08 MARKL, LOHMAN, AND RAMAN

LEO: An autonomic
query optimizer
for DB2

Structured Query Language (SQL) has
emerged as an industry standard for querying
relational database management systems,
largely because a user need only specify what
data are wanted, not the details of how to
access those data. A query optimizer uses a
mathematical model of query execution to
determine automatically the best way to
access and process any given SQL query.
This model is heavily dependent upon the
optimizer’s estimates for the number of rows
that will result at each step of the query
execution plan (QEP), especially for complex
queries involving many predicates and/or
operations. These estimates rely upon
statistics on the database and modeling
assumptions that may or may not be true for
a given database. In this paper, we discuss
an autonomic query optimizer that automatically
self-validates its model without requiring any
user interaction to repair incorrect statistics or
cardinality estimates. By monitoring queries
as they execute, the autonomic optimizer
compares the optimizer’s estimates with
actual cardinalities at each step in a QEP,
and computes adjustments to its estimates
that may be used during future optimizations
of similar queries. Moreover, the detection of
estimation errors can also trigger
reoptimization of a query in mid-execution.
The autonomic refinement of the optimizer’s
model can result in a reduction of query
execution time by orders of magnitude at
negligible additional run-time cost. We
discuss various research issues and

0018-8670/03/$5.00 © 2003 IBM

by V. Markl
G. M. Lohman
V. Raman

practical considerations that were

addressed during our implementation of a first
prototype of LEO, a LEarning Optimizer for
DB2® (Database 2™) that learns table access
cardinalities and for future queries corrects
the estimation error for simple predicates by
adjusting the database statistics of DB2.

The remarkable growth of the relational database
management systems (DBMS) industry over the last
two decades can be largely attributed to the stan-
dardization of its Structured Query Language, SQL.
SQL is a declarative language, that is, it requires the
user to specify only what data are wanted, leaving
to the query optimizer of the DBMS the difficult prob-
lem of deciding how best to access and process the
data. For a given SQL query, there may be many dif-
ferent ways to access each table that is referenced,
to join those tables, and, because the join operation
is commutative, to order those joins and perform
other operations necessary to complete the query.
Hence, there may be hundreds or even thousands
of possible ways to process a given query correctly.
For example, suppose the SQL query is:

SELECT name, age, salary
FROM employees

©Copyright 2003 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003

WHERE age > 60 AND city = 'SAN JOSE' AND
salary < 60,000

This query asks for the name, age, and salary of each
employee who is over age 60, lives in San Jose, and
makes less than $60,000 annually in salary. Each fil-
tering condition in the WHERE clause that is joined
by AND is called a predicate. Since this query refer-
ences only one table, there are no choices of join or-
der or join method, yet the optimizer still may con-
sider many possible ways for the DBMS to process
this simple query. It can always sequentially scan all
the rows in the table and apply each predicate to each
row. Or, if the appropriate indexes exist, it could ex-
ploit one or more indexes to access only the rows
satisfying one or more of the predicates. For exam-
ple, an index on age would permit accessing only
those rows where the value of age is greater than 60
and then applying the other predicates (on city and
salary). Alternatively, an index on city would limit
the access to those rows having city equal to “San
Jose” and subsequently applying the other predicates
(on age and salary) to those rows retrieved. Alter-
natively, indexes on multiple columns, for example
a combined index on city and age, or a combined
index on city and salary, might be exploited, if they
existed, or strategies combining any of the indexes
discussed above (so-called “index ANDing”). Which
strategy might be preferable depends upon the char-
acteristics of the database, the availability of vari-
ous indexes, and how selective each predicate is, that
is, how many rows are satisfied by each condition.

Most modern query optimizers determine the best
query execution plan (QEP, or simply plan) for ex-
ecuting an SQL query by mathematically modeling
the execution cost for each of many alternative QEPs
and choosing the one with the lowest estimated cost.
The execution cost is largely dependent upon the
number of rows that will be processed by each op-
erator in the QEP, so the optimizer first estimates this
incrementally as each predicate is applied. Estimat-
ing the cardinality (i.e., number of rows) of a result,
after one or more of the predicates have been ap-
plied, has been the subject of much research for over
20 years.'™ To avoid accessing the database when
optimizing queries, this estimate typically begins with
statistics of database characteristics, specifically, the
number of rows for each table. The cardinality of
each intermediate result is derived incrementally by
multiplying the base table’s cardinality by a filter fac-
tor—or selectivity—for each predicate in the query,
which is derived from statistics on the columns af-
fected by that predicate, such as its number of dis-

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003

tinct values or a histogram of its distribution. The
selectivity of a predicate P effectively represents the
probability that any row in the table will satisfy P,
and that selectivity depends upon the characteris-
tics of the database. For example, in the query above,
the predicate on city might be quite selective if the
database were a worldwide database of a large, mul-
tinational company, but it might be a lot less selec-
tive if the database contained all the employees of
some small start-up firm centered in San Jose. For
the latter case, the predicates on age and/or salary
would be more selective. The optimizer would tend
to favor QEPs that could exploit indexes to apply the
most selective predicates and QEPs that utilize sim-
ple table scans if there were no indexes, or if the op-
timizer estimated that most employees would sat-
isfy all of the predicates. In DB2* (Database 2*), the
choice of QEP is based solely upon the detailed cost
estimate for each of the competing plans, and not
upon such simplistic heuristics.

When there are multiple tables in the FROM clause
of the query, the number of alternative strategies
considered by the optimizer increases exponentially,
because the myriad choices mentioned above are
compounded with additional decisions about the or-
der in which tables are joined and the method by
which they are joined. DB2, for example, supports
three major types of join method, and there are sev-
eral variants within each of these. For a two-table
join with a handful of predicates, the DB2 optimizer
might consider over a hundred different plans; for
six tables, the number of plans could be well over
a thousand! The DB2 optimizer considers all of these
alternatives automatically for the user, who is not
even aware that it is going on!

Although query optimizers do a remarkably good job
of estimating both the cost and the cardinality of most
queries, many assumptions underlie this mathemat-
ical model. Examples of these assumptions include:
currency of information, uniformity, independence
of predicates, and a principle of inclusion.

Currency of information: Updating the statistics each
time a row is updated or deleted would create a lock-
ing bottleneck in the system catalogs, where statis-
tics are stored. It is difficult or impossible to calcu-
late some statistics incrementally, such as the number
of distinct values for each column, and so it is com-
mon for statistics to be recomputed periodically as
a user-invoked batch operation (called RUNSTATS in
DB2). Despite this, the optimizer assumes that the
statistics reflect the current state of the database, that

MARKL, LOHMAN, AND RAMAN Q9

is, that the database characteristics are relatively sta-
ble, and it relies upon the user to know when any
table has changed enough to warrant the expensive
recollection of statistics.

Uniformity: Although many products use histograms
to deal with skew in the distribution of values for
“local” selection predicates (on columns within a sin-
gle table), we are unaware of any available product
that exploits them for join predicates, that is, those
relating columns in multiple tables. Thus for join
predicates, the query optimizer still relies on the as-
sumption of uniformity.

Independence of predicates: Selectivities for each
predicate are calculated individually and multiplied
together, essentially assuming the predicates are sta-
tistically independent of each other, even though the
underlying columns may be related, for example by
a functional dependency. While multidimensional
histograms address this problem for local predicates,
they have never been applied to join predicates, ag-
gregation, and so on. Applications common today
have hundreds of columns in each table and thou-
sands of tables, making it impossible to know on
which subset(s) of columns to maintain multivari-
ate statistics.

Principle of inclusion: The selectivity for a join pred-
icate X.a = Y.b is typically defined to be 1/max{|a|,
|b|}, where |b| denotes the number of distinct values
of column b. This implicitly assumes the “principle
of inclusion,” that is, that each value of the smaller
domain has a match in the larger domain. Fortu-
nately, this assumption is frequently true for the most
common joins between a primary key to a table (e.g.,
a product number in the Products table) and a ref-
erence to that key (a foreign key) in another table
(e.g., the Orders table).

When these assumptions are invalid, significant er-
rors in the cardinality—and hence cost— estimates
result, causing suboptimal plans to be chosen. From
the authors’ experience, the primary cause of major
modeling errors is the cardinality estimate on which
costs depend. Cost estimates might be off by 10 or
15 percent, at most, for a given cardinality, but car-
dinality estimates can be off by orders of magnitude
when their underlying assumptions are invalid or un-
certain. Although there has been considerable suc-
cess in using histograms to detect and correct for data
skew,®® and in using sampling to gather up-to-date
statistics,”!’ there has been to date no comprehen-

100 MARKL, LOHMAN, AND RAMAN

sive approach to correcting all modeling errors,
regardless of origin.

In this paper we describe our approach toward au-
tonomic query optimization for overcoming model-
ing errors and incorrect statistics, which has led to
the prototype of a LEarning Optimizer (LEO) for
DB2.!! LEO learns from any modeling mistake, at any
point in a QEP, by automatically validating its esti-
mates against actual cardinalities for a query. De-
termining at what point in the plan the significant
errors occurred then allows for reoptimizing the
query at this point'? and adjusting its model dynam-
ically to better optimize future queries. Over time,
this feedback method amasses experiential informa-
tion that augments and adjusts the database statis-
tics for the part of the database that enjoys the most
user activity. Not only does this information enhance
the quality of the optimizer’s estimates, but it can
also suggest where statistics gathering should be con-
centrated and can even supplant the need for sta-
tistics collection.

A learning optimizer

This section describes the architecture of LEO, an
autonomic optimizer that observes actual query ex-
ecution and uses actual cardinalities to autonomi-
cally validate and refine the estimates from its model
and to reoptimize the current query, without requir-
ing user intervention. In the following sections we
discuss the two essential functions of LEO: deferred
learning for future queries and progressive optimi-
zation of the query currently under execution.

Deferred feedback-based learning. Deferred learn-
ing exploits empirical results from actual executions
of queries to validate the optimizer’s model incre-
mentally, deduce what part of the optimizer’s model
is in error, and compute adjustments to the optimiz-
er’s model for future query optimizations. Deferred
learning with LEO works under the assumption that
future queries will be similar to previous queries, that
is, they will share one or several predicates. Our LEO
prototype currently corrects the statistics for tables
(which may be out of date) and estimates the selec-
tivity of individual predicates in this way.

The LEO feedback loop is comprised of four steps,
as seen in Figure 1: monitoring, analysis, feedback,
and feedback exploitation. At query compilation
time, the monitoring component saves the cardinal-
ity estimates derived by the optimizer for the best
(i.e., least-cost) plan, and during query execution

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003

Figure 1 Deferred learning

SQL
coM PILATION
OPTIMIZER

STATIS-

3. FEEDBACK

' 4. EXPLOIT

BEST PLAN
l 2. ANALYZE

‘1 MONITOR

Figure 2 A query plan that can be reoptimized dynamically

JOIN
Orders.Product_ld-Products.Product_Id

A A

GROUP BY
Orders.Product_Id

»

ORDERS PRODUCTS

SELECT AVG(Orders.Amount), Products.Name
FROM Orders, Products

WHERE Orders.Product_ld=Products.Product_Id
GROUP BY Products.Product_Id

saves the actual cardinalities observed for that plan.
The analysis component uses the information thus
learned to identify modeling errors and compute cor-
rective adjustments. This analysis is a stand-alone
process that may be run separately from the data-
base server and even on another system. The feed-
back component modifies the catalog statistics of the
database according to the learned information. The
exploitation component closes the feedback loop by

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003

using the learned information in the system catalog
to provide adjustments to the query optimizer’s car-
dinality estimates.

The four components can operate independently, but
form a consecutive sequence that constitutes a con-
tinuous learning mechanism by incrementally cap-
turing plans, monitoring their execution, analyzing
the monitor output, and computing adjustments to
be used for future query compilations. This mech-
anism enables deferred learning, since only future
queries will benefit from the feedback.

The deferred learning mechanism has been imple-
mented in a prototype using DB2 Universal Data-
base™ (UDB) for Linux™*, UNIX**, and Windows**.
Experiments with the protype'® showed the moni-
toring overhead to be below 4 percent of the total
query execution time, whereas performance may im-
prove by orders of magnitude, particularly when the
optimizer learns that a bulk join method should be
used instead of a nested-loop join, due to a large in-
put cardinality.

Immediate feedback-based learning. The moni-
tored cardinalities need not be used for subsequent
queries alone. If the actual cardinalities are signif-
icantly different from the estimated cardinalities, the
chosen query plan could be highly suboptimal. As
part of the LEO project, we are currently investigat-
ing how to use this knowledge immediately by
dynamically reoptimizing the current query and
changing its execution plan, if all of the rows for an
intermediate result are materialized before proceed-
ing at any point in the plan.

Generally, response time and memory are optimized
if each row is processed completely and returned to
the user in a pipelined plan. But occasionally, the rows
of an intermediate result must be fully materialized,
either as a sorted or unsorted temporary table
(TEMP), which we call a materialization point. TEMPs
afford a natural opportunity to count the number of
rows and possibly to reoptimize the plan before any
rows are returned to the user, thereby avoiding re-
turning duplicate rows that are caused by restarting
the query. However, two important issues arise:

e Since reoptimization involves a cost, when is it
worthwhile?
e How can we reoptimize efficiently?

We address the first question in the subsection,
“When to reoptimize.” For the second question, the

MARKL, LOHMAN, AND RAMAN 101

easiest solution is to simply rerun the query “from
scratch” under a new plan. However, this would
waste all the (possibly substantial) work done up to
the materialization point, which was saved in the
TEMP. In most cases, it is preferable for the reop-
timized plan to avoid having to redo that work by
instead accessing that TEMP in the reoptimized plan.

For example, Figure 2 shows a query plan for a sim-
ple two-table join that groups/aggregates the Orders
table by Product_Id before the join. The sort that may
be needed to accomplish this aggregation must ma-
terialize its entire input before proceeding and thus
constitutes a TEMP. Since most aggregations can be
performed incrementally as the rows are sorted, the
TEMP will, at its conclusion, contain the GROUP BY
result. The optimal join algorithm (nested loop join,
hash join, or merged join) for subsequently joining
Orders and Products depends crucially on the size of
this GROUP BY result. The query optimizer could
choose a suboptimal join algorithm if it under- or
over-estimates the size of this result.

However, during query execution, the optimizer can
monitor the size of the GROUP BY result, and re-
optimize in case of severe estimation errors, for ex-
ample, by changing the join algorithm if needed. Such
reoptimization becomes more complex for more
elaborate query plans with multiple materialization
points. Reference 12 suggests encapsulating TEMPs
as tables and converting the remaining portion of
the query plan after the TEMPs into an SQL query,
which can then be resubmitted to the query opti-
mizer. Unfortunately, this approach has two prob-
lems. First, it may not be optimal to reuse a TEMP
as is. In cases where the size of the TEMP is much
larger than expected, the optimal plan might be to
reuse only a part of the TEMP, or even ignore the
TEMP completely, in favor of a totally new plan that
directly uses the base tables. Second, the remaining
portion of the plan beyond the TEMP may not always
be expressible as an SQL statement, especially if it
contains update operations, which are fed from sub-
queries.

A better alternative is not to encapsulate the TEMPs,
but instead to define them as materialized views"
(known in DB2 as Automatic Summary Tables or
ASTs'*) and expose their definition to the query op-
timizer. The optimizer can then rely on standard
view-matching techniques'*" to identify TEMPs that
are worthwhile to reuse. The cost of reoptimization
using additional materialized views is almost iden-
tical to the cost of optimizing the original query, since

102 WMARKL, LOHMAN, AND RAMAN

the optimizer only has to investigate one alternative
intermediate table access method per materialized
view.

Moreover, once TEMPs are defined as materialized
views, there is no reason to limit their use to the cur-
rent query only. All subsequent queries can poten-
tially exploit materialized TEMPs, just as they exploit
user-defined materialized views. Of course, this ap-
proach could lead to an avalanche of such views, so
that the query engine would have to periodically de-
lete rarely used ones; this is akin to the materialized
view selection problem. '

Research issues in autonomic query
optimization

Our initial prototype of LEO has uncovered a num-
ber of challenging research problems that require
solutions for any practical application of the opti-
mizer in a product. We now discuss these problems
and possible approaches to their solution.

Stability and convergence. A cardinality model re-
fined by feedback has to take incomplete informa-
tion into account. While some cardinalities may be
deduced from query feedback— constituting hard
facts—others are derived from statistics and mod-
eling assumptions—forming uncertain knowledge.
The learning rate of the system is largely dependent
on the workload and the accuracy of statistics and
assumptions.

Assuming independence of predicates, when in fact
the data are correlated, usually results in underes-
timation of the cardinalities of the intermediate re-
sults, which are used by the optimizer when deter-
mining the cost of a QEP. This underestimation will
cause the optimizer to prefer a plan based on un-
certain knowledge over one based on hard facts. The
underestimation of cardinalities can result in a com-
plete exploration of the search space; the system will
converge only after trying out and learning about all
QEPs that contain underestimation. Overestimation,
however, may result in a local minimum (i.e., a sub-
optimal QEP); the optimizer will prefer other QEPs
over a QEP with overestimates. Hence overestimates
are unlikely to ever be discovered or corrected.

To reach a reasonable form of stability, the auto-
nomic optimizer should initially use an exploratory
mode, for example, before going into production.
This mode will initially involve more risks by choos-
ing promising QEPs based on uncertain knowledge,

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003

thus validating the model and gathering hard facts
about data distribution and workload. A second op-
erational mode will be biased toward QEPs that are
based on experience. This mode favors QEPs based
on hard facts over slightly cheaper QEPs based on
uncertain knowledge. The transition between the
modes would be gradual, resembling simulated an-
nealing'” methods in machine learning.

To overcome the local optimum caused by overesti-
mation, it is necessary to explore uncertain knowledge
used for presumably suboptimal, but promising QEPs,
for example, by synchronous or asynchronous sam-
pling. "

Detecting and exploiting correlation. In practical ap-
plications, data are often highly correlated. In a car
database, for instance, the selectivity of the conjunc-
tion (make = “Honda” and model = “Accord”) is
not correctly derived by multiplying the individual
selectivities of make = “Honda” and model = “Ac-
cord,” because the columns make and model are cor-
related—only Honda makes an Accord model. Since
correlation constitutes a violation of the indepen-
dence assumption, selectivity estimates for predicates
involving correlation can be off by orders of mag-
nitude in state-of-the-art query optimizers. With our
approach, we have the opportunity to detect and cor-
rect such errors.

Correlations pose many challenges. First, there are
many types of correlation, ranging from functional
dependencies between columns, especially referen-
tial integrity, to more subtle and complex cases, such
as an application-specific constraint that an item is
supplied by at most 20 suppliers. Second, correla-
tions may involve more than two columns, and hence
more than two predicates in a query, with subsets of
those columns having varying degrees of correlation.
Third, a single query can only provide evidence that
two or more columns are correlated for specific val-
ues. For complex queries involving several predi-
cates, isolating which subsets of predicates are cor-
related and the degree of correlation can be
extremely difficult. Another difficult research prob-
lem is to generalize correlations from specific val-
ues to relationships between columns: How many dif-
ferent values from executing multiple queries having
predicates on the same columns are required to safely
conclude that those columns are, in general, corre-
lated, and to what degree? Instead of waiting for that
many queries to execute, correlation detection could
instead identify promising combinations of col-
umns— even from different tables—on which the sta-

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003

tistics utility would then collect multidimensional his-
tograms. In addition, the observed information can
be used to pinpoint errors in the cardinality model,
populate the database statistics, or to adjust the er-
roneous estimates by creating an additional layer of
statistics.

When to reoptimize. As discussed in the subsection,
“Immediate feedback-based learning,” immediate
learning can change the plan for a query at run time,
when the actual cardinalities are significantly differ-
ent from the estimated cardinalities. But the new plan
could itself be quite expensive, if it cannot make use
of prior TEMPs efficiently. The optimizer will find this
out during reoptimization, but the cost of reoptimi-
zation could itself be significant. Therefore it is cru-
cial to determine, without reoptimizing, when it will
be worthwhile to reoptimize.

Reference 12 uses the difference between the esti-
mated and actual cardinalities as a heuristic to de-
termine whether to reoptimize. However the ques-
tion is not how inaccurate the optimizer’s estimate
is; it is whether the plan is suboptimal under the new
cardinalities and whether the cost difference is
enough to pay for the reoptimization. One heuristic
looks at the nature of the plan operators and decides
whether a change in the input cardinality for an op-
erator is likely to make the operator suboptimal. Al-
ternatively, the optimizer can be enhanced to pick
not only the optimal plan, but also the range of se-
lectivities for each predicate within which the plan
is optimal. This prediction of the sensitivity of any
plan to any one parameter is extremely hard, because
of nonlinearities in the cost model.

We also need to limit the number of reoptimization
attempts for a single query, because the convergence
problem of the subsection, “Stability and conver-
gence” is even more serious here. We do not want
the query execution to get into a long loop where
it repeatedly tries out all alternative plans before
making progress.

Learning other information. Learning and adapting
to a dynamic environment is not restricted to car-
dinalities and selectivities. Using a feedback loop,
many costs and parameters currently estimated by
the optimizer can be made self-validating. For ex-
ample, the dominant aspect of cost, the number of
physical I/0s, is currently estimated probabilistically
from estimated hit ratios, assuming each application
gets an equal share of the buffer pool. The optimizer
could validate these estimates by observing actual

MARKL, LOHMAN, AND RAMAN 103

1/Os, actual hit ratios, and/or actual times to access
tables for a given plan. Another example is the max-
imum amount of memory allocated to perform a par-
ticular sort in a plan. If the DBMS detected by query
feedback that a sort operation could not be per-
formed in main memory, it could adjust the sort heap
size to avoid external sorting for future sort oper-
ations.

Feedback is not limited to services and resources con-
sumed by the DBMS, but also extends to the appli-
cations that the DBMS serves. For example, the DBMS
could measure how many of the rows in a query’s
result are actually consumed by each application and
optimize each query’s performance for just that por-
tion of the result, for example, by effectively append-
ing the OPTIMIZE FOR <n> ROWS clause of SQL to
that query. Similarly, feedback from executions could
be used to automatically set many configuration pa-
rameters for shared resources that are currently set
manually. Physical parameters such as the network
rate, disk access time, and disk transfer rate are used
to weight the contribution of these resources to plan
costs, and are usually considered to be constant af-
ter an initial set-up. However, setting these param-
eters using measured values is more autonomic and
more accurately captures the effective rate. In the
same way, the allocation of memory among differ-
ent buffer pools, the total sort heap, and so on, can
be tuned automatically according to hit ratios that
were recently observed.

Practical considerations

In the process of implementing LEO, several prac-
tical considerations also needed to be addressed.

The Hippocratic oath: “Do no harm!” The overall
goal of an autonomic optimizer is to improve query
performance by adjusting an existing model based
upon previously executed queries. Ideally, this ad-
justed model provides a better decision basis for se-
lecting the best execution plan for a query. However,
this learned knowledge must be arrived at extremely
conservatively: we should not make hasty conclusions
based upon inconclusive or spotty data. In critical
applications, stability and reliability of query process-
ing are often favored over optimality with occasional
unpredictable behavior. If adjustments are immedi-
ately taken into account for query optimization, even
on a highly dynamic database, the same query may
generate a different execution plan each time it is
issued, and thus may result in thrashing of execu-
tion plans. This instability can be avoided if reop-

104 MARKL, LOHMAN, AND RAMAN

timization of queries takes place after the learned
knowledge has converged to a fixed point or has
reached a defined threshold of reliability.

Consistency between statistics. DB2 collects statis-
tics for base tables, columns, indexes, functions, and
tablespaces, many of which are mutually interdepen-
dent. DB2 permits users to update the statistics in the
catalogs and performs checks for inconsistencies in
such updates. An autonomic optimizer must simi-
larly ensure the consistency of these interdependent
statistics when adjusting any of them. For example,
the number of rows of a table determines the num-
ber of disk pages used for storing those rows. When
adjusting the number of rows of a table, we must con-
sequently ensure consistency with the number of
pages of that table—for example, by adjusting this
figure as well—or else plan choices may be biased,
depending on which plan uses which statistic. Sim-
ilarly, the consistency between index and table sta-
tistics has to be preserved, since there may be in-
terdependencies between the number of distinct
values of a column and the number of rows in a ta-
ble. However, an increase in the number of rows will
not always result in an increase in the number of dis-
tinct values: although subsequent inserts are likely
to alter the number of distinct values for a date col-
umn, this is very unlikely for a column like sex that
can only assume the values male or female, regard-
less of the number of rows.

Adjustments vs database statistics. An autonomic
optimizer is not a replacement for database statis-
tics, but rather a complement to them. Statistics are
collected uniformly across the database, to prepare
for any possible query. Feedback gives the greatest
improvement to the modeling of queries that are ei-
ther repetitive or are similar to earlier queries, that
is, queries for which the optimizer’s model exploits
the same statistical information. Feedback extends
the capabilities of the RUNSTATS utility by gathering
information on derived tables (e.g., the result of sev-
eral joins) and gathering more detailed information
than RUNSTATS might. Over time, the optimizer’s es-
timates will improve most in regions of the database
that are queried most. However, for correctly esti-
mating the cost of previously unanticipated queries,
the statistics collected by RUNSTATS are necessary,
even in the presence of query feedback.

Conclusions

Although today’s query optimizers autonomically de-
termine the best way to process a declarative SQL

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003

query (one which specifies only what data are want-
ed), they do so using a complex mathematical model
having many inherent assumptions and parameters.
The ideas on autonomic query optimization outlined
in this paper have led to the implementation of LEO,
DB2’s LEarning Optimizer. By self-validating these
assumptions and parameters using feedback gar-
nered from earlier executions, LEO provides a ma-
jor step forward in improving the quality of query
optimization and reducing the need for “tuning” of
problem queries, a major contributor to cost of own-
ership. Our current LEO prototype enables deferred
learning of table access cardinalities and simple pred-
icates,'® demonstrating significant performance im-
provements and a low monitoring overhead of be-
low 4 percent of the total query execution time.

Our future work includes completing the LEO pro-
totype for deferred learning, aggregating and sum-
marizing the observed information, finding conclu-
sive ways to discern and generalize occurrences of
correlation among predicates, measuring the ben-
efit of using LEO on a realistic set of user queries,
and extending LEO’s approach to parameters other
than cardinality. In addition, we are carrying out a
prototype implementation of immediate learning in
order to analyze and validate the performance of this
progressive query optimization approach.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Linus Torvalds, The
Open Group, or Microsoft Corporation.

Cited references

1. P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A.
Lorie, and T. G. Price, “Access Path Selection in a Relational
Database Management System,” Proceedings of the ACM SIG-
MOD International Conference on Management of Data, Bos-
ton, MA, May 1979, ACM, New York (1979), pp. 23-24.

2. A. Van Gelder, “Multiple Join Size Estimation by Virtual
Domains,” Proceedings of the Twelfth ACM Symposium on
Principles of Database Systems (May 1993), pp. 180-189.

3. A. N. Swami and K. B. Schiefer, “On the Estimation of Join
Result Sizes,” 4th International Conference on Extending Da-
tabase Technology (March 1994), pp. 287-300.

4. R. Ahad, K. V. B. Rao, and D. McLeod, “On Estimating the
Cardinality of the Projection of a Database Relation,” ACM
Transactions on Database Systems 14, No. 1, pp. 28—40 (1989).

5. C. Lynch, “Selectivity Estimation and Query Optimization
in Large Databases with Highly Skewed Distributions of Col-
umn Values,” Proceedings of the 14th International Confer-
ence on Very Large Databases (August 1988), pp. 240-251.

6. Y. E.Ioannidis and S. Christodoulakis, “On the Propagation
of Errors in the Size of Join Results,” Proceedings of the ACM
SIGMOD International Conference on Management of Data,
Denver, CO, May 1991, ACM, New York (1991), pp. 268—
277.

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003

7. V.Poosala, Y. Ioannidis, P. Haas, and E. Shekita, “Improved
Histograms for Selectivity Estimation of Range Predicates,”
Proceedings of the ACM SIGMOD International Conference
on Management of Data, Montreal, Canada, June 1996, ACM,
New York (1996), pp. 294-305.

8. V. Poosala and Y. Ioannidis, “Selectivity Estimation With-
out the Attribute Value Independence Assumption,” Proceed-
ings of the 23rd International Conference on Very Large Da-
tabases (VLDB 1997).

9. P. Haas, J. Naughton, S. Seshadri, and A. Swami, Selectivity
and Cost Estimation for Joins Based on Random Sampling,
Research Report RJ-9577, IBM Thomas J. Watson Research
Center, Yorktown Heights, NY 10598 (1993).

10. T.Urhan, M. J. Franklin, and L. Amsaleg, “Cost-Based Query
Scrambling for Initial Delays,” Proceedings of the ACM SIG-
MOD International Conference on Management of Data, Se-
attle, WA, June 1998, ACM, New York (1998), pp. 130-141.

11. M. Stillger, G. Lohman, V. Markl, and M. Kandil, “LEO—
DB2’s Learning Optimizer,” Proceedings of the 27th Interna-
tional Conference on Very Large Databases (September 2001),
pp. 19-28.

12. N. Kabra and D. DeWitt, “Efficient Mid-Query Re-Optimi-
zation of Sub-Optimal Query Execution Plans,” Proceedings
of the ACM SIGMOD International Conference on Manage-
ment of Data (June 1998), pp. 106-117.

13. N. Roussopoulos, “Materialized Views and Data Warehous-
es,” SIGMOD Record 27, No. 1, 21-26, ACM, New York
(1998).

14. M. Zaharioudakis, R. Cochrane, G. Lapis, H. Pirahesh, and
M. Urata, “Answering Complex SQL Queries Using Auto-
matic Summary Tables,” Proceedings of the ACM SIGMOD
International Conference on Management of Data, Dallas, TX,
May 2000, ACM, New York (2000), pp. 105-116.

15. S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and K. Shim,
“Optimizing Queries with Materialized Views,” Proceedings
of the Eleventh International Conference on Data Engineering
(March 1995), pp. 190-220.

16. R. Chirkova, A. Y. Halevy, and D. Suciu, “A Formal Per-
spective on the View Selection Problem,” Proceedings of the
27th International Conference on Very Large Databases (Sep-
tember 2001), pp. 59-68.

17. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimiza-
tion by Simulated Annealing,” Science 220, No. 4598, 671-
680 (May 1983).

18. V. Markl and G. M. Lohman, “Learning Table Access Car-
dinalities with LEO,” Proceedings of the ACM SIGMOD In-
ternational Conference on Management of Data, Madison, W1,
June 2002, ACM, New York (2002), p. 613.

Accepted for publication October 11, 2002.

Volker Markl IBM Research Division, Almaden Research Center,
650 Harry Road, San Jose, California 95120 (electronic mail:
markly@us.ibm.com). Dr. Markl is a research staff member in
the Advanced Database Solutions Department at the Almaden
Research Center in San Jose, California, conducting research in
query optimization, indexing, and self-managing databases. Dr.
Markl is spearheading the LEO project at IBM, an effort in au-
tonomic computing with the goal of creating a self-tuning opti-
mizer for DB2. Dr. Markl holds a Ph.D. degree and M.S. degree
in computer science from Technische Universitdt Miinchen, as
well as a degree in business administration from Universitat Ha-
gen, Germany. In his earlier professional career, Dr. Markl co-
invented and developed the enabling indexing technology for the
relational database management system TransBase HyperCube,

MARKL, LOHMAN, AND RAMAN

105

which was awarded the European Information Society Technol-
ogy Prize in 2001 by the European Commission.

Guy M. Lohman IBM Research Division, Almaden Research Cen-
ter, 650 Harry Road, San Jose, California 95120 (electronic mail:
lohman@almaden.ibm.com). Dr. Lohman is manager of advanced
optimization in the Advanced Database Solutions Department
at the Almaden Research Center in San Jose, California, and has
20 years of experience in relational query optimization. He is the
architect of the Optimizer of the DB2 Universal Database (UDB)
for Linux, UNIX, and Windows, and was responsible for its de-
velopment in Versions 2 and 5. During that period, Dr. Lohman
also managed the overall effort to incorporate into the DB2 UDB
product the Starburst compiler technology that was prototyped
at the Almaden Research Center. More recently, he was a co-
inventor and designer of the DB2 Index Advisor, and cofounder
of the DB2 SMART (Self-Managing And Resource Tuning) proj-
ect, part of IBM’s autonomic computing initiative. In 2002, Dr.
Lohman was elected to the IBM Academy of Technology. His
current research interests involve query optimization and self-
managing database systems.

Vijayshankar Raman IBM Research Division, Almaden Research
Center, 650 Harry Road, San Jose, California 95120 (electronic mail:
ravijay@us.ibm.com). Dr. Raman is a research staff member at
the Almaden Research Center, with a focus on data management
issues in grid computing, and on adaptive query optimization. He
is also interested in algorithmic mechanism design, and in data
cleaning and integration. Dr. Raman graduated from the Uni-
versity of California, Berkeley, in 2001 with a Ph.D. degree in
computer science, specializing in database management systems.
His research resulted in a dozen refereed papers in international
conferences and journals, one of which was selected as one of the
best papers at the 25th International Conference on Very Large
Databases. One component of his research has evolved into the
Potter’s Wheel open source data cleaning software. Dr. Raman
was awarded a Microsoft Fellowship during his graduate study.
He also won an AT&T Asia-Pacific Leadership Award for
achievements during his undergraduate study at the Indian In-
stitute of Technology, Madras.

106 MARKL, LOHMAN, AND RAMAN IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003

