
the user to carefully place the data on volumes that
satisfy requirements of the data sets. The user, or
customer, must be aware of the functions and ca-
pabilities of physical device volumes. As the amount
of data and storage grows, the customer cost of de-
vice-level and device-dependent management greatly
increases. At some point, the cost becomes a seri-
ous inhibitor to growth. This increasing cost is the
specific problem that DFSMS policy-based storage
management addresses.

DFSMS policy-based storage management separates
space, availability, and performance requirements
for data sets from the physical device volumes on
which they reside. There is no need to issue special
commands to set the necessary parameters; all in-
formation is contained in the DFSMS policy config-
uration. DFSMS performs automatic space, availabil-
ity, and performance management based on the data-
set-level policies. Since data are managed based on
data-set-level policies, data sets with different expi-
ration, migration, and availability management re-
quirements can coexist on the same volumes.

Policy-based storage management in a tape library
environment. With the introduction of the IBM 3495
Tape Library Dataserver in 1993, DFSMS policy-based
storage management was enhanced to include sup-
port for the IBM automated tape library dataserver.
This support has been extended to include the IBM

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003 ASHTON ET AL. 305

3494 TotalStorage* Enterprise Automated Tape Li-
brary, the IBM TotalStorage Virtual Tape Server
(VTS), the IBM TotalStorage Peer-to-Peer Virtual
Tape Server (PtP VTS), and the manual tape library.

Using the concepts of DFSMS policy-based storage
management, the storage administrator can better
manage the tape volumes and tape libraries in their
environment. Each tape library consists of a set of
tape volumes and the devices on which the volumes
can be mounted. A tape library can be automated,
with robotic devices mounting and demounting the
tape volumes, or it can be manual, with a tape op-
erator doing the mounting and demounting. A tape
library can also be virtual such as the VTS or the
PtP VTS with the library emulating virtual tape vol-
umes and virtual tape devices. Each tape library can
also contain heterogeneous media types and device
types, all managed by the supporting DFSMS software
and policy-based storage management.

The system-managed tape support manages the tape
volumes but not the actual tape data sets. DFSMSrmm
can be used to manage the tape data sets. When a
volume is entered into a tape library, it can be as-
sociated with a storage group policy. Each tape li-
brary then contains volumes associated with one or
more tape storage groups. As the first data set on
a volume is allocated, the storage administrator, on
the basis of filter criteria such as data set name, can
direct through the ACS routines, for example, a stor-

age class policy that indicates that the request is to
be managed by SMS (the Storage Management Sub-
system) and have one or more storage group pol-
icies, an optional management class policy, and an
optional data class policy. The assignment of one or
more tape storage groups then directs the request
to one or more tape libraries. Optionally, a data class
can be specified, which directs the allocation request
to a particular type of media and recording technol-
ogy, thus easily integrating new device technologies.
This can be important if a customer’s tape environ-
ment has heterogeneous devices in the customer’s
library environment and there is a need to direct a
request to a particular media and device type. On
the basis of the device that is allocated, the volume
is then assigned to a tape storage group associated
with that tape library. Requests to existing data sets
are then allocated to devices within each associated
tape library.

With system-managed tape and policy-based man-
agement, the storage administrator can easily direct
or redirect the data of an application and be assured
that the requested media and device type are allo-
cated. The data may be directed to:

● A particular library type (automated, virtual, or
manual)

● A set of one or more libraries, on site or at a re-
mote location

● A specific device type within a set of one or more
libraries

● A specific media type supported by the device

Figure 2 shows how policy-based management and
storage group assignment can be used to direct the
data set request to a particular type of tape library
(automated or virtual).

The storage class policy can also be used to help the
VTS better manage its tape volume cache. For in-
stance, an initial access response time can be spec-
ified to let the library know that the data being writ-
ten can be removed from cache sooner. This directive
lets more critical customer data stay in cache longer
for faster access (mount times). It may be particu-
larly important if the volumes being written contain
customer data that may never be accessed again (for
instance, backup data).

Policy-based storage management has recently been
extended to the library so that additional policy ac-
tions can be defined outboard (at the library itself).
Again driven through the customer’s ACS routines,

Figure 2 System-managed tape

DATA CLASS | STORAGE CLASS | STORAGE GROUPS

ACS ROUTINES
FILTER CRITERIA? WHAT POLICIES TO ASSIGN?

PREFERRED
MEDIA TYPE OR
RECORDING
TECHNOLOGY?

DATA CLASS

IS THE REQUEST
SMS MANAGED?

STORAGE CLASS

WHAT LIBRARIES
SHOULD BE
ELIGIBLE?

STORAGE GROUPS

LIBATLSGATL LIBVTSSGVTS

ASHTON ET AL. IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003306

if the library supports outboard policy management,
the assigned policy names (storage class, storage
group, management class, and data class) will be sent
to the library. Then at the library, policy actions can
be defined and associated with those policy names.
In this way the VTS and PtP VTS can enable policy-
based storage management functions at the library
analogous to functions that have been provided
through host applications. For instance, one of these
policy actions might indicate to the VTS library that
the logical volume must be copied. With each VTS
library containing more and more customer data and
more and more tape volumes, it is increasingly im-
portant to enable customers to better manage their
logical volumes and data. Since customers are famil-
iar with policy-based storage management at the
host, applying this concept to the library was a log-
ical extension. It enables the same set of policy names
to control both host and outboard policy actions.

DFSMSrmm policy-based removable media man-
agement. DFSMSrmm is the DFSMS component that
records information about tape data sets and vol-
umes and provides policy management for those data
sets and volumes. Tape data set and volume infor-
mation is made available by DFSMSdfp during data
set creation and subsequent processing. Using man-
agement class and storage group names, and the at-
tributes in its own retention and movement policy
definitions, also referred to as vital record specifi-
cations (VRSs), DFSMSrmm automates retention and
movement for all tape data that it manages.

All new tape data sets are assigned default reten-
tion values. Optionally, a management class or VRS
management value, or an override of the user-spec-
ified retention value can be assigned. For new data
sets on system-managed tape volumes, DFSMSrmm
can use the management class assigned through the
ACS routines to select a VRS that contains the at-
tributes used to manage the data set. Policies for tape
data sets (removable media) are quite different from
those required for disk data sets. Besides support-
ing movement through multiple libraries and stor-
age locations, retention and movement decisions can
be taken based on many different factors such as
number of data set generations, days since last moved
or created, and even catalog status. Complex pol-
icies can be created by combining different reten-
tion and movement decisions. For new data sets on
nonsystem-managed volumes, DFSMSrmm also calls
the ACS routines to enable a management class to
be assigned.

Policies can be defined for data sets and volumes.
Usually they are defined for data sets, and DFSMSrmm
manages the volumes based on the needs of all the
data sets on that volume. A volume is retained until
all the data sets on the volume have expired. In the
case of virtual tape, DFSMSrmm uses retention infor-
mation for all logical volumes on a physical stacked
volume to determine where the exported stacked vol-
ume should be stored and retained.

DFSMSrmm management functions are performed by
running utilities that include:

● Vital record selection: Each data set on a private
tape volume is matched to the DFSMSrmm policies,
and the retention and movement requirements are
calculated. Each time this process is run, the pol-
icies are matched again, and any changes to pol-
icies or their attributes are implemented.

● Storage location assignment: Based on the results
of the policy requirements calculation, the in-
tended storage location for the volumes is deter-
mined, and movement of volumes is triggered. Vol-
umes no longer retained by policy are returned to
their home location.

● Expiration: Data sets no longer retained by pol-
icies are eligible for expiration. Expiration is at the
volume level once all data sets on the volume have
expired. Normally the intention of expiration pro-
cessing is to return tape volumes to the “scratch”
pool ready for reuse. However, DFSMSrmm also pro-
vides controls that enable volumes to be removed
from the library or replaced. Before volumes are
returned to the scratch pool, they go through a re-
lease process during which any required actions
must be taken, including: relabeling, replacing the
volume, owner notification, and data erase.

DFSMSrmm also manages the tape scratch pool. Pol-
icies can be defined that control how the scratch vol-
umes are divided into pools and who can create new
tape data in each of the pools. Allocation of new data
sets to those pools can also be controlled by using
the storage group ACS routine. For nonsystem-man-
aged tape volumes, DFSMSrmm also calls the ACS rou-
tines to enable a tape storage group to be assigned
and ensures that a volume from the correct scratch
pool is mounted. Mount messages for scratch tapes
can be modified by DFSMSrmm with the required
scratch pool information. For system-managed tape
volumes in an automated tape library, the library se-
lects an appropriate scratch volume based on the me-
dia type requested with DFSMSrmm, ensuring that the
volume selected is a scratch volume.

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003 ASHTON ET AL. 307

DFSMSrmm extends system-managed tape support
from volumes to data sets. By using the installation
exits that are available at key processing points: car-
tridge entry, cartridge eject, change use attribute
(scratch pool and private transitions), and volume-
not-in-library processing, DFSMSrmm tracks key vol-
ume and data set information and ensures that cor-
rect values are available when required. When DFSMS
policies are assigned to data sets, the policy names
are recorded and can later be provided or changed
by DFSMSrmm commands so that new policy names
can be assigned and implemented at the library.

By directly calling the ACS routines to determine a
storage group and management class assignment,
DFSMSrmm can use storage group and management
class for all tape volumes and tape data sets regard-
less of whether the volumes are system-managed.

DFSMShsm reclamation of tape storage
media

Customers use management class policies to define
to DFSMShsm how and when to back up and migrate
data sets, when migrated data sets should expire, and
how many backup versions to keep. It is also through
these same management class policies that migra-
tion and backup versions are directed to tape, free-
ing disk space. DFSMShsm creates several types of
tapes, among them migration tapes that hold mi-

grated data sets and backup tapes that hold backup
versions.

When the migration and backup tapes are first cre-
ated, user data sets are stacked onto one or more
tapes, fully utilizing the tape media. All data sets on
those tapes are considered valid. As migrated data
sets are recalled to disk or expire and as excess
backup versions are “rolled-off,” these valid tape data
sets become invalid. A tape that once consisted of
100 percent valid DFSMShsm data now consists of both
valid and invalid data.

As shown in Figure 3, reclamation, or recycle, is the
process of moving valid migrated data sets or backup
versions from multiple nonfull tapes and consolidat-
ing the data on one or more tapes, again, creating
a 100 percent valid tape. The resulting empty tapes
are returned to the scratch pool.

The recycle process implemented by DFSMShsm ad-
dresses three important problems associated with
common reclamation techniques: prioritization of
work, efficient use of tape media, and optimization
of tape allocations.

Prioritization of work. In order to return tapes to the
scratch pool as quickly as possible, three schemes
are used: customer input, prioritizing the tapes for
recycling from least full to most full, and keeping
tasks busy recycling “good” candidates as soon as
they are available.

Customers are given two options that allow them to
limit the number of tapes that are chosen to be re-
cycled: PERCENTVALID and LIMIT. PERCENTVALID
tells DFSMShsm to recycle only those tapes whose per-
centage of valid data is less than or equal to the
PERCENTVALID. This keeps DFSMShsm from recycling
tapes with a high percentage of valid data. LIMIT tells
DFSMShsm to recycle tapes until the specified num-
ber of tapes have been returned to the scratch pool,4

thus allowing DFSMShsm to quit recycling tapes after
that number has been returned to the scratch pool.

The DFSMShsm recycle process prioritizes the order
of tapes to recycle based on the amount of valid data
on a tape, optimizing the number of tapes returned
to the scratch pool based on the least amount of data
moved from the input tapes to the output tapes.
Those tapes with the least amount of valid data are
recycled first. Both PERCENTVALID and LIMIT use
this prioritization.

Figure 3 Recycle—consolidate valid data

INPUT TAPES ARE RETURNED TO SCRATCH FOR REUSE

ML2

INPUT TAPES,
LESS THAN
100% VALID

OUTPUT
TAPES,
100% VALID

DAILY

ML2

DAILY

ML2

DAILY

SPILL

DAILY

DAILY

DAILY

DAILY SPILL

DAILYDAILY

ASHTON ET AL. IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003308

Instead of delaying the movement of data until the
percentage of valid data for each volume is known,
the recycle process begins with “good” candidates,
even if better candidates are found later. This
method allows tapes with little valid data, say 10 per-
cent, to be considered as good candidates and re-
cycled while the total amount of work is still unde-
termined. The criteria for a tape to be considered
“good” changes, based on making sure that data
movement tasks are always kept busy with input tapes
to recycle. If there are no current good candidates,
then the recycle process will increase the percent-
age of valid data when considering whether or not
a tape is a good candidate. If there are too many good
candidates, then the recycle process decreases the
percentage of valid data. After all the tapes have been
analyzed, the list of work is sorted in ascending or-
der based on the percentage of valid data.

Efficient use of tape media. When DFSMShsm deter-
mines how much valid data are on a tape, it takes
into consideration how much valid data could be writ-
ten to the tape given the current tape technology of
an installation. For instance, if a standard capacity
tape cartridge had been written by an IBM TotalStor-
age Enterprise Tape Drive 3590 Model B subsystem,
it could contain 10 gigabytes (GB) of data. The same
standard capacity tape cartridge written by a 3590
Model E subsystem can contain 20 GB of data.5 The
amount of data that a rewritten cartridge can con-
tain is called the reuse capacity.

As an example, if a cartridge written by a 3590 Model
B subsystem contains 70 percent valid data and the
cartridge were to be rewritten with the same valid
data by a 3590 Model E subsystem, it would only con-
tain 35 percent valid data. At 70 percent valid data,
the cartridge is not a good candidate for recycling,
but at 35 percent it is.

DFSMShsm knows what tape technology is currently
in use and calculates the percent of valid data on a
tape cartridge based on the reuse capacity of that
tape cartridge given the current hardware environ-
ment.

The recycle options, INCLUDE and EXCLUDE, are
provided, allowing an installation to quickly move
from one tape technology to another.

Optimization of tape allocations. Tape allocations
are expensive in terms of overhead from a software
perspective. Additionally, in a manual tape environ-
ment, deallocating and allocating each tape to be re-

cycled puts a burden of work on the tape librarian.
The recycle function has optimized tape allocations
by considering the following: no tape allocations are
required for empty tapes, a tape allocation is reused
for subsequent input tapes, and the priority of which
tapes to recycle takes into account the input device
type required.

Although a tape allocation is not needed to recy-
cle a tape with zero percent valid data, in the case
where a recycle command is entered requesting a
PERCENTVALID greater than zero percent, tape de-
vices will always be allocated, anticipating the recy-
cling of those tapes that contain some valid data.
However, if customers need to return tapes to the
scratch pool quickly, or have no spare tape devices,
they can specify PERCENTVALID(0). The recycle func-
tion will analyze its tape inventory and recycle those
tapes that no longer have any valid data, returning
them all to the scratch pool without a single tape al-
location or tape mount.

When a tape device is initially allocated, the volume
to be mounted on that device is included in the al-
location request. However, there will most likely be
hundreds of additional volumes to be mounted and
recycled. Rather than deallocating the device and
then reallocating with the mounting of a new input
volume, DFSMShsm enables subsequent tape volumes
to use the same allocated device.

Finally, the tapes to be recycled may need to be
mounted on different device types. Even though the
list of volumes to recycle is sorted based on the per-
cent of valid data, the volume at the head of the list
is not necessarily always chosen for recycling. The
list is scanned to seek volumes to be recycled on the
tape devices that are currently allocated. If no other
tape can be recycled on the current device, the de-
vice is deallocated, and the first tape volume in the
list is selected.

The recycle process is a time-consuming operation.
By taking into account technology currently in use,
prioritizing the workload, and making efficient use
of the resources, DFSMShsm has been able to reduce
the time necessary to reclaim space on tape media,
returning empty tapes to the scratch pool.

DFSMShsm automatic reconnection of
recalled data sets

The DFSMS management class policies include the
specifications for data migration. DFSMShsm performs

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003 ASHTON ET AL. 309

the data migration based on the policies. It also per-
forms the recall function if and when the migrated
data are subsequently referenced.

The space management function of DFSMShsm re-
duces the cost of electronic data storage by ensur-
ing that higher-cost per gigabyte devices, such as disk,
are not occupied by data that are unneeded or that
have not been referenced for a significant period of
time. Obsolete data are deleted and inactive data
are moved, or migrated, to lower-cost devices, such
as tape. Migrating the data to tape allows the data
to be automatically retrieved, or recalled, should the
data be required at some future time, yet frees space
on the disk device for other data sets. Although the
deletion of data is nearly instantaneous, movement
of data both consumes time and utilizes often scarce
resources. Automatic reconnection of recalled data
sets can be performed in approximately the same
amount of time as data set deletion, yet allows the
subsequent use of those data.

Normal migration and recall. When a data set is mi-
grated to tape, its contents are copied to a tape, meta-
data representing the migrated version are written
to the DFSMShsm inventory files, and the original data
set is deleted from disk. When the data set is recalled
from tape, its contents are copied back to disk, and
the meta-data are updated to indicate that the mi-
grated version is no longer valid. The contents of the
data set remain on the tape but are made inacces-
sible by the meta-data update, and the space they
occupy is not made available for reuse until the en-
tire tape is returned to the scratch pool. Standard
remigration of the data set involves copying the data
to a new location on the same tape or on a different
tape, updating the meta-data to point to that new
location, and deleting the original data set from disk.

Reconnection. Reconnection of a data set that has
been recalled from tape, also known as Fast Sub-
sequent Migration, is performed without copying the
contents of the data set. Instead, the meta-data for
that data set are updated to point to the old location
of the meta-data on the migration tape, and the orig-
inal data set is deleted from disk. The absence of
data movement and the resulting reduction in tape
mounts lead to significant savings both in time and
system resources. A less obvious benefit to Fast Sub-
sequent Migration is derived from the revalidation
of data on the migration tape that was invalidated
during the recall operation. This benefit reduces the
need for the tape to be recycled, because the amount
of valid data on it has been increased.

Clearly, reconnection to the old copy of the data set
on the migration tape should be done only if the data
set has not been changed since it was recalled. In-
formation from the meta-data, the table of contents
of the disk volume, and the system catalog is com-
pared to verify that the data set has not changed. If
the data set has been backed up since its recall, it
is assumed that it has changed and will not be per-
mitted to reconnect. In addition, recycling the mi-
gration tape on which the old migrated version re-
sides prevents the reconnection of the data set as
the existence of the version cannot be guaranteed.

The ratio of data sets eligible for reconnection to
those not eligible for reconnection will vary widely
from customer to customer, based on the usage pat-
tern of their data. It is essential that the overhead
involved in performing the eligibility checks be min-
imized so that customers with small numbers of re-
connectable data sets will not be penalized by these
checks. To the extent possible, the eligibility checks
for Fast Subsequent Migration are performed in con-
junction with those done for standard migration.
Storage administrator controls and an installation-
wide exit provide the ability to customize the recon-
nection process to meet the individual needs of a cus-
tomer.

Fast Subsequent Migration provides a quick means
of freeing up space on disk while preserving the abil-
ity to automatically recall the data should the data
be needed in the future. Eligibility checking is per-
formed in such a way as to maintain data integrity,
but generate little additional overhead. When en-
abled by the storage administrator, the function is
performed without the need for user intervention.

DFSMShsm common recall queue

An important factor in the operational efficiency of
z/OS computing environments that implement a
DFSMS space management process is the perfor-
mance of the DFSMShsm recall function. When an ap-
plication references data that have been migrated
to DFSMShsm-owned storage, that application must
wait for DFSMShsm to recall the data back to primary
disk storage. Minimizing this wait time by optimiz-
ing the throughput of the recall function aids in max-
imizing the efficiency of applications that reference
migrated data. DFSMShsm provides this optimization
through utilization of cross-system coupling facility
(XCF) technology to provide a common recall work
queue as depicted in Figure 4.

ASHTON ET AL. IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003310

A typical z/OS Parallel Sysplex* configuration con-
sists of a single DFSMShsm host per z/OS image. When
an application that is processing on a particular z/OS
image references data that have been migrated, a
request to recall the data is queued to the DFSMShsm
host running on that same image. Each DFSMShsm
host processes all of the recall requests on its unique
queue without regard to the other concurrent recall
activity that is occurring on other DFSMShsm hosts
throughout the sysplex. This narrow perspective pre-
vents sysplex-wide optimization of the recall func-
tion. Implementing a recall queue shared by all hosts
in the sysplex overcomes this deficiency by enabling
sysplex-wide workload balancing, priority optimi-
zation, efficient utilization of tape resources, and
greater flexibility with sysplex configurations.

Workload balancing. The most significant feature
of a common recall queue is that it enables the re-
call workload to be balanced across the entire sys-
plex. In a nonshared queue configuration, recall re-
quests are assigned to a DFSMShsm host without
regard to the ability or capacity of that host to pro-
cess the assigned workload. The result is an unbal-
anced system in which one or more hosts may have
more recall requests than they can individually pro-
cess concurrently, while other hosts have unused re-
quest processing capacity. By placing all recall re-
quests onto a common queue, workload distribution
is optimized by only assigning work to a system that
has the capacity and ability to perform that work.

This technique enables all recall resources in the sys-
plex to operate at their peak task levels.

Priority optimization. One of the features of the
DFSMShsm recall function is the ability to assign a pro-
cessing priority to each request. This priority is used
to determine the order in which each request should
be processed with respect to other outstanding re-
quests. A fundamental use of this priority scheme
is to distinguish synchronous requests from asynchro-
nous requests. All synchronous requests, those re-
quests for which an application is waiting for the re-
call to complete before continuing, are selected for
processing before asynchronous requests are se-
lected. Placing all requests in the sysplex onto a sin-
gle queue enables all synchronous requests to be
selected for processing before nonsynchronous re-
quests. This method is an improvement over a non-
shared queue environment in which one DFSMShsm
host may be processing asynchronous requests while
synchronous requests are waiting to be selected on
the queue of another host.

Tape efficiencies. When tape is used to store mi-
grated data, a probability exists that concurrent re-
call requests will require data that have migrated to
the same physical tape. The probability of this sce-
nario increases as the storage capacity of tape in-
creases with advancing technologies. In a nonshared
queue environment, concurrent requests requiring
the same tape may be queued to different DFSMShsm

Figure 4 DFSMShsm common recall queue

SEPARATE QUEUE FOR EACH
DFSMShsm INSTANCE

COMMON QUEUE SHARED ACROSS
DFSMShsm INSTANCES

RECALL
REQUESTS
SUBMITTED

HSM 1

HSM 2

RECALL
REQUESTS
PROCESSED

RECALL
REQUESTS
SUBMITTED

HSM 1

HSM 2

RECALL
REQUESTS
PROCESSED

CRQ

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003 ASHTON ET AL. 311

hosts. When this occurs, the first host to allocate and
mount the tape will be able to process its requests,
whereas the remaining hosts will have to wait until
the tape becomes available. A common queue con-
figuration overcomes this wait by enabling the first
host to process all the outstanding requests requir-
ing that tape with a single tape mount, without re-
gard to the system on which the request originated.

Flexible configurations. A common recall queue en-
ables system configurations that would not otherwise
be possible. Two such configurations are environ-
ments with recall servers and environments in which
not all systems are connected to the tape subsystem.

Recall servers. In a nonshared queue environment,
there must be one and only one DFSMShsm address
space per z/OS image that processes the recall re-
quests that are initiated on each image. The com-
mon recall queue overcomes this restrictive environ-
ment by enabling multiple DFSMShsm address spaces
on the same image to process recall requests and by
not requiring each DFSMShsm host to process recall
requests. It may be advantageous to not have a par-
ticular DFSMShsm host process recalls if the dynamic
nature of the recall workload would have a negative
impact on mission-critical applications processing on
the same image. DFSMShsm hosts whose primary re-
sponsibility is to process recall requests are referred
to as recall servers.

Tape subsystems. In certain environments, it may not
be possible or desirable to connect all z/OS images
to a tape subsystem. Without the common recall
queue, applications on these images would not be
able to reference data that had been migrated to
tape. The common recall queue enables the
DFSMShsm hosts on these images to be configured
such that they place all of their requests onto the
common queue but only select those requests that
do not require tape. Thus, only those DFSMShsm hosts
residing on images that are connected to the tape
subsystem will process recall requests that require
tape.

DFSMSdfp VSAM record-level sharing

The Virtual Storage Access Method (VSAM) record
level-sharing (RLS) function was first introduced and
shipped as a subcomponent of DFSMSdfp in 1996. The
design intent of the RLS function was to expand on
the DFSMS policy-based storage management imple-
mentation in order to address data sharing and re-

covery-related issues with existing VSAM data sets in
a Parallel Sysplex.

Prior to VSAM RLS, applications or middleware (e.g.,
CICS*, the Customer Information Control System)
accessing VSAM data sets were responsible for se-
rializing the sharing of these data sets between the
different system or application images within the sys-
plex. In addition to providing the necessary serial-
ization, applications were also responsible for recov-
ery scenarios in the event of an application or system
failure. The existing VSAM method of access provided
with DFSMS did little to contribute to the sharing or
recovery of the files, other than to provide some file
protection if limited access was required.

The requirement put forth to VSAM RLS was to take
on responsibility for serializing access to the VSAM
data sets and to play a role in providing data integ-
rity and availability in the event of a system or ap-
plication failure.

VSAM RLS addressed the sharing and recovery re-
quirements by providing full read and write integ-
rity to any number of applications (users) in the Par-
allel Sysplex through the use of the XCF function in
OS/390 and z/OS. Additionally, VSAM RLS provides the
CICS Transaction Server (CICS/TS), one of the larg-
est VSAM users today, with a set of services to pro-
tect individual data records involved in a failure from
access by sharing users. By retaining serialization for
the “failed” data records, VSAM RLS enables CICS/TS
to recover from the event while allowing sharing
users access to the remaining data records in the data
set.

The XCF function of OS/390 and z/OS offers a choice
of allocating one or more specialized data structures
in shared high-speed storage, known as a coupling
facility (CF). The data structures, referred to as cache,
lock, and list structures, can then be used for storing
and retrieving information between the various sys-
tems within the sysplex.

VSAM RLS implemented two of the three XCF data
structure types, namely the cache and lock structures,
for serializing access between the shared VSAM files.
The cache structure, which is associated with a par-
ticular VSAM data set via the DFSMS storage class pol-
icy of the data set, contains the latest copy of the
records of the data set. The cache structure is allo-
cated in the CF when a data set is first opened. Data
blocks are then read into the cache from disk as
needed. Local copies of the data blocks are main-

ASHTON ET AL. IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003312

tained by each system; however, the XCF cross-in-
validate function is used to inform individual systems
whether a particular data block has been changed.

The XCF lock structure is allocated by VSAM RLS dur-
ing system initialization by a set of routines collec-
tively known as SMSVSAM. The lock structure is com-
posed of two parts, the lock table and the record data
table. The lock table maintains “record locks” for
each of the individual data records currently refer-
enced by SMSVSAM. The record locks may be held
exclusively or shared by the user, depending on the
type of activity performed on the data record. For
example, an update of a data record will lock the
record as being exclusive, prohibiting sharing users
from accessing the record, whereas a read of the data
record will lock the record as being shared, enabling
sharing users to have simultaneous access to the
record.

The record data table, in contrast, contains additional
information about the individual record locks, ex-
amples of which include whether or not the record
lock was involved in a failure (retained lock) and the
name of the owning application of the record lock.
By associating the retained record locks in the
record data table with the CICS/TS owning instance,
VSAM RLS can prohibit access to the specific records
by other users who share the data set. The CICS/TS
instance that originally held the record locks can then
reobtain the locks and render a decision as to
whether the original updates to the data records
should be backed out or not.

Exploitation of the XCF cache and lock structures
by VSAM RLS relieves VSAM users of the difficult bur-
den of serializing access to their shared data and
places the responsibility where it belongs: in the
hands of the access method. Additionally, the abil-
ity of VSAM RLS to associate XCF cache structures to
individual VSAM files via the DFSMS Storage Class
policy provides its users with the necessary automa-
tion for managing their ever-expanding volume of
data.

DFSMSdfp and data striping

Data striping is a storage accessing performance en-
hancement technique. Rather than place a file or
data set on a single disk, the data are spread, or
striped, across multiple disks. This technique enables
the combined I/O rate and bandwidth of multiple
disks to be used when the data are accessed. This
technique can significantly reduce the elapsed I/O

time for sequentially accessing large portions of large
files or data sets. It can also support a higher ran-
dom I/O rate.

Data striping is supported as an optional feature of
VSAM and SAM (Sequential Access Method) data sets
that have the extended format attribute. The DFSMS
storage class policy sustained data rate attribute of
the data set and the number of volumes that are as-
signed to the data set determine the number of
stripes. When performing sequential access to a
striped data set, the objective is to perform I/O op-
erations concurrently against each stripe6 of the data
set. The greater the number of stripes, the higher
the sustainable sequential data rate.

Both SAM and VSAM use the same I/O driver for ac-
cessing striped data sets. Both access methods pro-
vide the buffering algorithms for direct or sequen-
tial processing and the information used by the I/O
driver to determine how to locate and process the
data in the data set. Part of this information includes
information about the number of stripes used and
the location of the data on the stripes. The I/O driver
builds channel programs to access the disks and sub-
mits the channel programs to the z/OS I/O supervi-
sor. For sequential access, a separate channel pro-
gram is created to access each stripe, and the channel
programs are run concurrently.

Striped VSAM data sets. For a VSAM data set, the
data-to-stripe mapping is done at the granularity of
a control interval (CI).7 VSAM striping is done on a
CI basis to provide efficiency for both random and
sequential access to a key-sequence data set (KSDS).
This method spreads the I/O processing as evenly as
possible for the data being read or written. When
reading data sequentially from a KSDS, VSAM does
read-ahead processing using the primary index to de-
termine the logical order of the data CIs and passes
a request to the I/O driver to retrieve this set of data
CIs. The I/O driver sorts the control intervals in as-
cending CI sequence and then sorts them by stripe.
Next, it creates a channel program to access each
stripe and submits multiple requests to the I/O su-
pervisor to execute the channel programs simulta-
neously.

The maximum number of stripes supported for VSAM
data sets is 16. VSAM data sets may be extended on
the same volume, or if the space is not available on
that volume, they may be extended to a new volume.
When space is added to one stripe, all stripes are
extended by the same amount of space. This multi-

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003 ASHTON ET AL. 313

volume-per-stripe condition has been referred to as
layering, in which a set of stripes resides on multiple
volumes.

Striped SAM data sets. For a SAM data set, the data-
to-stripe mapping is done at the granularity of a disk
track. The parallel I/O function is used to perform
striping of SAM data sets. It retrieves a full track from
each stripe across all stripes allocated to the data set.
One difference between striping for SAM and strip-
ing for VSAM is that a striped SAM data set cannot
be extended to a new volume. Each stripe for a SAM
data set may contain nearly a full volume of data,
and the number of stripes that contain the data de-
fines the maximum size of the SAM data set, because
a stripe may not be extended to a new volume. The
number of stripes for a SAM data set may be as large
as 59 to allow the data set to be as large as 59 times
the volume size.

Figure 5 shows simple examples of SAM and VSAM
data striping. For each example, a striping level of
3 is used. Stripe 1 of the data set resides on disk vol-
ume 1, stripe 2 on volume 2, and stripe 3 on volume
3. For the SAM case, the data striping is done at the
granularity of a disk track. Data 1 is the first track
of data for the data set. Data 2 through Data 9 are
the remaining tracks of the data set. For VSAM, the
mapping of data to stripe is done at a granularity of
CI. In the example, there are three control intervals
of data per disk track. VSAM begins CI numbering

for a data set at 0, rather than 1. The figure illus-
trates how CI 00 through CI 26 of the data set are
striped across the tracks of the three disk volumes.

DFSMS support for business continuance

In addition to providing space and availability man-
agement, DFSMS provides functions that aid instal-
lations in making copies of production data for the
purpose of business continuance. Having copies of
these production data in a secure location separate
from the primary data processing facility enables bus-
inesses to continue to function in the event of a cat-
astrophic failure that might render their main pro-
cessing center inoperable (in part or in full).

DFSMS provides various means of allowing installa-
tions to replicate production data into an alternate
data processing facility or facilities. These facilities
could be off-site tape vaults, off-site tape libraries,
remote disk farms, or separate data processing com-
plexes, complete with tape and disk storage facili-
ties. Installations may opt also for a combination of
different off-site data storage options available to
them.

Installations can select a particular DFSMS business
continuance solution to meet their business conti-
nuity needs, or they can mix and match solutions de-
pending on the requirements of the individual ap-
plications or data.

When discussing business continuance, two terms are
commonly used, recovery time objective (RTO) and re-
covery point objective (RPO). RTO is described as how
long it takes to recover the data of an application
and have all critical operations up and running after
an outage occurs. RPO is described as a point in time
at which all backup data are current. In other words,
they indicate how much data an enterprise can lose
and still be viable. For instance, the requirement for
a bank might be that all data must be current within
15 minutes, whereas for another organization it is
only critical for data to be current within the last 48
hours. Within a particular enterprise there may be
various RTO and RPO goals, depending on the crit-
icality of particular applications.

In the early 1990s, customers working with IBM de-
fined six different disaster recovery or business con-
tinuance approaches, which they referred to as Tiers.
The Tiers are briefly summarized below and are de-
picted in Figure 6.

VSAM DATA SET STRIPING ACROSS THREE VOLUMES

VOLUME 1

CI 00, CI 03, CI 06

CI 09, CI 12, CI 15

CI 18, CI 21, CI 24

CI 02, CI 05, CI 08

CI 11, CI 14, CI 17

CI 20, CI 23, CI 26

CI 01, CI 04, CI 07

CI 10, CI 13, CI 16

CI 19, CI 22, CI 25

VOLUME 2 VOLUME 3

SAM DATA SET STRIPING ACROSS THREE VOLUMES

VOLUME 1

DATA 1

DATA 4

DATA 7

DATA 3

DATA 6

DATA 9

DATA 2

DATA 5

DATA 8

VOLUME 2 VOLUME 3

Figure 5 DFSMSdfp striping

ASHTON ET AL. IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003314

● Tier 0: No disaster recovery
● Tier 1: Physical transport of backup copies to an

off-site location with no data processing capabil-
ity

● Tier 2: Physical transport of backup copies to an
off-site location with some data processing capa-
bility

● Tier 3: Off-site electronic vaulting, possibly an off-
site tape library

● Tier 4: Two active sites with application software
mirroring

● Tier 5: Two-site, two-phase commit. In this case,
database logs are sent to the recovery site where
programs apply the logs to databases.

● Tier 6: Disk and tape storage subsystem mirror-
ing

Typically, installations will select lower tier solutions
when their RTOs and their RPOs are longer and will
select the upper tier solutions as the RTO and RPO
objectives become shorter.

DFSMS has a number of solutions that fit into the Tier
1 to 5 business continuance requirements. They in-
clude the DFSMShsm full volume dump and restore
solution, the DFSMSdss physical and logical data set
and full volume dump and restore solutions, and the
DFSMShsm aggregate backup and recovery support
solution, known as ABARS. An enterprise may select
one or more of these solutions to meet their bus-
iness continuance objectives. ABARS is probably the
most commonly used DFSMS solution for Tiers 1
through 5. ABARS allows installations to define an
aggregation of data to be backed up and restored as
a logical entity. ABARS maintains the point in time
relationship of the data within a specific aggregate
group, so that when the application is brought on
line at the recovery location, the data are synchro-
nized and the application can be started.

The scope of the aggregation of data that is defined
to ABARS is typically that of a critical application or
applications. ABARS will find where the data exist
within the DFSMS storage device hierarchy, includ-
ing user disk, user tape, DFSMShsm migration disk vol-
umes, and DFSMShsm migration tape volumes and
package those data into one to four output files that
can be physically or electronically sent to an off-site
location. ABARS will also collect the meta-data as-
sociated with the backed up data, such as catalog in-
formation, Generation Data Group base informa-
tion, or DFSMShsm control data set records for
migrated data sets, and restore that information
along with the data.

In addition to the software-only business continu-
ance solutions, DFSMS contains a software function
called the System Data Mover (SDM) that, when com-
bined with the appropriate microcode on IBM, Hi-
tachi Data Systems, or Amdahl disk storage sub-
systems, provides installations with an extended
distance remote copy capability called XRC. XRC can
copy (mirror) critical data over long distances with
minimal impact to the primary application I/O ac-
tivity. XRC supports short RTO and RPO objectives
as well as providing an upper-tier disaster recovery
solution.

XRC overview. As a host application issues a write
I/O request to a disk on the primary disk subsystem
that is part of an XRC configuration, shown in Fig-
ure 7, the XRC function intercepts the write I/O re-
quest and captures the information required by the
SDM to create the write I/O operation on the recov-
ery system. Asynchronous to the application I/O re-
quest, the SDM communicates with the primary disk
subsystem and collects the updates, then journalizes
them into consistency groups that are written to the
recovery site target disks. A consistency group con-
tains records that have their order of update pre-
served across multiple logical control units within an
IBM TotalStorage* Enterprise Storage Server* (ESS),
across multiple ESSs and across other storage sub-
systems participating in the same XRC session. The
consistency groups enable writes to the secondary
disk subsystem to be done in the proper order, main-
taining I/O consistency to a specific point in time.

Typically, a single instance of the SDM can manage
between 1200–1800 volumes, and up to five SDMs

Figure 6 Disaster recovery tiers

SLOWER
RECOVERY

FASTER
RECOVERY

TIERS 4
5 AND 6

TIERS 2 AND 3

TIER 1
LESS
COSTLY

MORE
COSTLY

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003 ASHTON ET AL. 315

can be active on a single OS/390 or z/OS logical par-
tition (LPAR). DFSMS also provides coupled XRC sup-
port that allows multiple SDM sessions to be coupled
together so that installations can manage even larger
numbers of volumes as a single session, enabling all
volumes in the session to be recovered to the same
consistent time. In an XRC configuration, the primary
disk storage subsystem must be capable of running
the XRC function; however, the target secondary disk
subsystem can be any disk and need not be capable
of running XRC.

As installations formulate their business continuance
strategies, they can choose from a variety of DFSMS
business contingency solutions. The choice of DFSMS
solutions ranges from Tier 1 to Tier 6 and can meet
various RTO and RPO objectives.

DFSMS disk copy services

In addition to the business continuance solutions
mentioned in the previous section, DFSMS provides
advanced disk copy services that allow installations
to efficiently and reliably copy disk volumes or data
sets from one disk image to another. The target disk
images can then be used as source volumes for a sub-
sequent dump of the data to tape. Besides the re-
mote copy services functions, there are three disk
copy services that are provided by DFSMS: Concur-
rent Copy, SNAP/SHOT*, and FlashCopy*.

Concurrent Copy. Concurrent Copy is a storage sub-
system extended function that can generate a copy

or a dump of data while applications are updating
those data. DFSMSdss is the external interface to the
Concurrent Copy function and works with the SDM
to control the process. DFSMShsm also takes advan-
tage of the Concurrent Copy feature when invoking
DFSMSdss during its backup or dump processing.

Functionally, the data being dumped or copied are
unavailable only for the time it takes to initialize a
Concurrent Copy session for the data in question.
The data are serialized while the initialization pro-
cess takes place, which is normally only a matter of
seconds, after which the data can be deserialized and
the application can continue processing the data. The
data copy process is said to be “logically complete”
after the Concurrent Copy initialization process has
completed. However, the data have not yet been
physically written to the target media. After the data
have been successfully written to the output media,
the Concurrent Copy is said to be “physically com-
plete.” Concurrent Copy is an excellent tool for in-
stallations that need to reduce the time during which
their data are unavailable while they make backup
copies or dump copies of data sets or volumes.

SNAP/SHOT. The SNAP/SHOT function enables cus-
tomers to produce almost instantaneous copies of
data sets, volumes, and VM (virtual machine) mini-
disks—all without data movement. SNAP/SHOT is au-
tomatically initiated by DFSMSdss on storage sub-
systems with the SNAP/SHOT feature. This function
is only applicable to the RAMAC* Virtual Array.8

Data are “snapped” (quickly copied) directly from
the source disk location to the target disk location.
This function is externalized in DFSMS with the
DFSMSdss COPY command. This command is used to
copy volumes, tracks, or data sets from one disk vol-
ume to another. DFSMSdss uses this method when-
ever the source and target data are located on like
devices in the same partition on the same storage
subsystem and no reblocking is required. With “na-
tive” SNAP/SHOT, the copy of the data is logically and
physically complete as soon as the snap is complete.

Another way in which DFSMS exploits SNAP/SHOT is
via a function called “virtual Concurrent Copy.” Vir-
tual Concurrent Copy uses SNAP/SHOT to provide a
concurrent-copy-like function when the storage sub-
system supports SNAP/SHOT but not Concurrent
Copy. During virtual Concurrent Copy, data are
“snapped” from the source volume to an interme-
diate location, and the data are gradually copied to
the target location using normal I/O methods. The

Figure 7 XRC session

 1

 1

 3
 4

 2

 2

SDM

PRIMARY SYSTEM RECOVERY SYSTEM

DATA WRITTEN TO PRIMARY DASD
APPLICATION RECEIVES I/O COMPLETE REQUEST
DATA SENT TO SDM
DATA WRITTEN TO RECOVERY SYSTEM DASD

 4 3

ASHTON ET AL. IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003316

data are logically complete after the data are
“snapped” to the intermediate location and physi-
cally complete after the data are moved to the tar-
get media. The external interface to virtual Concur-
rent Copy is via the DFSMSdss product and is also
exploited by the DFSMShsm product when it invokes
DFSMSdss to perform data movement operations on
its behalf.

FlashCopy. FlashCopy provides a point-in-time copy
of data for backup and recovery operations. Cur-
rently this function is only supported on ESS. Both
the source and target volumes must reside on the
same logical subsystem. DFSMSdss automatically in-
vokes FlashCopy when performing a full volume
copy operation and the copy operation is for data
on a subsystem that supports FlashCopy functions
such as ESS.

Functionally, the data being copied by FlashCopy
are unavailable only long enough for DFSMSdss to ini-
tialize a FlashCopy session, which normally only
takes a few seconds to complete. In contrast with
SNAP/SHOT and Concurrent Copy, using FlashCopy
allows the data on both the source and target vol-
umes to be available immediately after the initial-
ization process is complete.

As shown in Figure 8, installations can also utilize
FlashCopy to produce a copy of a volume in seconds
and then use DFSMSdss to dump the copy to tape while
applications are accessing the data on the original
volume.

Installations can even take this operation a step fur-
ther by requesting that DFSMSdss condition the tar-
get volume during the copy operation so that the tar-
get volume, when dumped, will look as though it were
dumped from the original source volume of the copy
operation. For example, if a full volume copy is per-
formed with DUMPCONDITIONING of a volume called
VOL001 to a volume called VOL002 and then a full vol-
ume dump of VOL002 is performed, the dump data
set looks as though it were created by performing
a full volume dump of VOL001. Additionally, if a user
knows that he or she only wants to create a Flash-
Copy so that the target volume can be immediately
dumped, DFSMSdss provides a NOCOPY option that
prevents the ESS subsystem from performing a phys-
ical copy of the data. Performing the physical copy
uses subsystem resources and can impact the per-
formance of other I/O operations that are issued to
ESS. There is also a FlashCopy WITHDRAW option
that tells DFSMSdss to withdraw the FlashCopy re-

lationship after the volume is dumped. This with-
drawal frees the subsystem resources that are used
to maintain the FlashCopy relationship.

DFSMS testing

Just as the storage management products have grown
and evolved over the years, the test philosophy for
these products has changed from a function-based
focus to a solutions-based approach, assessing the
quality of the DFSMS software products working with
storage product hardware, the other z/OS software
stack, and the database product offerings. As cus-
tomers have come to rely more on integrated solu-
tions that work together, rather than just individual
pieces, the focus of testing storage products has had
to evolve into a more solution-oriented approach to
support this need. This approach has required soft-
ware testing to rely heavily on interaction with the
storage hardware teams. Testing has also expanded
to leverage cross-site environments to verify data-
base products, and the DFSMS products work as part
of the business solution for storage management. The
following subsections expand on this evolution of
software testing.

Unit test. The DFSMS test cycle starts with unit test.
This test is the initial verification that the new and
changed code within a module (software part) is er-
ror-free. It is performed by the software developer
who wrote the code. The focus at this point is on the

Figure 8 DFSMS disk copy services

 1

 3
 4

 2

COPY FULL
DUMPCONDITIONING

DUMP
FULL

RESTORE
COPYVOLID
VOLUME

OR
RESTORE
DATA SET

STOP APPLICATION ACCESS TO THE VOLUMES.
COPY THE VOLUMES BY USING FULL VOLUME COPY.
IF DFSMSdss CAN USE FLASHCOPY OR SNAP/SHOT TO
PERFORM THE COPIES, THEN THE COPIES CAN BE
COMPLETED VERY QUICKLY.
ENABLE APPLICATION ACCESS TO THE VOLUMES
BACK UP THE COPIES TO TAPE USING FULL VOLUME DUMP.

VOL. A
VTOC.A
VVDS.A

VOL. A
VTOC.A
VVDS.A

VOL. B
VTOC.A
VVDS.A

DUMP
TAPE

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003 ASHTON ET AL. 317

individual parts. This test is done in a Time Share
Option test or VM guest environment so that the test
variables can easily be controlled to ensure the code
is performing as designed.

Development verification test. After unit test, the
test cycle continues with a development verification
test (DVT). This phase of testing is also performed
in development and brings together the code from
multiple developers. This test is the initial verifica-
tion that the new and the changed code can be in-
tegrated and the result is error-free. DVT is performed
by the individuals involved in the development effort
and is also done in a VM guest environment so that
the test environment can be controlled and verified.

Function verification test. The next phase of testing
is a component test, usually known as the function
verification test (FVT). Here the set of modules that
comprise a component or function are verified. Ar-
eas such as external interfaces (e.g., panels, com-
mands, messages), component interfaces, hardware
and software interfaces, and application program in-
terfaces are verified. The focus is on nonmessage
event recording (e.g., SYS1.LOGREC records, SMF
[System Management Facility] records), RAS (reli-
ability, availability, and serviceability) characteristics
and error diagnosis, shared paths (multitasking), and
shared resources (files, locks, queues, etc.) in order
to ensure function completeness. FVT is most often
run in a VM guest environment similar to unit and
development verification test.

System verification test. In the early years of DFSMS,
only unit test and FVT were performed before the
code was used in internal production or early cus-
tomer support tests. As the interrelationship of the
various DFSMS components grew, the need for ad-
ditional internal testing became apparent. System
verification test (SVT) was started to fill this require-
ment. SVT focuses on validating a given product in
predefined system environments with a variety of us-
er-oriented workloads and scenarios. Often this test
is the initial exposure of the new software on the ac-
tual hardware. The focus is on load, stress, recov-
ery, migration, and usability. It includes test case
streams, predefined scenarios, and shared hardware
resources.

The initial basis of DFSMS system test was grounded
primarily in software validation for a specific soft-
ware product set. The next step was to expand this
testing to encompass joint test efforts with the stor-
age hardware product teams. This expansion was a

key step toward gaining the efficiency and effective-
ness that solution testing of storage products offered.
It relies heavily on the interaction of the software
and hardware teams.

A good example of joint interaction is the testing for
copy services products. The interrelationship of XRC,
FlashCopy, and Concurrent Copy with the latest ESS
hardware makes it imperative that changes be tested
from a solution perspective. By working with the ESS
hardware team, copy services functions are run across
multiple z/OS images to a wide variety of ESS hard-
ware. Another area that has leveraged this approach
is the DFSMS system-managed tape support, includ-
ing the latest 3590 devices and VTS hardware. By per-
forming software testing jointly with the hardware
team, tests can run in a sysplex under multiple sys-
tem levels to all types of library configurations. With
this approach there can be multiple users of the sys-
tem and hardware, allowing for not only the planned
testing, but a large volume of unpredictable inter-
action. This dynamic environment provides a better
opportunity to flush out many customer-related
problems for both the hardware and software com-
ponents.

Internal production. The solution-based testing con-
tinues with pre-GA (general availability) installations
of storage product software and hardware on soft-
ware development production systems. These sys-
tems support code development, library control, pro-
gram compilations, reports, and other new release
activities. The testing provides firsthand experience
to the development team from the results of their
latest efforts.

Integration test. Integration test is the last internal
validation of DFSMS prior to GA. It runs in parallel
with the early support program. This testing is a part-
nership that brings together storage products, server
products, and database products in a large, robust,
dedicated environment with various processors and
ESS storage devices. It runs a pseudo production
workload with the latest GA subsystems, focusing on
IMS* (Information Management System), DB2* (Da-
tabase 2*, the relational database management sys-
tem), CICS, and VSAM RLS data sharing. This test
experience is documented in the Parallel Sysplex Test
Report, available on the Web as a PDF file.9

Solution level combined IBM database and DFSMS
test. This combination is a solution test launched
early in 2002 to improve validation of DFSMS and
storage hardware with the latest IBM database prod-

ASHTON ET AL. IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003318

ucts under stress and duration. Customer-like activ-
ities defined by product teams allow the interaction
of GA and pre-GA storage and database products to
find problems before these solutions reach a cus-
tomer.

Consolidated service test. This test effort was
launched to provide a single, consistent, installable
maintenance recommendation across the z/OS soft-
ware stack for software and hardware products. The
test group is comprised of a cross-laboratory, re-
motely disbursed team with the goal of reducing con-
fusion and potential business outages caused by con-
flicting service levels and products failing to work
together consistently. The test includes the recom-
mendation of a tested maintenance level for z/OS,
OS/390, and key subsystems including CICS, IMS, DB2
and MQSeries* (messaging and queuing series). A
quarterly report with the recommended maintenance
level is available.10

Conclusion

DFSMS is a policy-based storage management solu-
tion for OS/390 and z/OS environments. It has been
extended over the last two decades to support and
exploit new server and storage technology. The pol-
icy-based functions of DFSMS have also served as a
conceptual base for some of the policy-based stor-
age management functions provided by the IBM
Tivoli Storage Manager product. They are also likely
to have an influence on future storage and storage
management products. This paper briefly described
a number of recent optimizations that improve
DFSMS internal efficiency and enhance its data ac-
cess performance, data sharing, and data recovery
capabilities. DFSMS provides a number of functions
in support of business continuance, including the Sys-
tem Data Mover with its exploitation of the extended
distance remote copy storage hardware function.
DFSMS has extended its ongoing commitment to qual-
ity by participating in and leading the movement be-
yond product-level testing to solution testing.

Appendix: Definitions of some terminology

catalog A repository that keeps track of data set location. Cat-
aloging a data set simplifies subsequent retrieval of the data set
with only the data set name being required. Specific volume and
device information can be omitted for the data set request.

Data Facility Storage Management Subsystem (DFSMS) An op-
erating environment that helps automate and centralize the man-
agement of storage. To manage storage, the Storage Manage-
ment Subsystem provides the storage administrator with control

over data class, storage class, management class, storage group,
and automatic class selection routine definitions.

DFSMSdfp A DFSMS functional component of z/OS that pro-
vides functions for storage management, data management, pro-
gram management, device management, and distributed data ac-
cess.

DFSMSdss A DFSMS functional component of z/OS used to
copy, move, dump, and restore data sets and volumes.

DFSMShsm A DFSMS functional component of z/OS that pro-
vides both availability and space management.

DFSMSrmm A DFSMS functional component of z/OS that man-
ages removable media.

extended format The format of a data set that has a name type
(DSNTYPE) of EXTENDED. The data set is structured logi-
cally in the same way as a data set that is not in extended format,
but the physical format is different.

IBM TotalStorage Enterprise Storage Server (ESS) An IBM
high-end storage subsystem designed for midrange and high-end
environments. ESS provides large capacity, high performance,
continuous availability, and storage expandability.

KSDS A VSAM key-sequenced data set that has an organiza-
tion in which records are sequenced on a key field.

logical volume In the context of a virtual tape server, logical vol-
umes have a many-to-one association with physical tape media
and are used indirectly by z/OS applications. They reside in a vir-
tual tape server on a stacked volume (physical tape media) or on
exported stacked volumes.

logical subsystem The logical functions of a storage controller
that allow one or more host I/O interfaces to access a set of de-
vices. The controller aggregates the devices according to the ad-
dressing mechanisms of the associated I/O interfaces. One or more
logical subsystems exist on a storage controller. In general, the
controller associates a given set of devices with only one logical
subsystem.

Peer-to-Peer Virtual Tape Server (PtP VTS) A virtual tape server
(VTS) configuration with two interconnected virtual tape serv-
ers maintaining a copy of the tape volume in each VTS. This dual-
copy capability is transparent to the user and host processor re-
sources.

spill backup volume A volume owned by DFSMShsm to which
all but the latest backup version of a data set are moved when
more space is needed on a disk daily backup volume or all valid
versions are moved when a tape backup volume is recycled.

stacked volume A volume that has a one-to-one association with
physical tape media and which is used in a virtual tape server to
store logical volumes.

stripe In DFSMS, the portion of a striped data set that resides
on one volume. The records in that portion are not always log-
ically consecutive. The system distributes records among the

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003 ASHTON ET AL. 319

stripes such that the volumes can be read from or written to simul-
taneously to gain better performance.

striped data set In DFSMS, an extended-format data set con-
sisting of two or more stripes. Striped data sets can take advan-
tage of the sequential data striping access technique.

sysplex A set of z/OS systems communicating and cooperating
with each other through multisystem hardware components and
software services to process customer workloads.

Virtual Storage Access Method (VSAM) An access method for
direct or sequential processing of fixed and variable-length rec-
ords on direct access devices. The records in a VSAM data set
or file can be organized in logical sequence by a key field (key
sequence), in the physical sequence in which they are written on
the data set or file (entry sequence), or by relative-record num-
ber.

virtual tape server (VTS) This subsystem, integrated into the IBM
TotalStorage Enterprise Automated Tape Library (3494), com-
bines the random access and high-performance characteristics of
disk with outboard hierarchical storage management and virtual
tape devices and tape volumes.

virtual volume A tape volume that resides in a tape volume cache
of a virtual tape server. Whether the volume resides in the tape
volume cache as a virtual volume or on a stacked volume as a
logical volume is transparent to the host.

VSAM record-level sharing (VSAM RLS) An extension to VSAM
that provides direct record-level sharing of VSAM data sets from
multiple address spaces across multiple systems. Record-level
sharing uses the z/OS coupling facility to provide cross-system
locking, local buffer invalidation, and cross-system data caching.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of The Open Group.

Cited references and notes

1. J. P. Gelb, “System-Managed Storage,” IBM Systems Journal
28, No. 1, 77–103 (1989).

2. “Allocation” describes the function of z/OS in which resources
such as volumes and devices are assigned to fulfill a data set
request.

3. The disk volume can be a logical volume within a disk sub-
system.

4. LIMIT is defined as the net number of tapes that have been
returned to the scratch pool: the number of input tapes re-
turned to the scratch pool less the number of new output tapes
written.

5. For enhanced capacity tape cartridges, the capacities double
with an IBM Tape Drive 3590 Model B being able to write
20 GB and a 3590 Model E being able to write 40 GB of data
on a cartridge.

6. A stripe is the portion of the data set that resides on one vol-
ume.

7. CI is a VSAM logical disk block. It is the minimum number
of data bytes transferred by a VSAM disk access. The size
of a CI is an exact multiple (1 or more) of the disk block size

for the type of device in use (e.g., an IBM 3390 direct access
storage device).

8. The name RAMAC was originally derived from random ac-
cess method of accounting and control and was given to the
first IBM disk storage system. It is now the name of an IBM
product line consisting of a multiple-disk storage subsystem.

9. Parallel Sysplex Test Report, Latest Edition, z/OS Integration
Test, IBM Corporation, http://www.s390.ibm.com/os390/
support/os390tst.

10. Consolidated Service Test and the RSU, IBM Corporation,
http://www-1.ibm.com/servers/eserver/zseries/zos/servicetst.

General references

R. F. Kern and V. T. Peltz, IBM Storage e-Infrastructure for Multi-

ber 16, 2001).
J. P. Strickland, “VSAM Record-Level Data Sharing,” IBM Sys-
tems Journal 36, No. 2, 361–370 (1997).
z/OS DFSMSdfp Storage Administration Reference, SC26-7402,
IBM Corporation.
z/OS DFSMSdss Storage Administration Reference, SC35-0424,
IBM Corporation.
z/OS DFSMShsm Storage Administration Guide, SC35-0421, IBM
Corporation.
z/OS DFSMShsm Storage Administration Reference, SC35-0422,
IBM Corporation.
z/OS DFSMS Implementing System-Managed Storage, SC26-7407,
IBM Corporation.
z/OS DFSMS Object Access Method Planning, Installation, and Stor-
age Administration Guide for Tape Libraries, SC35-0427, IBM Cor-
poration.
z/OS DFSMSrmm Guide and Reference, SC26-7404, IBM Corpo-
ration.
z/OS Internet Library, IBM Corporation; see http://www.ibm.com/
servers/eserver/zseries/zos/bkserv.

Accepted for publication January 14, 2003.

Lyn L. Ashton IBM Systems Group, 9000 S. Rita Road, Tucson,
Arizona 85744 (ashton@us.ibm.com). Ms. Ashton joined IBM in
1978, working in the Tucson Product Test and Assurance Lab-
oratory. In 1990 she transferred to the Tucson Programming Cen-
ter as a software developer. She is a Senior Technical Staff Mem-
ber and is currently a DFSMShsm architect.

Edward A. Baker IBM Systems Group, 9000 S. Rita Road, Tuc-
son, Arizona 85744 (ebaker@us.ibm.com). Mr. Baker is an advis-
ory software engineer in the SSG Software Strategy and Archi-
tecture department. He joined IBM in Tucson in 1979. From 1979
to 1983 he was an MVS application programmer supporting man-
ufacturing applications. In 1983 he transferred to the DFSMShsm
development organization as a system programmer. From 1998
to 2001 he worked in the IBM Product Introduction Centre in
Hursley, United Kingdom, coordinating early support programs
for DFSMS software and IBM tape hardware products. In 2001,
he returned to Tucson and joined the SSG Software Strategy and
Architecture department as an architect for the DFSMShsm and
DFSMSdss products.

ASHTON ET AL. IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003320

DFSMS, IBM Corporation, http://www-1.ibm.com/servers/storage/

Site Data Availability, White Paper, IBM Corporation (Novem-

software/sms/.

Arthur J. Bariska IBM Systems Group, 9000 S. Rita Road, Tuc-
son, Arizona 85744 (bariska@us.ibm.com). Mr. Bariska is a sen-
ior software engineer in the DFSMS development laboratory. He
joined IBM at Poughkeepsie, New York, in 1974, working as a
systems analyst and later a manager in the Materials Manage-
ment organization. In 1982, he transferred to Tucson, holding
management positions in the Materials Management organiza-
tion and the Computer Operations Center. He moved to the
DFSMS development laboratory in 1989 as a programmer in the
test organization. He has been a member of the DFSMS Systems
Test team since 1993.

Erika M. Dawson IBM Systems Group, 9000 S. Rita Road, Tuc-
son, Arizona 85744 (brosch@us.ibm.com). Ms. Dawson joined
IBM in 1987 and has spent the majority of her career working
in the Object Access Method (OAM) component of DFSMSdfp
on the system-managed tape support. She is a senior software
engineer currently working as a development team leader and
product architect.

Ruth L. Ferziger IBM Systems Group, 5600 Cottle Road, San
Jose, California 95193 (ruthf@us.ibm.com). Ms. Ferziger is an ad-
visory software engineer. She joined IBM at San Jose, Califor-
nia, in 1984 as part of the team that developed the storage man-
agement subsystem (SMS). She is currently the development team
lead and designer working on future VSAM RLS-related enhance-
ments.

Stanley M. Kissinger IBM Systems Group, 9000 S. Rita Road,
Tucson, Arizona 85744 (kissingr@us.ibm.com). Mr. Kissinger is
a senior software engineer in the DFSMS development labora-
tory. He joined IBM in 1985 and has spent his entire career in
Tucson. From 1985 until 1997, he worked in technical support
in the Level2 support center. From 1997 to the present time, he
has worked as both a developer and architect for DFSMShsm.

Terri A. Menendez IBM Systems Group, 5600 Cottle Road, San
Jose, California 95193 (terriam@us.ibm.com). Ms. Menendez is
a senior software engineer. She is currently working in VSAM
RLS development.

Sanjay Shyam IBM Systems Group, 5600 Cottle Road, San Jose,
California 95193 (shyams@us.ibm.com). Mr. Shyam is a senior
software engineer. He is currently a software architect for the
SMS component of DFSMSdfp.

Jimmy P. Strickland IBM Systems Group, 5600 Cottle Road,
San Jose, California 95193 (jstrickl@us.ibm.com). Mr. Strickland
is an IBM Distinguished Engineer. During his career, he has held
various technical leadership positions, among them, technical lead
for the initial release of VSAM and technical lead for the initial
releases of the common DB2 and IMS lock manager component
IRLM (IBM Resource Lock Manager) and the IMS Logger. He
was a member of the team that invented the IBM System/390�

Parallel Sysplex technology and developed its architecture. Cur-
rently, he is a storage software architect.

Dave K. Thompson IBM Systems Group, 5600 Cottle Road, San
Jose, California 95193 (dkt@us.ibm.com). Mr. Thompson is a sen-
ior software engineer in DFSMS at the San Jose Programming
Laboratory. He joined IBM at Riverside, California, in 1966. From
1966 until 1969, he was a software customer engineer working
from the Riverside branch office. In 1969, he transferred to the

San Jose development laboratory where he performed develop-
ment work for VSAM and design and development work for Me-
dia Manager.

Glenn R. Wilcock IBM Systems Group, 9000 S. Rita Road, Tuc-
son, Arizona 85744 (wilcock@us.ibm.com). Mr. Wilcock joined
IBM at Tucson in 1992. Since 1992, he has worked in both
DFSMSdss and DFSMShsm development. He is an advisory soft-
ware engineer currently working as a development team leader
for DFSMShsm.

Mike W. Wood IBM Global Services, MP14, P.O. Box 31, Bir-
minghamRoad,WarwickCV345JL,UnitedKingdom(mikew_wood@
uk.ibm.com). Mr. Wood is a consultant IT architect currently
working in the DFSMSrmm development team. He joined IBM
at Croydon, United Kingdom, in 1976 as a computer operator.
From 1978 to 1990 he was an MVSTM system programmer, and
in the latter years he was the UK MVS systems architect. Since
1990 he has driven the development of the IBM Removable Me-
dia Manager (DFSMSrmm).

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003 ASHTON ET AL. 321

