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Mirroring and replication are common
techniques for ensuring fault-tolerance and
resiliency of client/server applications.
Because such mirroring and replication
procedures are not usually automated, they
tend to be cumbersome. In this paper, we
present an architecture in which the
identification of sites for replicated servers,
and the generation of replicas, are both
automated. The design is based on a self-
configuring mesh of computers and a
communication mechanism between nodes
that operates on a rooted spanning tree. A
query-search component uses JavaTM

language-based query capsules traveling
along the branches of the spanning tree, and
a caching scheme whereby the query and
previous search results are cached at each
node for improved efficiency. Furthermore, a
security and anonymity component relies on
one or more authentication servers and an
anonymous communication scheme using link
local addresses and indirect communication
between the nodes via the spanning tree. The
architecture also includes components for
resource advertising and for application
replication.

Most networked applications are currently imple-
mented using a client/server computing model. A
server with a well-known address hosts the applica-
tion, while different clients access it over the network.
Typically, the server (or a set of servers) will be lo-
cated at a single site, and the overall performance
of the application will depend upon factors such as

the speed of the network between the client and the
server, the computing power at the hosting site, and
congestion in the network. The concentration of serv-
ers at a single site also reduces the ability of the ap-
plication to withstand failures. In order to improve
the availability and reliability of a system, distributed
architectures incorporating replicas and mirrors are
frequently used. However, the process of replication
and mirroring is usually manual and, due to the com-
plexity in the control and management of the sys-
tem, somewhat cumbersome. An autonomic repli-
cation and mirroring facility would significantly
simplify the process of replication and would improve
the availability of applications.

In this paper, we describe the highly scalable dis-
tributed architecture SRIRAM (Scalable Replication
Infrastructure using Resilient Autonomic Meshes),
which is designed to dynamically create replicas of
applications for resilient operation. The basic idea
behind SRIRAM is that several computers are avail-
able at any given time on the network, and an ap-
plication deployed on one of the machines can be
mirrored and run on any other machine that is avail-
able and capable of providing the same service. All
the computers are connected in a mesh with self-
managing properties. A machine hosting an appli-
cation uses the communications overlay (an appli-
cation-level communication network that overlays
the mesh) to transmit the application’s replication
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requirements, identify potential replicas, and con-
figure the replicas to start a copy of the application.
Clients search for one of the replicas of any appli-
cation in which they are interested, and invoke the
services of that application from the replicated copy.

The autonomic replication infrastructure provided
by SRIRAM can be used in various scenarios, but is
most relevant in the context of peer-to-peer net-
works,1,2 content distribution networks,3,4 and Grid
computing.5 The basic SRIRAM architectural com-
ponents can be used to improve the underlying com-
munication infrastructure (resiliency to faults, in-
creased availability, etc.) in each of these contexts,
with the application replication mechanism as a spe-
cific feature provided within each of these operat-
ing environments.

The rest of the paper is structured as follows. In the
next section we give an overview of the SRIRAM ar-
chitecture. In the following four sections we discuss
each of the major components of the architecture
as well as the types of applications that can exploit
the replication support provided by SRIRAM. In the
remaining two sections we review related work, and
then we present our conclusions and directions for
future research.

Architecture overview

The SRIRAM architecture, which includes five major
components, is illustrated in Figure 1. The mesh cre-
ates a network interconnecting all machines partic-
ipating in the system. A flexible and efficient query-
search mechanism is built on top of the network.
Security and anonymity controls round up the com-

munication infrastructure consisting of the bottom
three components. The upper two layers are a spe-
cific use of this infrastructure. The query-search
mechanism facilitates the resource advertising by the
participants on the mesh. The resource advertising
facility is used for automatic search and for creation
of replicas.

The autonomic mesh component consists of a self-
configuring network interconnecting all machines in
the system. This layer supports a broadcast mech-
anism that allows all the participating machines to
communicate in an efficient, scalable, self-configur-
ing, and self-healing manner.

The query-search component supports basic search
primitives that allow participants to search for in-
formation about other participants within the
SRIRAM system. SRIRAM uses a system based on ac-
tive programs (Java** language-based query cap-
sules), which enables a flexible and efficient search
mechanism. Caching is used to improve the respon-
siveness of the system.

The security/anonymity component provides for com-
munication with other peers while preserving the an-
onymity of the requester or the respondent. Secur-
ity and access control within SRIRAM is based on
digital certificates issued by trusted authentication
servers. The resource advertising component allows
a participating machine to describe the resources re-
quired for replicating the applications running on
it, and for possible replicas to indicate their resource
availability.

Finally, the application replication component pro-
vides the basic functions for replicating the code and
data of applications, and for maintaining the proper
consistency of application data among the different
mirrors. Each one of these components is described
in more detail in subsequent sections.

Autonomic mesh algorithm

The autonomic mesh component within SRIRAM pro-
vides an overlay that interconnects all of the partic-
ipating machines so that they may communicate with
each other. This function is similar to the overlays
created in distributed peer-to-peer networks like
Gnutella2 that enable group communication among
all participants. However, Gnutella and similar sys-
tems use a flooding scheme for their group commu-
nication, which consumes a significant amount of net-
work and node resources. In SRIRAM, we have opted

Figure 1 The SRIRAM architecture
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for a scheme that builds a rooted spanning tree
among all the participants and attempts to minimize
the number of messages exchanged for any given
query.

The use of a rooted spanning tree has its own set of
problems. The traditional distributed algorithms for
creating a spanning tree are relatively slow and com-
plex, and are thus impractical for our needs. Fur-
thermore, nodes that are nearer the root of the
rooted spanning tree are likely to see more traffic
than nodes at the leaves of the tree. The tree is also
more likely to be disrupted when a machine leaves
or joins the system.

To accelerate the process of spanning tree creation,
SRIRAM uses a semi-distributed scheme similar to
that used in YOID.6 In the semi-distributed scheme,
SRIRAM deploys a number of hint-servers within the
system. The hint-servers store a limited amount of
information about the participants, and the infor-
mation is not guaranteed to be up-to-date. A par-
ticipant wishing to join the system communicates with
the hint-servers in order to obtain the identities of
possible nodes in the existing spanning tree to which
it can connect.

To solve the problem of increased load on partic-
ipants near the root of the tree, a ranking scheme
is used. Each participating node in SRIRAM computes
a rank for itself. A rank is a measure of the com-
puting capability of the node. For computational
ease, the closer the node is to the center of spanning
tree activity, the lower its rank. The root of the span-
ning tree is the node with the lowest rank. In addi-
tion, the rank computation also involves the inverse
of a weighted combination of its CPU speed, avail-
able disk space, memory size, and speed of its net-
work interfaces. Ranks impose a strict ordering on
the participants in the tree, and ensure that no cy-
cles can form in the constructed tree.

For efficient tree creation and restructuring, a new
machine is only allowed to join the tree by choosing
a parent from among existing participants with ranks
lower than itself. This provides a simple, yet effec-
tive, scheme for eliminating cycles in the spanning
tree. The selected participant becomes the parent
of the new node. When a participant leaves the tree,
its children join the parent of the departing machine.
If an orphaned child node does not succeed in join-
ing any node, it then increases its own rank and con-
tacts the hint-server for a list of possible parents. The

steps in the creation of the spanning tree are de-
scribed below in further detail.

Joining the tree. When a new machine is about to
join a tree (this is known as the registration phase),
it computes its rank and contacts the hint-server to
obtain a list of machines with ranks slightly lower
than the computed rank. It then contacts each of the
machines in the list and requests that it become its
parent. A machine in the list may accept the request
only if it has a lower rank than the newcomer. In ad-
dition, it may refuse to accept new children beyond
a certain preconfigured limit, or it may no longer be
up. The delay in obtaining a response from the ma-
chine is used to estimate the round-trip delay be-
tween the potential parent and the newcomer. The
newcomer joins (as child) the machine with the low-
est latency that responds positively to its join request.
If no machine in the list responds positively, the new-
comer doubles its computed rank and obtains a new
list from the hint-server. If a newcomer has a rank
smaller than the current root, the hint-server returns
a special code to both the current root machine and
the newcomer, asking that the newcomer become
the new root of the spanning tree as the parent of
the existing root machine.

Tree improvement algorithm. The node that a new-
comer initially selects as its parent may not be the
best choice for the system. In order to continually
improve the structure of the spanning tree, each node
periodically obtains a list of its siblings (the other
children of its parent) and the name of its grand-
parent (the parent node of its parent node). It then
assesses the latency and the feasibility of these ma-
chines to become its parent. If a machine with lower
rank and latency is found, then the node switches
over to the new parent. The tree improvement pro-
cess is an ongoing procedure that tries to optimize
the spanning tree configuration, which—given the
dynamic arrival and departure of nodes—could oth-
erwise deteriorate over time.

Data structures at the hint-servers. Each hint-server
in SRIRAM maintains a data structure containing a
partial list of the current participants in the system.
The participants are maintained in a fixed-size list,
sorted according to their ranks. A participant is first
entered into the list when, as a newcomer, it queries
the hint-server for joining the tree. During the reg-
istration phase, each participant indicates the num-
ber of children it is able to support. If the number
of children is nonzero, the participant is entered into
the list. If the capacity of the list is exceeded, the
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participant with the highest rank is removed from
the list. At the time of a join request, a set of K par-
ticipants is randomly selected from the next 2K par-
ticipants with rank higher than the newcomer and
returned to the newcomer. Here K is a configura-
tion parameter for the hint-server, with a default
value set to be the smaller of 10 and one-hundredth
of the number of participants in the system. After
a participant’s name has been given out more than
2K times, it is removed from the data structure.

The hint-server does not keep track of the nodes’
status as they join or leave the system. Therefore,
the information provided by the hint-server may be
out-of-date, and the participants use the schemes de-
scribed previously to work around such inaccurate
information. Since there is no need to maintain con-
sistent information, a single hint-server can easily
support thousands of participants with the only con-
straint being the amount of storage set aside for its
data structures.

Handling tree partitioning. Partitioning of the tree
is handled by a relatively simple scheme. Each node
maintains the identity of the root of the tree to which
it belongs. Each root node periodically sends out a
message broadcasting its identity along the branches
of the tree. The identity of the root is compared in
messages exchanged to monitor response times in
the tree improvement algorithm. When a node de-
tects that another node in the system has a different
notion of the identity of the root node, a root con-
flict resolution message is sent up to the parents of
each node. The root conflict resolution continues up
to the roots of the two trees, and the two roots join
together with the higher ranked root becoming a
child of the lower ranked root. The ranking criteria
used by SRIRAM have the effect of establishing well-
connected, more powerful nodes as the root node.
The root conflict resolution messages are expected
to be generated relatively infrequently.

Self-configuration of the autonomic mesh. For
proper operation of the autonomic mesh, each par-
ticipant node needs to obtain values for a number
of configuration parameters. Examples of such pa-
rameters are the frequency at which each node
probes its neighbors for tree climbing, the weights
used to compute the rank of a participant, and the
maximum lifetime of a message sent on the mesh.
Other components of the system described later in
the paper also need specific configuration param-
eters, for example, the types of query-capsules that
are defined within the system, the identity of certif-

icate servers, and so on. Although each node could
choose its own value for a configuration parameter,
this would make the entire process more complicated
and more difficult to manage.

In order to automate the configuring process, it is
assumed that the configuration parameters of an op-
erational SRIRAM system are managed at a central
point by an “operator” of the system. The operator
maintains a copy of the configuration at the hint-
server, and signs it using its public key. The public
key and the identity of the operator are available in
the digital certificate of the operator. Each partic-
ipant can obtain a copy of the configuration from
the hint-server. The owner of each participant is free
to modify the values of its parameters. Alternatively,
when a participant attaches, as child, to a new neigh-
bor on the spanning tree, it can obtain the config-
uration information from the neighbor, validate the
signature of the operator, and then use the config-
uration. The configuration distribution process
makes the participating node largely self-configur-
ing (except for those participants who wish to over-
ride the operator-specified configuration).

Query-search mechanism

A client node that wishes to locate a resource,
whether a file or a service, sends a query along the
spanning tree. The query is encapsulated in a query
capsule, which is a piece of Java code that, when ex-
ecuted, will match the search criteria provided by
the client node against the resources located at the
node on which it is being executed. This query cap-
sule is propagated by each node along all the
branches of the spanning tree (except the one that
sent the query) and executed at each node it tra-
verses. When a node finds a match for the query, it
sends a positive response containing its location back
along the spanning tree toward the client node. Each
intermediate node that receives this positive response
caches both the query and the location of the re-
source so subsequent searches for the same resource
will receive a speedier response. If an intermediate
node receives multiple positive responses, it may
choose to cache some number of them and return
the list in response to subsequent queries.

This concept of query capsules is borrowed from ac-
tive network schemes and permits the formulation
of generic queries. Unfortunately, allowing query
capsules to execute on nodes presents both security
and performance issues. SRIRAM handles this by pro-
viding a set of standard query capsules and by al-
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lowing each node to restrict the execution of other
arbitrary query capsules. The standard query cap-
sules can contain both simple query capsules and
complex query capsules. A simple query capsule may
search the contents of a file looking for a key word
match, whereas a complex query capsule may use
more sophisticated techniques to search for re-
sources that provide a specific Web service, for ex-
ample. It is assumed that all nodes will permit ex-
ecution of the standard query capsules, so a client
node wishing to conduct a search using one of these
standard query capsules need only provide the pa-
rameters to that capsule in its search query.

Once a positive response has been cached at an in-
termediate node, any subsequent queries arriving at
the node will first be checked against the cache. If
the query capsule appears in the cache, or the query
can be answered using the results of a query found
in the cache, then this node will contact the node
listed in the cache as the location of the resource,
in order to ensure the information is still valid. If
the cache entry is still valid, the intermediate node
will send a positive response containing the location
of the resource to the client that originated the search
and stop further queries from flooding the spanning
tree. For popular search topics, caching can thus con-
siderably reduce the number of search messages and
save both network usage and query capsule execu-
tions at various nodes.

When a client receives a positive response to its
query, it may contact the node offering the resource
either directly or indirectly to obtain the needed files
or invoke the desired service. When the resource pro-
vider node is contacted directly, the client may be
asked to authenticate itself by providing a certificate
issued by the authentication server. Anonymity on
queries is also supported, as described in the sec-
tion “Security and anonymity.”

For a simple example of a query search, see Figure
2. N1 through N7 are nodes in the spanning tree. The
client node (N1) sends a query capsule up the tree
(see path Q) and this query capsule is executed at
each intermediate node until node N5 finds a match.
Node N5 generates a positive response containing
its location and sends it back along the tree toward
the client node N1 (see path R). At each interme-
diate node (N3 and N2) the query capsule and re-
source location are cached before being forwarded.
Once the client node receives this positive response
to its search, it is free to directly (or indirectly) con-
tact node N5 and request the desired resources.

The dynamic improvement of the spanning tree can
result in the creation of temporary cycles in the sys-
tem. In order to eliminate endless looping of que-
ries, each query capsule starts with a preset time-
to-live counter, which is decremented every time the
query is forwarded by a participant, with the query
being discarded once the time-to-live counter reaches
zero.

In Figure 3 we present preliminary simulation re-
sults illustrating the benefits of caching query results
at intermediate nodes. There are two key questions
that must be answered in caching the queries: which
nodes should cache the queries, and what replace-
ment policy should control the cache mechanism. A
simple LRU (least recently used) scheme has been
assumed as the cache replacement policy. We have

Figure 2 Query-search example
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considered the following three choices for address-
ing the first issue: (1) all the intermediate nodes that
receive the query result cache the result, (2) only the
end point nodes cache the query result, and (3) an
intermediate node that receives the query result
caches it with a probability p, 0 � p � 1. We con-
sider a system with 500 nodes for this illustration and
each node is randomly assigned a rank between 0
and 500. We assume that there are one million doc-
uments available in the system. We vary the cache
size so that its capacity varies from 100 to 50000
query results.

Figure 3 illustrates the benefit of caching queries as
the normalized cache size varies from 0.0001 to 0.05.
There are two graphs, representing two different doc-
ument popularity distributions. The normalized
cache size is obtained by dividing the cache capacity
by the total number of unique documents in the sys-
tem. On the y axis, we have plotted the reduction in
the average number of messages required for sat-
isfying a query normalized by the number of mes-
sages required without caching. We observe that
there is an appreciable reduction in the average num-
ber of messages required to locate an object with
query result caching, for both Uniform and Zipf (with
Zipf parameter � 0.9) document access popularity.
We observe that the benefit is higher when the ac-
cess popularity follows a Zipf distribution. In this
evaluation, we have assumed that the cached results
are always consistent. However, in a dynamic sce-
nario, in which nodes could leave or join at any time,
cached results may not always be consistent. We are
currently evaluating how to address this problem.

Security and anonymity

In any distributed system, issues related to security
and privacy arise. When participants in a mesh are
looking for resources, or advertising the availability
of resources and services, it may be desirable to main-
tain their anonymity, or provide that information to
a selected set of participants. SRIRAM uses a certif-
icate-based system7 in order to support privacy and
anonymity in its communications.

SRIRAM supports one or more authentication serv-
ers. The authentication servers validate the creden-
tials of a participant and issue to the participant a
digital certificate. The certificate, signed with the
public key of the authentication server, includes the
identity of the participant. A separate certificate
identifies the groups to which a participant belongs.
The certificates are used as part of the challenge-

response system to authenticate participants, follow-
ing the same schemes used by TLS8 or IPSEC9 authen-
tication.

When anonymity is desired, the participants need
to hide their IP (Internet Protocol) addresses from
other participants. SRIRAM uses a scheme based on
link local addresses borrowed from the concept of
automatic network routing (ANR) proposed in some
broadband communication systems.10 Each partic-
ipant assigns a random address to its children and
parent. The mapping of the address to the real neigh-
bor in the link is only known to the local node.

Anonymous communication is always indirect, us-
ing the spanning tree, rather than direct between the
involved parties. Two chains of link local addresses
are included in anonymous communication, each
chain encoding an anonymous path from one sender
to the other. The only exceptions are anonymous
queries on the spanning tree, which are used to dis-
cover the initial chain of link local addresses to use.

A participant anonymously looking for available re-
sources will send out a query on the spanning tree.
Each participant will include the link local address
of the neighbor from which it has received the query
before forwarding it on to the other branches of the
spanning tree. The link local addresses are appended
to a growing chain of the path to the requester and
form the anonymous path back to the querying par-
ticipant. When a participant sends a response to a
query, it removes the last link local address from the
local chain, and sends the message to the neighbor
with the specified link local address. These responses
are also subject to the reverse path accumulation,
and create a reverse path to the respondent.

The anonymous communication process is best il-
lustrated by an example. Consider the system of six
nodes shown in Figure 4. Each node assigns link lo-
cal addresses to members on the spanning tree as
indicated by labels in the figure; for example, node
B has assigned label 4 to its neighbor A, label 7 to
its neighbor C, and label 9 to its neighbor E. Let us
consider the case of node A sending out an anon-
ymous query on the spanning tree. It sends the query
to node B, which creates a link-local chain begin-
ning with 4 (label assigned to A), and forwards it to
its other two neighbors C and E. C appends the lo-
cal link label of B to the chain, which now becomes
45, and forwards the query to D and F. D appends
the local link label of C, and has the accumulated
path to the sender of 453.
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Assuming that D responds to the sender, it uses the
last index 3 to send its response back to B, it strips
the index from the end of the path before sending
it to C. C notes that the response has come from link
local D, creates a reverse path of 1 and uses the re-
maining path of 45 to propagate the response. The
last link local address of 5 indicates that the response
should go to B. B uses the remaining path of 4 to
send message back to A, and appends 7 to the path
to the respondent (which is now 17). A is the final
recipient, and knows the path to the respondent (171)
without knowing that it is D who responded. For fur-
ther communication, A can use the path 171 to com-
municate with D, and D can use the path 453 to com-
municate with A, each being unaware of the other’s
identity.

In order for the anonymous communication to work,
we only need at least one of the intermediary nodes
to play by the rules and not reveal its mapping of
link local addresses to others. Each node is aware
only of the identity of its immediate neighbors, and
is not able to infer the identity of any other partic-
ipant unless all of the members of the spanning tree
along its path collude with it. As the number of par-
ticipants increases, the ability of any individual to
obtain such colluding members becomes negligible.

Resource advertising and application
replication

Before a SRIRAM node runs an application (e.g., an
instance of a transcoding service), a standardized de-
scription of the application to be run should be pro-
vided. The description includes the application type
(Web server, directory server, Web service and its
description) as well as information required for the
implementation of the service. That is, a listing of
the code and data that are required to host that ap-
plication is also included as part of the service de-
scription, as well as the configuration required for
running that application. The service description al-
lows the copying of the desired software and data
components, and the launching of another instance
of the application to be automated. The service de-
scription also includes the scripts, running at the re-
questing node, that stop and start the application at
the machine providing the service.

In addition to the software configuration, the descrip-
tion also includes values for the minimum amount
of disk space, the CPU processing power, the network
bandwidth, and any constraints on the operating sys-
tem needed to run that application. The resource

advertising module sends out a query capsule on the
spanning tree searching for nodes that may be will-
ing to host a replica of the application. The query
capsule may be sent anonymously or with creden-
tials, as specified by the configuration file.

When a participant receives the query capsule, its
resource advertisement module examines the locally
available system resources. If the available system
resources are suitable for running a replica, and if
the machine administrator allows running of repli-
cas of other applications, then the resource adver-
tising module sends a response back to the requester
indicating the resources available. The response is
sent over the spanning tree for anonymous queries
and directly to the requester for nonanonymous que-
ries. The IP address of the respondent is included in
this type of response.

The requesting node selects a fixed number of rep-
licas from all the responding participants. The heu-
ristic used gives preference to machines with the larg-
est weighted combination of available resources and
the largest absolute numeric difference in IP ad-
dresses. The application replication module is then
invoked to create a replica of the application.

The replicas are created by copying the contents of
the software and configuration files and by starting
the application using the specified script. SRIRAM al-
lows the configuring of the replication to operate in
one of two modes.

● Concurrent execution: An instance of the appli-
cation is launched on all the new replicas.

Figure 4 Anonymous query search
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● Standby execution: New replicas receive a copy of
the code, data, and software needed by the ma-
chine. The replicas exchange periodic keep-alive
messages with the original node. An instance of
the application is only launched on the replica
when the original node goes down.

Furthermore, if a data-synchronization script is spec-
ified in the standard configuration, the script is ex-
ecuted by each of the replicas in order to obtain the
latest data changes from the original application
node in both of these modes.

If a node with replicas in the system leaves and then
rejoins the network, it searches for the existing rep-
licas in operation by floating a query on the span-
ning tree. The replicas that it discovers cooperate
with the node in order to synchronize the code and
data. The synchronization process can also be per-
formed at periodic intervals, as determined by the
originating node.

The SRIRAM architecture can be used to support au-
tomated replication of many different types of ap-
plications. Following are some of the common ones.

● File and video servers: It is a common practice to
use multiple mirrored sites for providing scalable
and resilient HTTP (HyperText Transfer Protocol)
service, FTP (file transfer protocol) service, and
other services with relatively static content. An in-
stance of an application running on a machine,
along with its associated data content, can auto-
matically be replicated to other nodes in SRIRAM.

● Web services: Web services11 use the common par-
adigm of exporting a WSDL (Web Services Descrip-
tion Language) interface for the operations that
they support. For most common Web services, a
description of the code components (Java classes,
beans, etc.) needed for running the Web service
is also required. Such a description, and specific
software requirements (e.g., a Tomcat server,12 or
the need for JDK** 1.3.1 operating environment)
can be advertised and replicated. The presence of
replicas can be documented by the replicas them-
selves in the UDDI directory, which provides a cat-
alog of services.

● Database applications: Applications that make
heavy use of dynamically changing data in large
databases are hard to replicate due to the over-
heads associated with synchronizing distributed
state. For such applications, the replication pro-
cess would primarily consist of creating hot stand-
bys that can take over in the case of primary sys-

tem failure. The application software and database
replication process can be created automatically
on the replicated sites. The replicas will only be-
come operational in the case of failure.

Related work

Earlier work on overlay broadcast and multicast ar-
chitectures covered a number of approaches, includ-
ing centralized directory servers,13–15 flooding-based
solutions2,16 that are typically inefficient, slow distrib-
uted spanning tree formation,17 or requiring volu-
minous state information in each node.18 Other work
has focused on efficient lookup mechanisms.19–21

These, however, require exact identifiers for their
lookup algorithms, which cannot handle the rich que-
ries (e.g., queries using wildcards) desired. Work on
application-layer multicast (e.g., References 6, 22,
23) was primarily directed toward building and main-
taining efficient overlay meshes, without consider-
ations of application replication and anonymity. The
spanning tree algorithm in Reference 6 does not ac-
count for the network and other resources available
at each node in the tree construction. While the ap-
proach in Reference 22 improves the tree construc-
tion process of Reference 6 by first considering a
mesh formation and then constructing the tree, it
still does not provide a spanning tree in which more
powerful nodes are placed higher up in the tree. Also,
the algorithm requires significant state management
at each node for constructing the spanning tree. Our
approach, in contrast, is self-managing, with limited
reliance on fixed well-known servers, requires a mod-
erate amount of state information at each node, pro-
vides fast and efficient operation, and explicitly
includes support for availability, security, and ano-
nymity.

Conclusion and future steps

In this paper, we have described SRIRAM, a system
that automates the process by which applications can
be replicated in a distributed environment. Any ap-
plication whose availability is improved by the pres-
ence of replicas can benefit from such an automated
mechanism. This would include applications that are
based on relatively static (or slowly changing) data
and do not require very stringent synchronization of
the data that they use. The bulk of applications that
are available today over the Web, including appli-
cations for personalization and transformation of
content, fall into this category. The applications that
do not benefit from replications are those that op-
erate on highly volatile data and require strict syn-
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chronization among the operation of replicas, or use
such voluminous data that automated replication be-
comes too inefficient.

There are several issues that need to be addressed
for improving the efficacy of the architecture. First,
we are evaluating several alternatives for maintain-
ing hints at the hint-servers. Our goal is to design
better hint allocation schemes in which few hints be-
come obsolete and which result in better spanning
tree formation. Second, we are addressing the per-
formance issues in the context of a node joining or
leaving the mesh: the overhead in updating the tree
and accounting for dynamic membership of nodes.
Third, we are exploring a better replication scheme
which is not purely push-based, but rather a hybrid
scheme that combines it with pull-based replication
in order to reduce the overhead.

We are currently in the process of implementing a
prototype of this architecture and refining the ar-
chitecture so that it can provide enhanced functions
in the future. Some of the functions that we want to
incorporate in an extended architecture include the
means for authentication of the software running
SRIRAM, schemes to bypass portions of the spanning
tree in a search, and methods to support multiple
spanning trees with different roots. We are also look-
ing at other applications of the SRIRAM architecture,
such as the development of highly scalable directory
services.

**Trademark or registered trademark of Sun Microsystems, Inc.
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