A system model
for dynamically
reconfigurable
software

The ability to reconfigure software is useful for
a variety of reasons, including adapting
applications to changing environments,
performing on-line software upgrades, and
extending base application functionality with
additional nonfunctional services. Reconfiguring
distributed applications, however, can be
difficult in practice because of the dependencies
that exist among the processes in the system.
This paper formally describes a model for
capturing the structure and run-time behavior
of a distributed system. The structure is
defined by a set of elements containing the
state variables in the system. The run-time
behavior is defined by threads that execute
atomic actions called operations. Operations
invoke code blocks to bring about state
changes in the system, and these state
changes are confined to a single element and
thread. By creating input/output signatures
based upon the variable access patterns of
the code blocks, dataflow dependencies
among operations can be derived for a given
configuration of the system. Proposed
reconfigurations can be evaluated through
off-line tests using the formal model to
determine whether the new mapping of
operations-to-code blocks disrupts existing
dataflow dependencies in the system. System
administrators—or software components that
control adaptivity in autonomic systems—can
use the results of these tests to gauge the
impact of a proposed reconfiguration on the
existing system. The system model presented
in this paper underpins the design of
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reconfigurable ARMOR (Adaptive
Reconfigurable Mobile Objects of Reliability)
processes that provide flexible error detection
and recovery services to user applications.

Reconfigurability provides the foundation upon
which autonomic systems can adapt to their chang-
ing environments, which is useful for dynamically op-
timizing system functionality based upon the ob-
served execution profile or for recovering from errors
and failures without human intervention. Unfortu-
nately, reconfiguring distributed systems is difficult
in practice, since the processes are often interdepen-
dent. Arbitrarily changing the behavior of one pro-
cess through reconfiguration may render other
processes unusable. By formally expressing the de-
pendencies among processes, both static and dy-
namic reconfigurations can be analyzed to determine
whether they are compatible with the existing con-
figuration.

This paper describes a model for formally capturing
the structure and run-time behavior of a distributed
system. The structure is defined by a set of elements
containing the state variables in the system. The run-
time behavior is defined by threads that execute
atomic actions called operations. Operations invoke
code blocks to bring about state changes in the sys-
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tem, but these state changes are limited to a single
element and thread. The variables accessed during
the execution of an operation constitute the signa-
ture of the operation. The collective set of opera-
tion signatures in the system can be used to derive
dataflow dependencies between operations and be-
tween elements.

Reconfiguring the system is modeled by changing the
code blocks that are invoked by an operation. Given
the current configuration of the system, a proposed
reconfiguration can be subjected to an off-line test
to determine whether any of the dataflow dependen-
cies of the system change as a result of the recon-
figuration. If there are changes to the dataflow de-
pendencies, the user is warned that the proposed
reconfiguration may not be safe. Ultimately, the user
decides whether or not to apply a reconfiguration.

We have employed the proposed system model in
developing a software-implemented fault-tolerant
(SIFT) environment based around ARMORs (Adap-
tive Reconfigurable Mobile Objects of Reliability)
to provide error detection and recovery for distrib-
uted applications. To ensure that the SIFT environ-
ment is resilient to failures, dedicated fault-tolerant
mechanisms were added by reconfiguring the ARMOR
processes? that make up the SIFT environment. The
system model and associated criteria for safe recon-
figurations were applied to verify that the additional
fault-tolerant mechanisms did not impact the SIFT
functionality in unexpected ways.

System model

An abstract model that captures the structure and
run-time execution of the system is used to analyze
the effects of reconfiguration on the dependencies
among the various components in the system. A sys-
tem is specified by a triple (C, V, T):

* C is the set of code blocks in the system. A code
block performs a computation triggered by events
called operations.

* Vis the set of state variables® in the system. Var-
iables are only accessed through executing code
blocks.

e Tis the set of threads in the system. Threads ex-
ecute by sequentially invoking code blocks in the
system through operations, which bring about state
changes by manipulating the system variables in

Elements. State variables in the system are parti-
tioned into components called elements. Code blocks
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are placed in the elements containing the state var-
iables manipulated by the code blocks. Given a pred-
icate Access(c, v) thatis true if and only if code block
¢ € C reads or writes variable v € V, an element
can be defined formally as follows.

Definition 1 (Element): An element is a pair (C, V),
where V'is a set of variables and C is a set of code blocks
that do not access variables other than those in V:

elemente = (C, V),
CCCNA(NceC(C,V CV,
vE YV : Access(c, v) D>vE V)

Elements partition the system so that each variable
is found in one and only one element, and the code
blocks within an element cannot access state vari-
ables residing in other elements.

Operations. Code blocks in the system are indirectly
invoked through operations. One operation can in-
voke several code blocks as defined by a function
BindCode: P — 2€, where P is the alphabet of op-
erations and 2€ is the power set over all code blocks
(i.e., BindCode maps an operation to a set of code
blocks). The notation “p — ¢” is also used to de-
note that operation p is bound to code block ¢ via
the BindCode function. An operation executes by be-
ing delivered to all code blocks bound to the oper-
ation via the BindCode function.

Definition 2 (Operation Delivery): An operation p €
P is said to be delivered fo a code block ¢ € C, de-
noted Deliver(p, c¢), by executing code block c. The
delivery completes when code block ¢ completes
executing.

Because each code block exists in one and only one
element, delivery can be thought of as occurring with
respect to elements as well. An operation executes
by being delivered to all bound code blocks (ele-
ments) in the system. Execution completes only af-
ter all deliveries for p complete.

Definition 3 (Operation Execution): An operation p €

P is said to have executed, denoted Execute(p), after
it has been delivered to all code blocks bound to p:

Execute(p) = Vc € BindCode(p) : Deliver(p, c¢)

Threads. The run-time behavior of the system is
characterized by a set of threads, each of which se-
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rially executes a sequence of operations. Given P,
the set of all operation sequences is given by P*. A
sequence can be specified by its constituent oper-
ations as P = {(pg, p1, p», - .. ). We denote p to be
in sequence P by p € P, and that p precedes g in
sequence P by p <, g.

A thread T € Tis specified by a triple T = (P, V,
F):

e P € P*is a sequence of operations organized as
a stack, also referred to as T.ops. Threads execute
by sequentially executing the operations on the
stack, beginning with the head operation. To em-
phasize that operations are executed within a
thread, the notations used in Definitions 2 and 3
are extended to T'.Deliver(p, c¢) and T.Execute(p).

* V'€ V,, is a subset of private thread variables that
are only accessible through thread 7. V), is dis-
joint from the state variables V. Although two
threads can contain private variables with the same
names, each thread maintains its own independent
value. The set of private variables for thread T is
also referred to as 7.vars.

 Fis a data structure called a frame stack, which is
used to preserve the contents of private thread var-
iables across nested operation invocations, essen-
tially providing scope to the variables in the thread.
A nested operation invocation occurs when an op-
eration pushes a sequence of operations onto
T.ops.

The pseudocode for the execution of a thread is given
in Figure 1. The while loop executes until the op-
eration stack is exhausted. The head operation is
popped from the stack and stored in variable p. Line
5 executes the operation. Note that because the state-
ment 7.Execute(p) does not complete until all de-
liveries for p complete (i.e., until all code blocks
bound to p have executed), the operations within a
thread are executed in a strictly sequential order.

Delivery actions. The code blocks that execute dur-
ing an operation delivery cannot make arbitrary state
changes to the system. Their effects are confined to
the current thread and the element to which the op-
eration is delivered. Specifically, a single delivery
of operation p in thread T to code block ¢ (i.e.,
T.Deliver(p, c)) can perform any of the following
actions:

1. Statevariables of elemente (the element to which

¢ belongs) can be read. c.readVars denotes the
set of state variables read by c.
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Figure 1 Pseudocode for thread execution

1 procedure ExecuteThread(T) :
2 while T.ops=0 do

3 p := head(T.ops)

4 T.ops := tail(T.ops)

5 T.Execute(p)

6 end do

2. State variables of element e can be written by code
block ¢, denoted by c.writeVars.

3. Private variables within thread 7 can be read by
code block ¢, denoted by c.readThdVars.

4. Private variables within thread 7" can be written
by code block ¢, denoted by c.writeThdVars.

5. The code block can atomically push new oper-
ations onto the operation stack of 7. Let c.push-
Ops refer to the set of operation sequences that
can be pushed while ¢ executes. Only one of these
sequences, however, is pushed when ¢ executes
(allows the code block to push different sequences
depending upon run-time conditions).

6. The code block can create new threads whose
states are initialized from the private variables in
the parent thread T and the state variables in e.

These six items constitute a signature of code block
¢, and the signature provides a succinct, black-box
description of how the code block manipulates el-
ement state and thread state during run time. Pro-
grammers specify the signature as meta-data for each
code block that they develop. The collective set of
signatures for all code blocks in the system are used
to derive dataflow dependencies among operations
given the current BindCode mapping function.

Intrathread dependencies among operations. Be-
cause elements are allowed to read from private
thread variables during an operation delivery, a par-
ticular operation delivery may be dependent upon
deliveries earlier in the execution of the thread that
wrote to thread variables. To better understand the
dependencies among operations within a thread, the
concept of an input/output signature is developed
with respect to individual operations and sequences
of operations as follows:

* An input signature for an operation describes the
thread variables that are read by an operation when
it executes.

WHISNANT, KALBARCZYK, AND IYER 47



* An output signature for an operation describes the
thread variables that are written when an opera-
tion executes.

* An input signature for an operation sequence de-
scribes the thread variables whose values must be
established before a sequence begins executing.
These variables serve as inputs to the aggregate
sequence of operations.

* An output signature for an operation sequence de-
scribes the thread variables that are the intended
outputs of a sequence of operations. An operation
sequence is pushed onto the operation stack of a
thread with the express purpose of writing to the
thread variables in the output signature of the se-
quence.

Input signatures. First, the thread variables used as
input for operation delivery T'.Deliver(p, ¢) are con-
sidered. Define a function DeliverylnputSig: P X C
— 2V ag follows:

DeliveryInputSig(p, c¢) = c.readThdVars U

(( U SeqlnputSig(P)) - c.writeTthars)
P&c.pushOps

(1)

This definition states that the set of input variables
used by T.Deliver(p, c¢) not only includes c.read-
ThdVars but also includes those thread variables
used as input for the operation sequences pushed
by code block c. The outermost parenthetical expres-
sion in Equation 1 includes the input variables of the
sequence (denoted by SeqlnputSig(P), to be defined
later), but excludes those variables used by the se-
quence that were written by c¢.* The intuition is that
the input signature for T.Deliver(p, c¢) should only
include those variables whose values were defined
before code block ¢ executed.

In general, operation p can be delivered to several
code blocks, and the composite input signature for
operation p denoted by ExecInputSig(p): P — 2V
can be derived from Equation 1:

ExecInputSig(p)
= U

cEBindCode(p)

DeliveryInputSig(p, c)

The input signature for a sequence P is slightly more
complicated. If an operation p € P takes variable
v as input, then v should not be part of the input
signature for P if v was written by an operation that
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preceded p in P. Define SeqlnputSig: P* — 2V as
follows:

SeqInputSig(P)
={vEV,,: Ap € P:v E ExeclnputSig(p)
NAVNq <pp:v & ExecOutputSig(q)}
Output signatures. As with input signatures, the out-
put signature is defined first with respect to a single

delivery p — ¢ and then extended to account for all
code blocks bound to p.

DeliveryOutputSig(p, c¢)

= c.writeThdVarsU U SeqOutputSig(P),
P€Ec.pushOps
ExecOutputSig(p)
= U  DeliveryOutputSig(p, c) (2)

cEBindCode(p)

The delivery output signature in Equation 2 includes
not only the variables written directly by ¢, but also
the variables written by any sequence of operations
pushed by c.

The output signature for an operation sequence P
is defined, in general, by the programmer. The pro-
grammer who writes code block ¢ pushes sequence
P with the intent of producing specific outputs. The
individual operations in P may write intermediate
values as P executes, but these intermediate results
ultimately will be discarded when P completes (see
the discussion of the frame stack that follows). Dis-
carding the intermediate values produced by P pro-
vides scope to the thread variables, and this is sim-
ilar to saving or restoring register contents when
entering or exiting a function in order to preserve
the contents of registers not intended to store func-
tion outputs. Because the intended output of an op-
eration sequence cannot be derived without seman-
tic knowledge of the sequence, the output signature
SeqOutputSig(P) must be specified by the program-
mer.

Frame stack. Each thread contains a frame stack that
implements the saving or restoring of private thread
variables described above. When an operation se-
quence is pushed on the operation stack of the
thread, the current values of all intermediate out-
put variables for the sequence are saved. This set
consists of all thread variables that will be written
by the operations in the pushed sequence P, exclud-
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ing those variables designated as the intended out-
put of the sequence:

U ExecOutputSig(p) — SeqOutputSig(P)

PEP

The variables stored in the top entry of the frame
stack are restored when the operation sequence P
completes.

Concurrency. Operations within a thread execute in
a sequential order. Only one thread executes within
an element (i.e., delivers operations to code blocks
within an element) at any given time to ensure mu-
tually exclusive access to the state variables of the
element. This assumption treats each delivery as if
it were writing to the element, but this requirement
can be loosened if the deliveries can be tagged as
“read-only” or “read/write,” in which case a multiple-
read, single-writer lock can be used to control ac-
cess to the elements.

Applying the model to object-oriented programs.
In object-oriented systems, objects are similar to el-
ements in the sense that objects typically encapsu-
late state and member functions that operate on the
state of the object. Each object, therefore, has an
associated signature for each of its member func-
tions. When these member functions are invoked
within a thread, dataflow dependencies exist among
the objects visited by the execution of a thread. This
is the intuition behind the construction of the model
presented in this section.

Elements, however, more generally represent sets
of related objects. For example, a tree data struc-
ture may represent each node as an object, but the
entire tree would most likely be encapsulated in an
element. Keeping I/O signatures at the coarser gran-
ularity level of elements makes the dataflow depend-
ability analysis more manageable than if per-object
signatures were required.

Member function invocations, therefore, are mod-
eled as operations being delivered to elements.
Nested function invocations are split into multiple
operation deliveries, since the model defines the ex-
ecution of a thread as the sequential execution of
operations. For example, consider a function X that
performs some computation C, calls function Y, and
performs an additional computation C, after Y re-
turns. This execution trace is modeled as three op-
eration deliveries: the execution of C, followed by
the execution of Y, followed by the execution of C,.
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Each of these operation deliveries represents an
atomic state change to the system state.’

With programs explicitly designed around the sys-
tem model presented in this paper, a structure is in
place for extracting information to perform dataflow
analysis on the individual operations that make up
the execution of the system. Furthermore, the model
allows the information to be gathered and analyzed
in an automated fashion, given the 1/0 signatures of
each individual operation. If the dataflow analysis
framework is to be applied to object-oriented pro-
grams not designed with the proposed system model
in mind, then the issue becomes one of how to ex-
tract the appropriate information needed for the
dataflow analysis (e.g., how do objects pass informa-
tion between each other within a thread of execu-
tion, what information is exchanged through each
object invocation, and what are the effects of each
object’s invocation on system state). After gather-
ing this information, the effects of a reconfiguration
on the system can be determined. Obtaining such
information may require manual input from the pro-
grammer or may require refactoring certain aspects
of the application to more closely conform to a sys-
tem model such as the one proposed in this paper
to facilitate the automated dataflow analysis of pro-
posed reconfigurations.

Reconfigurability

The sets of code blocks, elements, and operations
are considered to be static, and reconfiguration oc-
curs by either adding or removing a single opera-
tion binding (i.e., changing the BindCode function).
The system transitions into a new configuration view
whenever the BindCode function changes. A config-
uration view is denoted by V;, with configuration
view V,,; occurring immediately after ;. When nec-
essary, the configuration view index will be specified
along with the BindCode function (e.g., Bind-
Code;(p) specifies the set of code blocks bound to
p under configuration view V,).

Impact on thread state. The BindCode function de-
termines the I/0 signatures for operations and, there-
fore, establishes dependencies among operations
within a thread of execution. Programmers design
code blocks with an understanding of these depen-
dencies in order to bring about a desired effect. For
example, if operation p, copies data from element
e tovariable v, and operation p, ., copies data from
variable v to element e,, data are transferred from
one ¢, to e, by virtue of the 1/0 signatures of p, and
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Pi+1- If areconfiguration— either adding or remov-
ing an operation binding—disrupts the data depen-
dencies for future operations in the execution of a
thread, then the reconfiguration is said to be unsafe.

Definition 4 (Safe Reconfiguration): A reconfigura-
tion from view V, to V, | that affects the bindingp —
¢, where p € P and ¢ € C, is considered to be safe
with respect to thread state if and only if, for all ex-
ecuted operation sequences P € P* in whichp € P:

1. All dataflow dependencies® between operations fol-
lowing p and operation p in view V; continue to
exist in view V, .

2. All dataflow dependencies between operations fol-
lowing p and operation preceding p in view V; con-
tinue to exist in view V,; ;.

VPEP*":p € P> Vq=X,p, v >pp:

r dataflow-dependent on ¢ in V;
= r dataflow-dependent on ¢ in V,

System reconfigurations change the binding of op-
eration p, either assigning a code block to p (caus-
ing an extra computation to be performed) or re-
moving a code block from p (eliminating a
computation from threads that execute in the sys-
tem). A reconfiguration is unsafe only if it affects op-
erations further downstream in the execution of the
thread. The following examples illustrate safe recon-
figurations in which dataflow dependencies are
added, removed, or changed:

* A new bindingp — ¢ reads from some thread vari-
able v, resulting in a new dataflow dependency that
did not exist in the previous configuration. This
reconfiguration is safe, since it does not disrupt the
execution of operations further downstream.

* A removed binding p — ¢ causes p to no longer
read from thread variable v. Obviously, this recon-
figuration destroys a dataflow dependency that pre-
viously existed, but the reconfiguration is not con-
sidered to be unsafe since this, in itself, does not
affect operations further downstream in the exe-
cution of the thread.

After the binding p — ¢ is removed, it may be safe
to remove the binding that wrote to v earlier in
the execution of the thread. This is an example of
how functionality often can be removed incremen-
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tally: the safe reconfiguration criteria help iden-
tify the correct order in which multiple bindings
should be removed to bring the system safely to
a desired configuration.

* A new binding p — ¢ writes to thread variable v
that is not currently read by any other operation
further downstream in the execution of the thread.
Although this lone reconfiguration does not im-
mediately bring about a change in functionality,
additional reconfigurations can be made so that
operations further downstream read from thread
variable v. As an alternative, a reconfiguration can
be made so that a later operation pushes a new
operation sequence onto the operation stack of the
thread with the express purpose of performing
some computation based upon the newly written
value in variable v.

As the previous examples suggest, several reconfigu-
rations can be made to remove or replace specific
functionality in the system. The dataflow dependency
analysis assists in deciding the proper order to apply
such reconfigurations so that the correct behavior
of the system is not disturbed. It should be clear, how-
ever, that the safe reconfiguration criteria presented
in this section cannot guarantee consistency using
dataflow dependency analysis alone. Definition 4 is
a sufficient but not necessary condition for preserv-
ing consistency across reconfigurations. A semantic
analysis of the system is required to make this con-
sistency determination, and the semantics of a code
block cannot be derived solely from the code block
1/0 signatures. Dataflow analysis, however, permits
the programmer to understand the relationships be-
tween a new code block and the other code blocks
in the system, simply by incorporating the signature
of the new code block into the following analysis
framework.

Dataflow analysis framework. The analysis frame-
work and resulting criteria depend only upon the cur-
rent system configuration (i.e., the BindCode; func-
tion and resulting 1/O signatures) and the proposed
configuration (i.e., BindCode, ). If the criteria in-
dicate that the proposed reconfiguration may be un-
safe, the user is notified of the existing dataflow
dependency that would be broken by the reconfigu-
ration. Other reconfigurations may be needed to
compensate for the broken data dependency.

Figure 2, used throughout this section as a running

example, shows data dependencies among opera-
tions in a sequence P = (py, p1, P2, P3) that was
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Figure 2 Read/write dependencies among operations in sequence p = <pq, P1 Po, P3>

pushed onto the operation stack. The arcs between
nodes indicate the dataflow dependencies between
operations (e.g., operation p, writes to a variablez €
V.. Which is later read by p ;). Arcs emanating from
input define the input signature for P (e.g., p; reads
from variable y, whose value was not altered by ei-
ther p, or p,). Arcs that point to the output node
represent the variables that are part of the output
signature for sequence P. Variables that store inter-
mediate values are shown to emanate from the out-
put node, indicating that they will be restored when
P completes. A dataflow dependency graph can be
constructed completely for any sequence P given the
1/0 signatures for P and the individual operations in P.

The dataflow dependencies in Figure 2 can be al-
tered by either adding or removing an operation
binding. Since the analysis performed in both cases
is similar, the discussion focuses on adding an op-
eration binding p — ¢, without loss of generality.
Adding a binding p — ¢ is considered to be safe if
DeliveryOutputSig(p, c) = 0, since thread variables
are not written when p is delivered to c.

If DeliveryOutputSig(p, c¢) # 0, then how the ad-
ditional writes affect later operations in the thread
must be examined. For illustrative purposes, suppose
that the binding p, — ¢ is being added to the ex-
ample in Figure 2. The analysis decomposes the ef-
fect of the additional write into two cases:

1. How the additional write from p, — ¢ affects later
operations within P (intrasequence dependen-
cies)

2. How the additional write from p, — ¢ affects op-
erations that follow execution of P in the thread
(extrasequence dependencies)
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Intrasequence dependencies. The first case examines
how adding binding p — ¢ affects the dataflow among
operations within the sequence to which p belongs.
If an operation p’ that follows p in sequence P reads
from a variable written by the delivery T.Deliver(p,
¢), then p' is dependent upon the reconfiguration
if no other operation between p and p’ overwrote
variable v. This condition is formally expressed in
the following theorem (proofs are omitted for the
sake of brevity).

Theorem 1 (Intrasequence Safety): Given an oper-
ation sequence P € P* and an operation p € P, the
binding p — ¢ can be safely added to the system only
if any variables written by p — ¢ do not overwrite the
values in the variables expected by later operations
within P. Formally, a safe configuration implies:

Vp' >, p:V = (ExecInputSig(p')
N DeliveryOutputSig(p, ¢)) NV # 0
S>WweV:dp"eP:p <pp" <pp’
N v € ExecOutputSig(p”).

In the following examples, the binding p, — ¢ is
added to the system described in Figure 2. The four
cases differ with respect to the variables written by
the new binding (i.e., DeliveryOutputSig(p,, c)). The
preceding theorem is applied to each case to deter-
mine whether the proposed reconfiguration is con-
sidered to be safe:

1. Write to z. This reconfiguration is not safe, since
it changes the dataflow dependency graph in Fig-
ure 2: p; would read the value written to z by p,,
not the value written by p, as before (Figure 3).

2. Write to y. This reconfiguration is also not safe
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Figure 3  Write to z reconfiguration

T C——E

w,z

¢

Figure 4  Write to y reconfiguration

for similar reasons: p; no longer reads the value
of y established before P executes (Figure 4).

3. Write tow. This reconfiguration is safe, since no
operation within P after p, reads from w. Since
w is an intermediate variable (not the final out-
put of P), its value will be restored when P com-
pletes; thus, the side effect of the new binding p,
— ¢ will be masked (Figure 5).

4. Write to v. This reconfiguration is also safe, since
no operation within P after p, reads from v (Fig-
ure 6).

The cases involving writing w and writing v differ in
one important respect: in the latter case, variable v
was not included in the set of intermediate thread
variables used by P, since no operation in P was
known to produce v prior to the reconfiguration.
Thus, there are two possible scenarios to consider:

* Sequence P was pushed onto the operation stack
of the thread prior to the reconfiguration, in which
case the frame stack of the thread does not con-
tain the correct value of v to restore when P com-
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pletes. Because sequence P was pushed onto the
stack with the intent of being executed in an ear-
lier configuration not containing the binding p, —
¢, it is appropriate to suppress the p, — ¢ deliv-
ery, thus preventing variable v from being over-
written as a side effect of the reconfiguration.

* Sequence P was pushed onto the operation stack
of the thread after the reconfiguration, in which
case v is known to be an intermediate value pro-
duced by P. The stack frame, therefore, contains
the correct value of v to restore when P completes.

Extrasequence dependencies. The additional bind-
ing p, — ¢ from Figure 2 can affect only operations
that follow sequence P in the execution of the thread
if p, — ¢ writes to variables in the output signature
of P. This is a necessary but not sufficient condition
for the reconfiguration to be considered safe, since
P, — ¢ can write to an output variable of P as long
as no other operation that follows P depends upon
the overwritten value (again, the notion of preserv-
ing the dataflow dependency relationships that ex-
isted before reconfiguration).
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Figure 5 Write to w reconfiguration

Figure 6 Write to v reconfiguration

Figure 7 presents an example in which operation p
executes as part of a sequence P pushed by an op-
eration g; € Q. When sequence P completes, op-
erations that follow g; in sequence Q will begin ex-
ecuting (g, in the figure). If p is the last operation
within P to write to thread variable v, and v is in the
output signature for sequence P, then the value writ-
ten to v by operation p will propagate to operations
that follow ¢ in sequence Q.

Lemma 1 (Write Propagation Outside of Sequence):
Given an operation sequence P and an operation p €
P, the value written to variable v by p will propagate
to operations that follow P if and only if no other op-
erations after p in P overwrite variable v. This condi-
tion is defined by the following predicate:

WritePropagation(v, p, P)
= v € (ExecOutputSig(p) N
SeqOutputSig(P)) /\
Vp' >pp:v & ExecOutputSig(p')
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If operation ¢ € Q pushes operation sequence P
onto the operation stack of the thread, then ¢ is
called the parent operation of sequence P. In gen-
eral, an operation sequence can have several par-
ents, given by the set parents(P) as follows:

parents(P) ={p € P:dc € C:P € c.pushOps
/\ ¢ = BindCode(p)}.

The concept of parent operations can be used to es-
tablish a “leads to” relationship between two oper-
ations and between an operation and a sequence:

°* q ~ P & g € parents(P)
eq~p&p€EP/Nq E parents(P)

Finally, p % ¢ denotes a transitive chain of “leads
to” relationships, meaning that the execution of op-
eration p brings about the execution of operation ¢q
in either one step (i.e.,p ~> g = p > q) or several
steps (i.e., p 5q /\ q = r = p % r). The “leads
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Figure 7 Output variable v propagates after being written by operation p
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to” relationship is needed to determine the extent
to which a reconfiguration affects other operations.
If ¢ % p, then changes to the binding of p can prop-
agate to operations that follow g as expressed in
Lemma 2, presented below. The dataflow dependen-
cies for each operation that leads to p must be
checked in order to determine whether a reconfigu-
ration is safe.

Continuing with the example in Figure 3, let oper-
ation r € R push sequence Q onto the operation
stack of the thread when r executes; thus, r - p.
The value in variable v that exists after operation g
executes (g being the operation that pushed se-
quence P) will propagate to operations that follow
r in sequence R if and only if the remaining oper-
ations in Q do not overwrite v and v is part of the
output signature of sequence Q. This propagation
continues up the % chain as long as these two con-
ditions hold at every step; as soon as one of the con-
ditions is violated, checking can stop, since the value
in v will not propagate further.”

Lemma 2 (Generalized Write Propagation): Given
an operation sequence P for which r - P, the value
written to variable v by operation p € P propagates
to operations that follow r if and only if the following
condition holds:

WritePropagation™®(v, p, P, r)

WritePropagation(v, p, P), forr~p
=1 g E parents(P):r S q~>p/ g€ Q>
WritePropagation(v, p, P) /\ otherwise

WritePropagation*(v, q, Q, 1),

Proof rationale. The WritePropagation™ predicate
is intended to be a generalization of the
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WritePropagation predicate introduced in Lemma
1. When r is an immediate parent of p (i.e., r ~
p), Lemma 1 can be directly applied.

If r % p forms a multistep chain (see Figure 8),
then WritePropagation™ is recursively defined. The
intuition is that the write to variable v performed
by operation p will propagate back to operation
r if there is at least one path of propagation,
namely a path through operation ¢ in which g is
the parent operation of p. The write propagates
from p to r if the write propagates outside se-
quence P, denoted by WritePropagation(v, p, P),
and if the write propagates from ¢ to r, denoted
by WritePropagation™(v, q, Q, r).

If the value in v propagates back to sequence R in
Figure 7, then a reconfiguration that overwrites v
can be considered safe as long as future operations
in R do not read the overwritten value in v. This is
the essence of the following theorem: a reconfigu-
ration is considered safe only if either (1) the effects
of the new binding do not propagate to sequence R
(where r % p and r € R) or (2) the effects of the
new binding propagate to sequence R, but no op-
erations within R read from the overwritten variable.

Theorem 2 (Extrasequence Safety): Given an oper-
ation sequence P € P* and an operation p € P, the
binding p — ¢ can be safely added to the system only
if any variables written by p — ¢ do not overwrite the
values in the variables expected by later operations that
follow P. Formally, a safe reconfiguration implies:

VRe U c.pushOps:Vr€R : r 5 p

ceEC

>(Yv €V : =WritePropagation*(v, p, P, r)
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Figure 8 Value written by operation p propagates back to sequence R through intermediate sequence Q
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Proofrationale. All operations that lead to p must
be examined to determine whether the reconfigu-
ration is safe. Only those operations r that exist
in operation sequences pushed by code blocks are
considered (r € R, where R € U . c.pushOps).
For each of these operations, one of the follow-
ing two conditions must hold for each thread vari-
able for the reconfiguration to be considered safe:

1. The value written by p from sequence P must
not propagate back to those operations that fol-
low r in sequence R (-~ WritePropagation™(v, p,
P, r)). If the value does not propagate, then
operations that follow r will not be affected by
the reconfiguration.

2. Ifthe value propagates to sequence R, then op-
erations that follow r in R are checked to see
whether they read from the variable written by
p (v € ExeclnputSig(r'), where r’ > r). If
such an operation " is found, then the recon-
figuration can be considered safe only if there
is another operation betweenr andr’ that over-
writes the value in v (i.e., 7’ does not read the
value in v established by operation p).

Theorem 3 (Safe Reconfiguration Criteria): Adding
a new binding p — c to the system is considered safe
if and only if the new binding satisfies both the Intrase-
quence Safety and Extrasequence Safety properties.

Impact on element state. The previous subsection
established the conditions under which a reconfigu-
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ration can be considered safe from the standpoint
of thread state. In addition to thread state, the sys-
tem also contains state variables found in the ele-
ments. Operations in the threads can manipulate
state variables as they execute, so changing the bind-
ings of operations to elements can impact the
changes that are brought about in the element state.

Recall from the subsection on concurrency that
threads lock an element before an operation deliv-
ery to ensure mutually exclusive access to the ele-
ment. The element is unlocked after the delivery,
permitting other threads to operate on the element.
For example, the execution of an operation sequence
P = (pi, p,, p3) with operation-to-element bind-
ings® p; — e, p» — e,, and p; — e, is shown in
Figure 9A. State changes to the elements are atomic
only with respect to a single operation delivery. An-
other thread, for example, can deliver an operation
to element e, in Figure 9A between operations p,
and p;.

Figure 9B shows how multidelivery locks can be used
to extend atomicity across several operation deliv-
eries. In this case, the lock action indicates that the
lock for each element is not released after delivery
until the unlock is reached, at which point all the
element locks in the block are released.”!"® With mul-
tidelivery locks, dataflow dependencies among ele-
ments can be established within each lock/unlock
block. Outside these blocks, the element dataflow
dependencies cannot be determined, since other
threads can overwrite the element state between op-
eration deliveries. Once the dataflow dependencies
are established within the lock/unlock blocks, the
analysis for determining a safe reconfiguration is sim-
ilar to the procedure outlined earlier in the subsec-
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Figure 9  (A) Default locking for each operation delivery; (B) element locks held across several deliveries

(A) [lock eq], p1, [unlock eq], [lock e5], po, [unlock eo], [lock e4], p3, [unlock eq]

(B) [lock], p4, po, p3, [unlock]

tion, “Impact on thread state,” but space consider-
ations preclude a detailed examination of the criteria.

Reconfigurations in practice

The safe reconfiguration criteria presented in the
previous section require only static information for
input (namely, the current and proposed configu-
rations expressed as BindCode functions). Thus,
these checks can be performed off line while the sys-
tem executes. This section briefly describes exam-
ples in which reconfiguration is useful and how the
safe reconfiguration criteria can be employed. It then
describes a reconfigurable software-implemented
fault-tolerant environment developed using these
ideas.

Example applications of reconfigurability. The fol-
lowing are three types of applications in which the
model is useful in determining the safety of a pro-
posed reconfiguration:

1. Different execution phases for long-running ap-
plications. Some long-running applications re-
quire functionality that varies according to their
phase of execution. A spacecraft sent to explore
one of the outer planets in the solar system, for
example, spends most of its time traveling to reach
the target planet. While in this cruise mode, power
must be conserved, and the demands on the sys-
tem are few. When the spacecraft reaches the
planet, however, it must perform several tasks,
such as collecting data, taking pictures, navigat-
ing a fly-by of the planet, or controlling its own
descent and landing. These phase-specific code
blocks can be activated only when necessary
through the reconfiguration concepts outlined in
this paper. Since the number of phases and the
transitions between phases is known at design
time, the systems engineer can apply the safe re-
configuration criteria during the development cy-
cle to verify that the intended transitions are safe.
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2. On-line software upgrades. Since software up-
grades involve changing the code that applications
execute, on-line software upgrades can be viewed
as reconfigurations to the system. Before the up-
grades are made, the safe reconfiguration crite-
ria can be used to ensure that the proposed up-
grade is compatible with the existing configuration
of the software.

3. Adaptivity. Some application domains require
that the software adapt to changing conditions in
the environment of the application. Middleware
that provides fault tolerance to distributed appli-
cations, for example, may need to adjust the level
of service it provides to the application depend-
ing upon the observed error behavior. Software
structured around the system model presented in
this paper facilitates this adaptation.

Reconfiguration can be used to transform the
computation of the application to take advantage
of various mechanisms of fault tolerance (e.g., in-
cremental checkpointing of element state,'" al-
ternate implementations of an element that em-
ploy design diversity to mitigate the effects of
software bugs, and backup elements that store re-
dundant copies of the data). The safe reconfigu-
ration criteria can be used to show that the ad-
ditional fault tolerance mechanisms do not disrupt
the normal computation performed by the appli-
cation.

Reconfigurable SIFT environment. We have devel-
oped a software-implemented fault-tolerant (SIFT)
environment by employing the proposed formal sys-
tem model. The SIFT environment consists of ARMOR
processes, which provide error detection and recov-
ery services to themselves and to user applications. >
Because ARMOR processes are designed around the
system model presented in this paper, the SIFT envi-
ronment can be customized—even during run
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time—to the particular dependability needs of the
application.

The ARMOR-based SIFT environment was used for
managing parallel scientific applications executing
on a computing test bed at the Jet Propulsion Lab-
oratory. " Extensive fault injection testing revealed
that it is essential for the SIFT environment to be pro-
tected against errors in order to provide adequate
fault-tolerance services to the application. The re-
configurability concepts introduced in this paper
were applied to incorporate fault tolerance into the
ARMOR processes as follows:

1. Microcheckpointing'! was transparently added to
the ARMOR processes to protect the state of the
SIFT environment. The partitioning of the system
state into elements permitted incremental check-
points to be taken on an element-by-element ba-
sis. The microcheckpointing algorithm exploited
the fact that state changes brought about by an
operation delivery were confined to a single el-
ement and thread, thus making transparent
checkpointing possible.

2. Assertion checks were added to strengthen error
detection. These assertion checks were inserted
during run time by dynamically changing the bind-
ings of selected operations to pass through the
assertion before being delivered to the original
element. This construct was particularly useful in
implementing range or sanity checks on inputs.

The safe reconfiguration criteria were applied in both
of these cases to show that the added fault tolerance
mechanisms did not disturb the existing functional-
ity of the SIFT environment, which included running
the scientific applications, recovering from applica-
tion failures, recovering from node failures, and mon-
itoring resource usage.

Conclusion and related work

This paper has presented a model that captures the
structure (defined by elements) and run-time behav-
ior (defined by operations) of a system. An execut-
ing code block can bring about state changes only
within a single element and thread. The extent of
these state changes are represented in a signature
for the code block, and the collective set of signa-
tures in the system can be used to analyze the de-
pendencies that exist among operations and among
elements.

By indirectly invoking code blocks through opera-
tions, the behavior of the system can be reconfig-
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ured by changing the operation-to-code block bind-
ing. Indirection can be achieved statically through
designs such as the Polylith software bus,'* in which
components are interconnected through a mediator.
The bindings of operations to code blocks is some-
what similar to a publish-and-subscribe event sub-
system, except that operations are not asynchronous.
Operations execute sequentially and, therefore, more
closely resemble instructions that execute in a vir-
tual machine architecture described by the proposed
system model.

Architectural description languages (ADLs) are pop-
ular in describing the structure of a system.>'7 ADLs
model the system at a conceptual level, using port-
based connections between components to define the
system structure. Some incorporate semantics that
describe the behavior of the components and con-
nectors, including constraints in their usage. Our
model, in contrast, is rooted in the implementation
of the system and is a bottom-up approach in which
the programmer describes the behavior of code
blocks through the use of per-block signatures. These
signatures are processed in an automated fashion to
construct dependency relationships between the sys-
tem components. Additional code blocks can be de-
signed without the need to formally incorporate them
into a larger architectural description model—only
the signatures for the new code blocks are required
to apply the safe reconfiguration criteria presented
earlier.

Nevertheless, several ADLs express dynamic recon-
figurations at the architectural level. Darwin, for ex-
ample, addresses the problem from a structural per-
spective by allowing components to be instantiated
during run time,'® but reconfigurations only occur
while the system is quiescent to preserve consistency.
Wright permits the architectural topology of the sys-
tem to change during run time in response to spe-
cial control events, which are distinguished from the
usual communication events that drive its compo-
nent behavior.” It has also been suggested that ar-
chitectural styles and models can be incorporated
into the adaptation framework of self-repairing sys-
tems as first-class entities.? The architectural styles
are used to determine what aspects of the system
should be monitored and how to reconfigure the sys-
tem within predetermined constraints.

Shrivastava and Wheater describe a reconfigurable
workflow model that provides run-time support for
interconnecting the 1/0 of executing tasks.?' Although
the work outlines the infrastructure that supports re-
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configuration, there is no mention of how to judge
whether a proposed reconfiguration can be consid-
ered safe given the current configuration of the sys-
tem. Reconfiguration compatibility issues have been
addressed with respect to real-time control applica-
tions in Feiler and Li,? but this analysis requires
knowledge of the semantics and permissible behav-
ior of the application.
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