Autonomic personal
computing

Autonomic personal computing is personal
computing on autonomic computing
platforms. Its goals combine those of
personal computing with those of autonomic
computing. The challenge of personal
autonomic computing is to simplify and
enhance the end-user experience, delighting
the user by anticipating his or her needs in
the face of a complex, dynamic, and
uncertain environment. In this paper we
identify the key technologies that enable
autonomic behavior as distinguished from
fault-tolerant behavior. We give some
examples of current autonomic behavior and
some general considerations for an
architecture that supports autonomic personal
computing. We identify its challenges to
standards and technology developers and
conclude with some guidance for future work.

Autonomic personal computing is defined here as
personal computing on autonomic computing sys-
tems. It shares the goals of personal computing—
responsiveness, ease of use, and flexibility—with
those of autonomic computing—simplicity of use,
availability, and security. In most cases these goals
are complementary. For example, autonomic com-
puting enhances ease of use because it eliminates or
simplifies some user responsibilities. But personal
computing implies flexibility of location and of the
hardware and software configuration, and this com-
plicates the job of achieving autonomic behavior. It
is easier to configure, heal, optimize, and protect a
system in an environment that does not change. If
we can achieve autonomic behavior while still meet-

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003

0018-8670/03/$5.00 © 2003 IBM

by D. F. Bantz S. Mastrianni
C. Bisdikian A. Mohindra
D. Challener D. G. Shea
J. P. Karidis M. Vanover

ing the unique needs of personal computing, millions
of users will benefit worldwide.

The intention of this paper, then, is to identify the
unique demands and opportunities of autonomic
computing with personal devices. Our ground rules
are that we seek to achieve autonomic behavior of
a personal computing systern—personal computers
(PCs) and their peers, networks, and servers—not just
the PC alone. We also limit our focus to application
platforms, not to applications themselves. This dis-
tinction is somewhat equivocal and quantitative,
however, because yesterday’s applications are often
tomorrow’s platforms.

In what follows, we first look deeper into the mean-
ing of the autonomic attributes of personal comput-
ing, which are different from fault-tolerant attributes.
We then categorize technologies as they relate to
achieving autonomic behavior in different variations:
within the PC, in PC communities, and in more gen-
eral systems that include servers. We give some ex-
amples of the state of the art and identify missing
or incomplete capabilities. We describe some gen-
eral considerations for an architecture that supports
autonomic personal computing, identify some issues,
and suggest a direction for future research and de-
velopment.

©Copyright 2003 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

BANTZ ET AL. 165

Autonomic personal computing

A computing system is autonomic if it possesses at
least one of four attributes: self-configuring, self-
healing, self-optimizing, and self-protecting. Auto-
nomic personal computing exhibits and constrains
these attributes in unique ways.

Self-configuring. A system is self-configuring to the
extent that it automates the installation and setup
of its own software in a manner responsive to the
needs of the platform, the user, the peer group, and
the enterprise. Personal computing often involves
user-initiated configuration change, and a self-con-
figuring system understands the implications of these
changes and accommodates them automatically.

Self-healing. A system is self-healing to the extent
that it monitors its own platform, detects errors or
situations that may later manifest themselves as er-
rors, and automatically initiates remediation. Fault
tolerance’ is one aspect of self-healing behavior, al-
though the cost constraints of personal computing
often preclude the redundancy required by many
fault-tolerant solutions.

Self-optimizing. A system is self-optimizing to the
extent that it automatically optimizes its use of its
own resources. This optimization must be done with
respect to criteria relevant to the needs of a specific
user, his or her peer group, and the enterprise. Re-
source management? is one aspect of self-optimiz-
ing behavior.

Self-protecting. A system is self-protecting to the ex-
tent that it automatically configures and tunes itself
to achieve security, privacy, function, and data pro-
tection goals. This behavior is of very high value to
personal computing, which is exposed to insecure
networks, an insecure physical environment, frequent
hardware and software configuration changes, and
often inadequately trained end users who may be op-
erating under conditions of high stress. Security? is
one aspect of self-protecting behavior.

Examples of current autonomic personal
computing behavior

Autonomic behavior is not new; computing systems
have incorporated various forms of autonomic be-
havior for many years. Autonomic function creates
autonomic behavior.

First, we introduce a categorization of autonomic
function in terms of where it is implemented, and

166 BANTZ ET AL

then we discuss several examples that exhibit auto-
nomic behavior in current practice.

Autonomic function can be implemented locally,
drawing on locally maintained measurements and
knowledge. It can be implemented among members
of a peer group, sharing measurements and knowl-
edge particular to that group. It can also be imple-
mented using globally available network-resident re-
sources, in which case, measurements and knowledge
are maintained for all clients. In the most general
case, autonomic functions are implemented in all
three ways, with different functions having a pre-
ferred implementation, resulting in the following cat-
egories:

e Local autonomic function—Locally, autonomic
decisions can be made using knowledge that the
personal computer stores or can obtain by itself,
for example, from its Common Information Model
(cm)* database. Local functions include automatic
auditing of software configurations, local backup,
surveys of the connectivity environment, and power
management.

 Peer group autonomic function—Peer group func-
tions require the cooperation of a local commu-
nity. They include spontaneous grid computing ser-
vices and knowledge sharing.

* Network-based autonomic function—Network-
based functions enhance and extend the core au-
tonomy of the PC. Examples include software up-
dating, backup and restore, virus updates, and
mobility support services.

Local autonomic function. Microsoft Corporation
has included some local autonomic features in the
Windows** Xp’ operating system, and many other
autonomic features are provided by third-party util-
ities. Although an exhaustive review is beyond the
scope of this paper, in the following subsections we
describe some examples of local autonomic behav-
ior that can be found in current practice.

Installation, configuration, and maintenance. The life
cycle of a personal computer begins when it is de-
livered, set up, and personalized to the needs of its
new user. Part of this personalization involves cre-
ating a replicable software configuration appropri-
ate to the needs of a group of users (imaging), and
part involves selectively moving the user’s data and
preferences from a previous platform to the new one
(migration).

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003

Technology now exists for simplifying the imaging
process. In IBM’s ImageUltra, a single hardware-in-
dependent super-image is created and distributed to
the PC. The super-image adapts to the platform and
is customized to user needs based on a key. This key,
which may be specific to a particular user or com-
mon to a group, is either distributed electronically
or entered manually by the user or an administra-
tor. A utility program transforms the super-image
into the final one.

Once the system has the correct image, the user’s
specific information, settings, and application files
need to be transferred. Windows XP includes a util-
ity for accomplishing this transfer, with a good deal
of human intervention. IBM has a comparable solu-
tion (the System Migration Agent) for Microsoft op-
erating systems prior to Windows XP. The core logic
for this product is still central to IBM’s large enter-
prise solution for automating the migration of user
content for large numbers of systems. The Ghost**
product from Symantec Corporation also imple-
ments image capture, redeployment, and migration.

Change management deals with updates to system
and application software after the initial installation.
The Microsoft XP Automatic Update mechanism
works well for updates that can be applied without
special considerations, but some enterprises require
tight policy-driven control over their configurations.
The 1BM Update Connector supports either user-ini-
tiated or centrally administrated updates. The CNET
Networks, Inc. CatchUp is a personal Web-based ser-
vice that automatically analyzes the software con-
figuration of a system and identifies needed updates.

Break/fix primarily concerns situations in which the
system was once in the correct state and needs to
return to that state or one close to it. The Microsoft
Windows Installer saves a valid state for the core of
the operating system and for selected applications.
The saved state is accessible to the user, and thus
vulnerable to user error or to a security breach. IBM’s
solution, Rapid Restore PC, saves the complete state
on a hidden partition of the hard drive of a system.
Both of these solutions have only limited autonomic
behavior because they require informed human in-
tervention.

Communications. Some automation of communica-
tions tasks has become possible because of network-
ing support services based on open standards. Us-
ing the Dynamic Host Configuration Protocol
(DHCP) and domain name system (DNS) services, cli-

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003

ent devices self-configure in a network based on
Transmission Control Protocol/Internet Protocol
(TCp/p).

Unfortunately, other parameters are not generally
available from these services. Mail server addresses,
Web proxy addresses and types, security settings such
as for virtual personal networks, and wireless access
point settings all require manual intervention to con-
figure today.

Further complicating the situation is the prolifera-
tion of communication technologies and standards,
and the inclusion of support for multiple networks
in today’s mobile personal computers. Windows XP
is aware of the presence or absence of each network
interface, and whether or not it is connected to “ac-
tive” media, that is, whether any communication is
possible with the device that is one hop away. This
awareness enables some autonomic behavior, for ex-
ample, automatic “failover” to another network in
the case of a cable fault.

Self-optimization. Windows XP Professional modifies
the user interface based on the way in which the sys-
tem is used. Instead of an alphabetically sorted list
of programs, the user is presented with a list of the
most recently used programs. Shortcuts to these pro-
grams are placed in a reserved area that allows the
programs to be subsequently launched with a single
click. xp also attempts to keep the desktop clean and
uncluttered by consolidating the items that appear
on the Windows taskbar. If multiple files are opened
by the same application, the files are consolidated
on the taskbar.

As another example of self-optimization, Norton
Utilities** senses the current level of disk file frag-
mentation and alerts the user if performance might
be degraded. It automatically reorganizes the phys-
ical placement of data on the disk to improve file
access.

Self-protection. The user’s data are a key asset and
potentially vulnerable to both failures and attacks.
The first line of defense is to back up those data, and
many systems exist to implement backup and restore.
Backup solutions in current use direct their technol-
ogy toward reducing their resource usage (storage
and bandwidth) as well as toward automating the ini-
tiation of the backup itself. Backup can be sched-
uled periodically or can be initiated proactively in
response to a hardware-initiated event, such as de-
tection of incipient disk failure.

BANTZ ET AL. 167

In the communication and storage of data, encryp-
tion is another example of a proactive protection
mechanism. Data are encrypted at the time of cre-
ation, decrypted upon use, and then re-encrypted
when done. Windows XP includes an encryption ca-
pability that allows selected directories and subdi-
rectories to be encrypted. Key management remains
an issue. Some IBM personal computers contain a
hardware security solution, called the Embedded Se-
curity Subsystem, that generates and maintains
unique encryption keys. The randomness and hard-
ware-enforced protection of these keys supports a
broad class of protection mechanisms, including dig-
ital signature, signature verification, bulk encryption,
secure e-mail, and password protection.

Peer group autonomic function. Although local au-
tonomic function depends on (hopefully) authori-
tative local data, and network-based autonomic func-
tion depends on data maintained by a responsible
authority, peer group autonomic function depends
on information solicited from other personal systems,
which may or may not be accurate, timely, or rel-
evant.

Current behavior among members of a peer group
(e.g., personal computers on the same network seg-
ment) is usually confined to resource sharing—files,
printers, and other peripheral devices. Here, the
community of interest, the tie that binds the peer
group together, is defined by the need to share in-
formation and to reduce costs by sharing expensive
resources that are otherwise underutilized. Several
technologies are available that allow users to discover
and use resources available in the peer groups. The
Microsoft Windows Browse Master allows users to
discover shared folders, printers, scanners, and other
resources that other Windows-based personal com-
puters export. Systems such as Gnutella® have fo-
cused primarily on enabling anonymous file-sharing
among peer-group clients.

Autonomic behavior can be created on the basis of
knowledge that is discovered or acquired from a peer
group too. For example, some connectivity param-
eters (e.g., proxy server addresses) are hard to dis-
cover, but because they may be known in the peer
group, they may be propagated to needy members.
The community of interest for knowledge-sharing is
quite specific to the type of knowledge desired. The
peer group for the discovery of proxy server ad-
dresses would be, for example, all members that ac-
cess the Internet.

168 BANTZ ET AL

The YouServ’ tool is a simple but potentially useful
first step toward peer knowledge-sharing. YouServ
uses existing Web technologies to achieve a very easy-
to-use system with a very low-cost implementation.
Most recently, the research community has exper-
imented with “grid computing,”® a new field that fo-
cuses on large-scale resource sharing among virtual
organizations. Grid technologies have focused on
building protocols, services, and tools to enable vir-
tual organizations. We believe that for peer-group
autonomic function to become a reality, technolo-
gies similar to those used in the grid need to be de-
veloped to enable virtual communities— communi-
ties of autonomic clients that collaborate to solve
problems related to autonomic computing.

Network-based autonomic function. Network-based
services can help PCs achieve autonomic behavior.
These services can provide information to local au-
tonomic function, provide function that comple-
ments local function, or, in some cases, can even re-
place local function. IBM’s Access Support is an
example of a service that supplies support informa-
tion (e.g., BIOS [Basic Input/Output System] and de-
vice driver updates) given information about the
hardware and software configuration of the PC.

Remote backup is an example of a service that com-
plements local data protection function by provid-
ing additional storage in a physically remote loca-
tion. The current generation of network-based
services, specifically Internet-based services, often
requires direct end-user interaction to use the ser-
vice. Web services,’ an open standard based on the
Extensible Markup Language (XML) for computer-
to-computer services, obviate the necessity of human
involvement, permitting the use of network-based
services in a more autonomic manner.

Although some elements of a sufficient platform ex-
ist for network-based autonomic function, they have
yet to be put together into a coherent partner for
local or peer group autonomic personal computing.
In the next two sections we explore a possible ar-
chitecture that links these three types of autonomic
function, and we explore the challenges that each
type must meet in order to achieve seamless auto-
nomic behavior.

An architecture for autonomic personal
computing systems

The architecture of an autonomic system, including
that of a personal computing system, begins with the

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003

general architecture for autonomic systems. ' The
building block of autonomic systems is depicted in
Figure 1.

Figure 1 shows the architecture of an autonomic el-
ement (AE). Each AE consists of an autonomic man-
ager (AM) and a set of managed components. Each
managed component is responsible for communicat-
ing its events and other measurements to the local
AM. In turn, based on the input received from each
managed component, the AM makes decisions tak-
ing into account its policy, facts, and rules (stored
locally in a database) and communicates the direc-
tives and hints to the managed component.

The figure makes a distinction between self-con-
tained autonomic behavior (within the large gray box
on the right) and autonomic management involving
explicit communications with a remote manager. The
interfaces between an AM and its managed compo-
nent are an important part of the architecture. For
Windows-based personal computing systems, one ex-
tensive set of these interfaces is represented by the
Windows Management Instrumentation,!! or wMmI.
The interface between a remote AM and an AE is not
currently standardized. This interface must be dis-
coverable and dynamically bound so as to support
self-configuration of autonomic systems; it must also
be secure and private. The figure shows a remote
autonomic manager implementing a Web service, lo-
cated via the Universal Description, Discovery, and
Integration (UDDI) service registry. We see Web ser-
vices as a foundation technology because they pro-
vide standard ways to locate, communicate (via XML),
compose, and interact with network-based services.
But because personal systems are often mobile and
occasionally disconnected, the interface must sup-
port a disconnected (off-line) mode of use as well.

Figure 2 shows the architecture of an autonomic sys-
tem consisting of autonomic elements connected to
one another at local, peer, and network levels. Re-
sources are shown as boxes, AMs as diamond shapes,
peer groups as dashed ellipses, and physical resourc-
es—servers and clients—as circles. Arrows represent
the control exerted by AMs (e.g., S controls W). At
the local level, there is a single AM (e.g., A) that is
capable of independent decision-making. At the peer
level, each AM interacts and shares knowledge and
information with its peers and may act cooperatively,
as though a virtual autonomic manager (e.g., W) is
present.

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003

Figure 1 Architecture of an autonomic element

SELF-CONTAINED

AUTONOMIC ELEMENT

REMOTE
AUTONOMIC
MANAGER

MANAGED
COMPONENT

AUTONOMIC
MANAGER

WEB
SERVICE

UDDI
SERVICE

RoOTE POLICIES,

FACTS,
MANAGER AND

RULES

The notion of a virtual autonomic manager is to have
the participants in a peer group achieve some level
of autonomic behavior as if directed by a local or
remote instance of an autonomic manager, even
though none is present. The behavior is a conse-
quence of peer knowledge-sharing, obtaining local
consensus, and acting locally on that knowledge. The
elements of a peer architecture, discovery, query, and
binding, support this process.

One of the central issues of autonomic personal com-
puting is how autonomic managers at some higher
level in the system exert control over lower-level el-
ements—what autonomic elements are controlled,
how much (and how rapidly) control is exerted, and
what kind of control is performed. We identify two
styles of control: delegation and guidance. In del-
egation, a local autonomic manager passes control
of some of the resources it manages to a superior.
By default, the control of all local resources is del-
egated to the local AM. In guidance, a local auto-
nomic manager receives information (e.g., policies)
from its superior and implements them with respect
to its own resources. Only one AM is ever in direct
control of a resource.

Today’s personal computers manage all of their re-
sources with a single manager—their operating sys-
tem. It is advantageous to support a model in which
control over some resources can be delegated to an-
other manager, and this is possible with client vir-
tualization. If we think of the boxes in Figure 2 as
virtual machines, we see that two of the virtual ma-
chines of client A are under complete local control,

BANTZ ET AL. 169

Figure 2 An example of two hierarchies of autonomic control

REMOTE
AUTONOMIC
MANAGER OF S

VIRTUAL
AUTONOMIC
MANAGER OF W

AUTONOMIC
MANAGER
OF A

AUTONOMIC
MANAGER

whereas the third is under peer group control. Cli-
ent C has two locally controlled virtual machines and
one managed centrally, perhaps by the information
technology (IT) service and support department of
the enterprise.

In the case of occasional disconnection from a re-
mote manager, a simple static strategy has the re-
mote manager provide policy guidance but not real-
time control. An example comes from security
management. A remote, global security manager can
be aware of inter- and intra-enterprise issues (e.g.,
anew style of attack) that a disconnected client can-
not discover until the critical moment of first recon-
nection. At that moment, a race exists between the
update from the remote manager and the attack, sug-
gesting that the client take special precautions to se-
curely obtain the latest security guidance before
resuming its normal local security policy. Such strat-
egies support the traditional personal computing
style of considerable local autonomy.

170 BANTZ ET AL

PEER GROUP X

PEER GROUP W

VIRTUAL PHYSICAL
RESOURCE COMPUTER

PEER
GROUP

We now discuss two issues that we consider funda-
mental to the success of this architecture: security
and privacy on the one hand, and stability on the
other.

Security and privacy. Security and privacy are crit-
ical system attributes. In order for a machine to re-
quest confidential information from another ma-
chine, it needs to be able to securely identify itself.
There are several ways in which this can be done,
but the easiest (and probably most secure) is to use
a public/private key pair. The Trusted Computing
Platform Alliance (TCPA) " provides an ideal way of
securing private keys for machine-level identifica-
tion. Each system can then identify other machines
either by using registered keys kept in a database,
such as in the IBM Tivoli Policy director, or by using
certificates.

Once identification is completed, a secure connec-
tion needs to be established between the comput-

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003

ers. Internet Protocol Security (1PSec) ' is the stan-
dard way of making this connection, but client/server
authenticated Secure Socket Layer (SSL) '* works too,
as in TLS. ' This provides for authenticated requests,
confidential transmission of the data, and integrity
of the data returned. Executables should be both
signed—so that they may be verified as coming from
a trusted source—and run in a sandbox.

A higher-level autonomic manager should not push
information to a subject manager without it being
requested. When a system is in “push” mode, the
recipient needs to be able to throttle the behavior
of the pushing system to avoid denial of service at-
tacks.

In order for a machine to publish information, it
needs to be able to determine whether information
is confidential. Nonconfidential information must be
explicitly identified; everything else is assumed to be
confidential.

Stability. The goal of an autonomic personal system
is to exhibit both autonomic and usable behavior to
its end user. When autonomic components are put
together in a system, it is not a given that the system
as a whole exhibits stable behavior. For example, a
personal computer may make a local evaluation that
a shared communications link has high bandwidth,
based on characteristics of the media, and may ini-
tiate a bandwidth-consuming activity. If other per-
sonal computers make the same decision, the link
can quickly saturate and become unusable to all of
them. A more conservative strategy, say, to defer
bandwidth-consuming activities until a record of link
performance has been established and only then to
attempt more aggressive exploitation of the resource,
might yield better overall behavior. In general, we
imagine that constructive autonomic behavior will
be constrained by context and policy. What context
and which policies (and how to represent and main-
tain them) are important topics for future research.

Issues and directions in open autonomic
personal computing

In this section, we describe several challenges that
available technologies do not address. Challenges ex-
istin the areas of security, connectivity, storage, peer
group collaboration, network-based services, and the
user interface, and autonomic managers, virtualiza-
tion, and standards. Autonomic frameworks can be
brought to bear to meet them.

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003

Security. Security solutions are notorious for being
difficult to use.'” Public Key Infrastructure (PKI) is
theoretically a very good security design, but it is dif-
ficult to implement. Secure keys must be generated
for all users and distributed to them. Certificates
must be generated for all the keys, and a database
of revoked certificates kept. Passwords are insecure
and expensive; typically, over 50 percent of the calls
to a help desk are requests to reset a password. Even
biometric identification requires fingerprint tem-
plates, which must be managed. Since this manage-
ment is likely to be frequent, it represents a signif-
icant security exposure.

We believe that the current lack of ease-of-use of
security schemes remains a significant retardant to
their widespread acceptance. There are many oppor-
tunities to apply autonomic computing technologies
to security problems, among them automatic updat-
ing of security settings, secure recovery from soft-
ware failures, discovery and remediation of security
exposures, and the ability to manage keys securely
without human intervention.

Wireless technology presents its own set of chal-
lenges, as in the widely reported problems with Wired
Equivalent Privacy (WEP). ' But vulnerable security
solutions are not the only source of exposures. Any-
one can go to the local computer store and purchase
a wireless access point, set it up in an organization,
and thereby permit insecure access to the network
of the organization. In the wireless arena, convenient
auditing means are required, perhaps implemented
as portable computers with wireless connectivity and
additional instrumentation software, to detect and
report these “rogue” access points and improper con-
figuration of those installed by the organization.
Wireless technology represents a new security ex-
posure, and autonomic managers should manage its
security as well.

Connectivity. There are so many alternatives to con-
nect to personal, local, and wide area networks that
this choice creates connectivity overload for users.
Mobility also adds complexity; each location has its
own connectivity attributes. The active communica-
tion links of a device should be readjusted to the most
appropriate ones each time the status of any of them
changes, where a measure of appropriateness would
be dependent on quality of service, cost, security,
availability, location, and other policy elements. For
example,

BANTZ ET AL. 171

e Ifadeviceis relocated, it should automatically up-
date its connectivity parameters to incorporate past
knowledge of the new location; if it has never been
in this location before, or does not know where it
is, it should try educated guesses (and ultimately,
trial and error) to achieve connectivity.

* Connections should be chosen according to pol-
icies. For example, a link may be chosen if its cost
per bit per second is less than any other, subject
to a minimum acceptable bandwidth. If the PC is
operating on batteries and remaining power is low,
the link with the lowest power requirement may
be chosen.

There is a strong interaction between autonomic be-
havior of connectivity and security. When switching
links, active sessions may have to be migrated, ex-
posing the session to penetration. As we share knowl-
edge with peers, we must address the issue of what
can be shared with which peers. Personal computer
file systems do provide access control per folder, but
not an associated security classification. Although the
technology exists to secure sharing, the policies and
information to control that sharing are generally
lacking.

Storage. Autonomic storage will start with automa-
tion of the storage management that users perform
today. Data are often stored in multiple locations
and in multiple versions, and it is too easy to lose
track of where the data are located. As information
is migrated and copied, significant privacy and se-
curity requirements must be met. This means that
manual work, if not automated, will most likely re-
tard the needed flow of such information.

The challenge in storage is to abstract and manage
both the physical location of data and the privacy
and security requirements of the data. This abstrac-
tion should allow applications developed without au-
tonomic storage in mind to function normally, but
perhaps not as optimally as an application designed
for autonomic storage. It should also provide the ab-
straction required for mining collaborative informa-
tion. Initially, there could be some manual admin-
istration of autonomic storage through a simplified
interface for setting the physical location (e.g., “add
another network attached storage device”) and for
setting privacy and security parameters. As auto-
nomic storage develops, most or all of this manage-
ment function should become automatic, guided by
higher levels of management that implement broader
business-based policy.

172 BANTZ ET AL

Peer group collaboration. The reward for peer group
collaboration is access to more, and more current,
data that may not be available through more formal
publishing means. Peer computing is a special case
of distributed computing' with several challenges.
The first is how to form a peer group. Since auto-
nomic function often demands implementations that
do not involve human guidance, the peer group must
be formed automatically. A given PC should not be
constrained to be a member of only one peer group.
The peer group for sharing knowledge about how
to connect to the Internet from a particular place is
almost certainly local to that place, whereas the peer
group for sharing resources to support some grid
computation need not be. It may be possible to
dynamically form a peer group from a larger one
(specialization) through a solicitation process in
which responses to successively more specialized
queries would qualify members, although the indis-
criminate broadcast of the first solicitation bodes ill
for systems of large scale. Limited persistence of peer
groups can limit the need to solicit broadly.

A second challenge is identifying the specific collab-
oration type for the peer group. How can sharing be
limited to just that type? How can solicitations be
made both general, so that only a limited set of re-
sponses need be designed, and sharp, so that only
relevant responses are generated? How are respond-
ers to generate helpful responses without compro-
mising their own privacy?

A third challenge is determining the degree of trust
that any member puts in the information obtained
from any other member in the group. How can a
member profit from information so obtained with-
out complete trust in it? Consensus algorithms ' can
derive plausible results, but the credibility of the re-
sponders should be taken into account. Credibility
can be established through a history of acquiring use-
ful and accurate knowledge from a member, but if
no assessment of credibility is available, the uses to
which obtained information can be put must be lim-
ited.

Network-based services. The opportunity for net-
work-based services to complement and extend ser-
vices implemented locally and in the peer group is
too extensive to survey here, but several examples
should indicate this potential.

To complement autonomic connectivity (see the ear-

lier subsection on communications), network-based
services can supply additional information about re-

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003

sources available in the current location, such as IT
resources (printers, hubs, and enhanced displays).
Perhaps the key network-based service is the service
directory, from which a menu of services and how
to access them can be obtained.

An analyst for International Data Corporation as-
serts that “The market for providing IT services is
undergoing a radical change—from provisioning
these services as customized offerings, generally at
a customer’s site, to providing these same services
from remote locations as a set of computing utility
offerings . ..”* An important step in the evolution
of autonomic personal computing is the development
and deployment of a remote client management util-
ity.?! The autonomic personal computer facilitates
this utility by reducing the need for remote manage-
ment to exception cases.

The utility itself consists of a secure, scalable auto-
nomic computing infrastructure that can maintain
service levels without incurring the costs of excess
capacity. This infrastructure will enable capacity on
demand and managed services that monitor and re-
solve issues before they become problems. Proac-
tive management for problem determination, diag-
nosis, and resolution helps not only to reduce human
involvement but also catches incipient failures early,
perhaps before they precipitate cascading failures,
thus reducing the overall downtime.

As client management utilities evolve, we see a con-
tinuing rebalancing of the provisioning of capabil-
ities from the backend infrastructure, from peers, and
from those resident on the client. For users to em-
brace a client management utility, they must be pro-
vided with end-to-end security that secures their
enterprise data, coupled with sufficiently powerful
remote management capabilities to enable ongoing
program determination, diagnosis, and resolution
without the intervention of the end users.

User interface. Many autonomic computing func-
tions have no end-user-visible behavior.? They im-
plement “computing that just works.” For some
users, this behavior is ideal. But for the experienced
or the curious, who want to take direct control of
their system parameters occasionally, it is important
that they be kept up-to-date on autonomic actions
that affect these parameters. How can the user be
informed of just these actions? There is also the ques-
tion of how the value of autonomic computing tech-
nology is perceived when the activities that deliver
that value are hidden.

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003

We believe that it is likely that autonomic personal
computing will go through several stages of evolu-
tion, differentiated in part by the degree to which
the end user is aware of and participates in manage-
ment actions. As autonomic behavior becomes more
effective, it will be trusted more, and the need for
an end user to take direct control will lessen. Dur-
ing this time, users will likely be required to select
or confirm actions that may be suggested by an au-
tonomic manager.

Directions toward an autonomic framework. To ad-
dress the issues raised in the previous subsections,
we are defining an autonomic framework that brings
together disparate computing elements. The key el-
ements of the autonomic framework are the auto-
nomic manager and the elements to be managed.
The goal of the framework is to specity the inter-
faces and protocols for elements to exchange infor-
mation and data to enable collective autonomic be-
havior. To achieve this goal, we need to rethink the
structure of the system and the application software
(and the tools that help build them) so as to identify
and expose relevant and accurate indications of the
state of each element, and provide standard inter-
faces to affect element state with minimal side ef-
fects. Each element will need an element-specific
autonomic manager to monitor and control the el-
ement. This coupling of element and specific man-
ager represents the lowest level of autonomic behav-
ior. Elements may be isolated in virtual machines to
limit undesirable interactions between them. Ele-
ment-specific autonomic managers will report to a
system-wide autonomic manager in a standard way.
The system-wide manager is responsible for achiev-
ing end-user goals in accordance with established
policy.

Autonomic managers. The elements under control
of an autonomic manager must be observable and
controllable. Current personal computing systems
maintain a wealth of data about themselves in re-
positories and logs. Some of these data are redun-
dant and confusing, and some are not even accurate.
Thus the information relevant to decision-making
is a challenge to obtain from those data. Similarly,
many points of control exist, but their relationship
to the desired behavior of the system is unclear. The
job of the autonomic manager would be simplified
if its input data were more indicative of root causes,
and if the actions that the platform supports had a
more direct effect on those causes.

BANTZ ET AL.

173

Another issue in the design of autonomic managers
is the representation and maintenance of knowl-
edge:* relations between input data and root causes,
relations between output actions and effects, and pol-
icies constraining acceptable and desirable actions.
This knowledge is often represented in rules, yet
rules-based systems are notoriously hard to main-
tain because of the interactions between rules.

Virtualization. Virtual machines? create an efficient
emulation of the environment in which operating sys-
tems run, at the application protection level. This
emulation permits an existing, unmodified operat-
ing system to run as an application. A virtual ma-
chine monitor allocates resources to virtual ma-
chines. Virtual machines encapsulate their contents,
so that programs running within them cannot change
any state outside of them.

Virtualization enhances isolation and containment,
enhancing security and reducing the domain of an
autonomic manager to the contents of a virtual ma-
chine. Virtualization provides finer-grained resource
management and a mechanism for the capture of a
complete state, so complex multiapplication execu-
tion environments can be frozen, restarted, undone,
and migrated or cloned elsewhere. Virtualization
provides an effective way for legacy software systems
to coexist with current operating environments.

Standards. For autonomic personal computing to
succeed, open standards must address the require-
ments of autonomic computing. Current standards
activities on Resource Description Framework
(RDF), Semantic Web, Simple Object Access Pro-
tocol (SOAP), UDDI, Web Services Description Lan-
guage (WSDL), and Web services are focused primar-
ily on the definition of provider-consumer or client-
server interaction between entities. These standards
need to be examined in the context of autonomic
personal computing systems and extended to sup-
port new types of interactions, knowledge represen-
tation, and the collaboration needed to accomplish
peer-to-peer autonomic behavior.

The autonomic framework that we have described
is both a user of standards (e.g., Web services) and
a candidate for standardization itself. As a standard
it would encourage innovation in autonomic man-
agers and the relationships between them.

Although the roles of autonomic manager and man-
aged element are asymmetric, in peer group auto-
nomic behavior it is often hard to statically associ-

174 BANTZ ET AL

ate the roles of a client or a server such that the
current standards apply. The relationships among en-
tities are more dynamic and reciprocal and often
evolve after discovery and negotiation. The JXTA®
work is an attempt to develop a technology for gen-
eralized peer-to-peer interaction among devices.

Unfortunately, the Web services model is not sym-
metric; it defines a supplier and a client of the ser-
vice. Initially, we expect that autonomic systems will
be created through the interconnection of existing
systems, augmented by local autonomic behavior. In
this evolutionary paradigm system, components take
pseudostatic roles as clients or servers. Eventually,
however, peer roles should be supported by stan-
dards.

Personal systems are often mobile and occasionally
disconnected, so any interface to a remote autonomic
manager must support a disconnected mode of op-
eration. Disconnection is not explicitly supported by
current Web services standards. Current implemen-
tations of Web services also have a design point that
is resource-intensive, rather than the resource-con-
strained environment of personal computing. We
look forward to personal versions of application serv-
ers, databases, discovery protocols for and peer group
implementations of the Web services registry, and,
in general, Web services implementations compat-
ible with the resources that are available on a single
PC.

Summary and conclusions

Autonomic personal computing represents an im-
portant and distinct part of the autonomic comput-
ing concept. It is important because of the long-term
potential to significantly reduce the frustration level
and improve the user experience of hundreds of mil-
lions of PC users. It represents the potential to sig-
nificantly reduce the personal computing support
costs for millions of businesses. It is distinct because
PCs exist in a more variable and less secure appli-
cations and connectivity environment than do serv-
ers. Personal computers are generally managed by
less skilled personnel than are servers, centralized
storage elements, or network infrastructure products.

Given the complex and dynamic environment faced
by PCs (particularly mobile computers), we believe
that an autonomic personal computing solution
should adaptively seek out and leverage local, peer,
and network resources. Sometimes the personal
computing system will be disconnected from any net-

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003

works and must be completely self-reliant. In other
cases, the system should automatically communicate
with and leverage the resources of its peers. When
full network connectivity is available, the autonomic
personal computing system may choose to take ad-
vantage of services provided over the network.

Personal computing requires very careful attention
to privacy and security issues. To minimize exposure
to attacks and to ensure security and privacy, we be-
lieve that security approaches based solely on soft-
ware are insufficient, and approaches should take ad-
vantage of tamper-resistant hardware elements (e.g.,
TCPA) wherever possible. Furthermore, all commu-
nication and decision-making activities related to au-
tonomic functions for each autonomic element
should be coordinated by a trusted and secure au-
tonomic manager function associated (perhaps
dynamically) with each element.

Architectures and frameworks for autonomic per-
sonal computing must be based on open standards.
Autonomic personal computing should also lever-
age technologies and approaches such as virtualiza-
tion, peer-to-peer middleware, and Web services that
are currently being applied in other problem do-
mains. But the extensive interoperability, security,
and ease-of-use requirements for autonomic per-
sonal computing will require new technologies and
standards to be developed.

Autonomic personal computing represents a jour-
ney rather than a destination. The journey started
long ago with the introduction of features such as
plug-and-play and Dynamic Host Configuration Pro-
tocol (DHCP), and it continues today with improved
backup, system recovery, and network-based man-
agement tools. It will continue with further improve-
ments to server-based monitoring and management,
peer-to-peer collaboration and information sharing,
and more robust stand-alone diagnostic and recov-
ery capabilities. But the greatest progress will occur
only if an open architecture for autonomic personal
computing is developed to enable secure, private,
transparent, and adaptive collaboration between
each personal computer and its dynamic environ-
ment.

Acknowledgments

We thank those at the IBM Thomas J. Watson and
Almaden Research Centers who participated in the
autonomic personal computing brainstorming ses-
sions of 2002. William Tetzlaff and Ed Lassettre were

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003

responsible for the autonomic manager concept. Spe-
cial thanks to Alan Ganek, Kazuo Iwano, and Wil-
liam Chung for their perspectives on the relation-
ship between autonomic personal computing and
autonomic computing in general. We are indebted
to the reviewers for their incisive and constructive
comments.

**Trademark or registered trademark of Microsoft Corporation
or Symantec Corporation.

Cited references and notes

1. D.S. Siewiorek and R. S. Swarz, Reliable Computer Systems:
Design and Evaluation, A. K. Peters Ltd., Natick MA (1998).

2. The Journal of Computer Resource Management, Computer
Measurement Group, http://www.cmg.org.

3. R.J. Anderson, Security Engineering: A Guide to Building De-
pendable Distributed Systems, John Wiley & Sons, Inc., New
York (2001).

4. CIMisstandardized by the Desktop Management Task Force,
http://www.dmtf.org.

5. Microsoft Windows XP Professional Resource Kit Documen-
tation, Microsoft Press, Redmond, WA (2001).

6. Gnutella, at http://gnutella.org/, is just one example of file
sharing.

7. R. J. Bayardo, R. Agrawal, D. Gruhl, and A. Somani,
“YouServ: A Web-Hosting and Content Sharing Tool for the
Masses,” 11th International World Wide Web Conference, Ho-
nolulu, HI (May 7-11, 2002), paper available at http://
www.almaden.ibm.com/cs/people/bayardo/ps/www2002.pdf.

8. I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of
the Grid—Enabling Scalable Virtual Organizations,” http://
www.globus.org/research/papers.html.

9. Web services activity of W3C, documented at http://
www.w3.0rg/2002/ws/.

10. A. G. Ganek, “The Dawning of the Autonomic Computing
Era,” IBM Systems Journal 42, No. 1, 5-18 (2003, this issue).

11. Windows Management Instrumentation, Microsoft Corpo-
ration, Redmond, WA, http://www.microsoft.com/hwdev/
driver/WMI.

12. Different AMs may be in control of independent aspects of
the resource; for example, one AM may control security,
whereas another controls power consumption.

13. TCPA—The Trusted Computing Platform Alliance, http://
www.trustedpc.org/.

14. S. Kent and R. Atkinson, “Security Architecture for the In-
ternet Protocol,” RFC 2401, Internet Engineering Task Force,
available at http://www.ietf.org/rfc/rfc2401.txt.

15. A. O. Freier, P. Karlton, and P. C. Kocher, “The SSL Pro-
tocol” (March 1996), available at http:/www.netscape.
com/eng/ssl3/ssl-toc.html.

16. T. Dierks and C. Allen, “The TLS Protocol,” RFC 2246, In-
ternet Engineering Task Force (January 1999), available at
http://www.ietf.org/rfc/rfc2246.txt.

17. A. Whitten and J. D. Tygar, “Why Johnny Can’t Encrypt: A
Usability Evaluation of PGP 5.0,” Carnegie Mellon Univer-
sity, Pittsburgh, PA, available at http:/www-2.cs.cmu.
edu/~alma/johnny.pdf.

18. N. Borisov, I. Goldberg, and D. Wagner, “Intercepting Mo-
bile Communications: The Insecurity of 802.11,” Seventh In-
ternational Conference on Mobile Computing and Networking,
Rome (July 2001).

BANTZ ET AL.

175

19. Distributed Systems, S. Mullender, Editor, Addison-Wesley
Publishing Co., Reading, MA (1993).

20. D.Tapper, “Is e-Sourcing IBM Global Services’ Formula for
Dominating the Computing Utility Market?” International
Data Corporation, Framingham, MA (2001).

21. D.Bantz, A. Mohindra, and D. Shea, “The Emerging Model
of Subscription Computing,” IT Professional 4, No. 4, 27-32
(July/August 2002).

22. D. M. Russell, P. P. Maglio, R. Dordick, and C. Neti, “Deal-
ing with Ghosts: Managing the User Experience of Autonomic
Computing,” IBM Systems Journal 42, No. 1, 177-188 (2003,
this issue).

23. S. Russell and P. Norvig, Artificial Intelligence: A Modern Ap-
proach, Prentice Hall, Upper Saddle River, NJ (1995).

24. R.P.Goldberg, “Survey of Virtual Machine Research,” Com-
puter 7, No. 6, 34—45 (1974).

25. L. Gong, “Project JXTA: A Technology Overview,” Project
Juxtapose, available at http://www.jxta.org/project/www/
docs/TechOverview.pdf.

Accepted for publication August 28, 2002.

David F. Bantz IBM Research Division, Thomas J. Watson Re-
search Center, P.O. Box 218, Yorktown Heights, New York 10598
(electronic mail: bantz@watson.ibm.com). Dr. Bantz has been a
research staff member since 1972, after a short stint at a startup
company. He graduated from Columbia University in 1970 with
an Eng.Sc.D. degree and taught there as an adjunct professor for
nearly 25 years. He has 20 issued patents. His technical interests
have always been in personal computing applications and tech-
nology, and he is currently working on autonomic personal com-
puting.

Chatschik Bisdikian IBM Research Division, Thomas J. Watson
Research Center, 19 Skyline Drive, Hawthorne, New York 10532
(electronic mail: bisdik@us.ibm.com). Dr. Bisdikian is a research
staff member, currently working on short-range wireless networks,
wireless LAN deployment, service discovery, spontaneous net-
working, and peer networking. He holds a Ph.D. degree in elec-
trical engineering from the University of Connecticut. He has
served as vice-chair of the IEEE 802.15.1 task group that devel-
oped a standard for personal area networks adapted from the
Bluetooth specification. He is coauthor of the book Bluetooth Re-
vealed: The Insider’s Guide to an Open Specification for Global
Wireless Communications.

David Challener IBM Personal Computing Division, 3039 Corn-
wallis Road, Research Triangle Park, North Carolina 27709 (elec-
tronic mail: challene@us.ibm.com). Dr. Challener received his
Ph.D. in applied mathematics from the University of Illinois,
Champaign-Urbana and came to work for IBM upon graduation.
Since then he has held positions in semiconductor yield analysis,
substrate reliability, the technical staff to the president of the IBM
PC Company, the Center for Natural Computing, PC architec-
ture, and now the Personal Systems Institute, where he works on
security and autonomic computing as a Senior Technical Staff
Member.

John P. Karidis IBM Personal Computing Division, Route 100,
Somers, New York 10589 (electronic mail: karidis@us.ibm.com).
Dr. Karidis is an IBM Distinguished Engineer, developing hard-
ware and software product concepts that have included the “but-
terfly” keyboard on the ThinkPad™ 701C, now in the permanent
collection of the Museum of Modern Art in New York, and the

176 BANTZ ET AL

ThinkPad TransNote portfolio computer. He received his Ph.D.
in mechanical engineering from The Pennsylvania State Univer-
sity and joined the Watson Research Center in 1983.

Steve Mastrianni IBM Research Division, Thomas J. Watson Re-
search Center, P.O. Box 218, Yorktown Heights, New York 10598
(electronic mail: stevemas@us.ibm.com). Dr. Mastrianni is a sen-
ior software engineer currently writing autonomic software. He
joined IBM Research after running a software development and
consulting company for 10 years. He has authored two books, sev-
eral papers, and over 70 articles, and holds a Ph.D. in computer
science. He has filed over 35 patents with six issued, and he pre-
fers writing software to talking about it.

Ajay Mohindra IBM Research Division, Thomas J. Watson Re-
search Center, P.O. Box 218, Yorktown Heights, New York 10598
(electronic mail: ajaym@us.ibm.com). Dr. Mohindra has been a
research staff member at IBM since 1993. He holds a Ph.D. in
computer science from the Georgia Institute of Technology. His
research interests include distributed systems and autonomic and
e-utility computing.

Dennis G. Shea IBM Research Division, Thomas J. Watson Re-
search Center, P.O. Box 218, Yorktown Heights, New York 10598
(electronic mail: dgshea@us.ibm.com). Dr. Shea is the senior man-
ager of the Personal Systems and Services department. He holds
a Ph.D. in computer science from the University of Pennsylvania
and electrical engineering degrees from Rensselaer Polytechnic
Institute. He started his career at IBM in Boca Raton, Florida,
working on small systems. His technical interests have revolved
around personal systems technology, from easier connectivity and
mobile solution enablement to the recent development of a desk-
top management computing utility.

Michael Vanover IBM Personal Computing Division, 3039 Corn-
wallis Road, Research Triangle Park, North Carolina 27709 (elec-
tronic mail: vanover@us.ibm.com). Mr. Vanover has been a de-
velopment engineer since 1986. He graduated from Wheaton
College in 1982 with a B.S. in chemistry. He later obtained a mas-
ter’s degree in electrical and computer engineering from the Uni-
versity of Texas at Austin. He has nine issued patents. His tech-
nical interests have ranged from processor design to graphics and
multimedia, and more recently PC manageability and security.

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003

