686 SOMANI, CHOY, AND KLEEWEIN

Bringing together
content and

data management
systems: Challenges
and opportunities

With advances in computing and
communication technologies in recent years,
two significant trends have emerged in terms
of information management: heterogeneity
and distribution. Heterogeneity (herein
discussed in terms of different types of data,
not in terms of schematic heterogeneity)
pertains to information use evolving from
operational business data (e.g., accounting,
payroll, and inventory) to digital assets,
communications, and content (e.g.,
documents, intellectual property, rich media,
e-mail, and Web data). Information has also
become widely distributed, both in scale and
ownership. To manage heterogeneity, two
major classes of systems have evolved:
database management systems to manage
structured data, and content management
systems to manage document and rich media
information. In this paper, we compare and
contrast these different paradigms. We believe
it is imperative for any business to exploit
value from all information—independent of
where it resides or its form. We also identify
the technical challenges and opportunities for
bringing these different paradigms closer
together.

Database management systems (DBMSs)—in partic-
ular, relational database management systems
(RDBMSs), such as the 1BM DB2 Universal Database* !
(Database 2*)—have long been established as the
appropriate engines for providing transactional and
analytical processing over homogeneous, well-typed,
structured information, while providing extensibil-

0018-8670/02/$5.00 © 2002 IBM

by A. Somani
D. Choy
J. C. Kleewein

ity through object-relational extensions. Recently,
content management systems (CMSs), such as the IBM
Content Manager,” have emerged to manage non-
traditional, heterogeneous, unstructured data (e.g.,
documents, images, and rich media).*> CMSs pro-
vide for higher-level semantics, such as versioning,
foldering, check-in/check-out, and meta-data man-
agement. Although a CMS typically uses an RDBMS
internally to manage the meta-data that describe the
unstructured data, a CMS is usually designed as a self-
contained system to manage content.

Increasingly, it is becoming important that informa-
tion—regardless of its format, source, and location—
needs to be easily managed, searched, and accessed.
While these seemingly disparate systems continue
to evolve, they must become more integrated so that
business applications can be easily implemented
across all information. To this end, a system that can
provide integrated access to a federation of distrib-
uted, heterogeneous information systems is needed.
Let us explore the need for such a system with the
help of the following scenario.

Consider an on-line brokerage that provides its cus-
tomers with on-line trading capabilities, such as the
ability to submit new transactions, view transaction
histories, manage unexecuted transactions, check
quotes, and view account balances. In addition, most
brokerages provide other value-added services, such

©Copyright 2002 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002



Figure 1 Brokerage scenario

UNKNOWN
REPOSITORY

COMBINED
CMS-DBMS
ENGINE

ANALYST REPORTS

CONTENT
REPOSITORY

RESEARCH REPORTS

WEB APPLICATION

“TRANSACTIONS

“NEWS OF
THE DAY”

CUSTOMERS

v

AND RESEARCH”

“PORTFOLIO
ANALYSIS”

RELATIONAL
TABLE

TRANSACTION HISTORY

as access to research reports, complex charting and
comparison functions, and access to current news.

A simplified view of such a data topology is depicted
in Figure 1.

Data come from a number of different sources, in-
cluding traditional transaction data (such as stock
market trades and account balances), rich media re-
positories (such as those that hold company reports),
real-time data feeds (such as stock ticker data and
news feeds, which may themselves be rich media),
and repositories whose exact format is not known
because they are not owned by the brokerage and
only export data through services (such as Web ser-
vices).

From such a topology, information is delivered to
the customer in the form of mail (such as “news of
the day about companies in my portfolio”), Web ap-
plications (such as on-line trading applications), and
complex analytic applications (such as portfolio analy-
sis and charting). In such a topology, data from mul-

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

tiple sources are required to satisfy any of these func-
tions, and those data might be digital media or simply
transactional. For example, “news of the day” re-
quires access to transactional portfolio data to de-
termine what news from a live feed is interesting,
and portfolio analysis requires access to transactional
portfolio data, as well as company and analyst re-
ports about the securities in the portfolio.

In addition, complex analytics of the data, rich me-
dia or otherwise, may be required to provide addi-
tional services. For example, a stock search may be
of the form “show me stocks with a five-year CGR
(Compound Growth Rate) of 10 percent or more,
with recent positive news reports, where 50 percent
of the analysts covering are bullish on the stock.” Nei-
ther a traditional transactional DBMS nor a traditional
CMS can process such a search.

In this paper, we compare and contrast these two
classes of systems with the objective of integrating
the two. In the next section, we start out by discuss-
ing the background and historical evolution of these

SOMANI, CHOY, AND KLEEWEIN 687



Figure 2 Content Manager

CLIENT OR APPLICATION SERVER

APPLICATION

VIDEO
CHARGER | """
CONTENT

(UNSTRUCTURED DATA)

LIBRARY SERVER

RDBMS

OBJECT
SERVER

META-DATA
(STRUCTURED DATA)

systems and offer a high-level framework for com-
parison. We then explore specific areas of differen-
tiation in greater depth. The section after that pro-
poses an “information integration” architecture.
Finally, we conclude with some technical challenges.

Background

When investigating the convergence of rich media
systems with transactional systems, it is important
to first understand the differences in the purpose of
those systems in the following key areas:

e Initial target problem domain

* Typical use

* Type of data and their associated semantics
* Functionality required

An RDBMS is designed to manage business records,
providing an on-line transaction processing (OLTP)
capability to support business operations and a data
analysis (on-line analytical processing, or OLAP) ca-
pability to support decision-making. Transactional
systems have their background in general ledger
applications and business data management—man-
aging and manipulating data electronically that would
otherwise have been stored in a ledger or spread-
sheet. Industries that have in the past relied on led-
gers are major users of these kinds of systems. One
example of such an industry is banking, which relies
on accounts, transaction histories, and a long list of
debit and credit operations.

Ledgers and spreadsheets typically hold very gran-
ular data such as account codes, names, account bal-
ances, and dates of shipments. The goal of such sys-

688 SOMANI, CHOY, AND KLEEWEIN

tems is to manipulate and analyze the exact data of
interest and to present the results of those opera-
tions to a user. These data values tend to be heavily
numeric-, date-, and short-character-string-based
and do not typically have a lot of natural-language
text or rich-media data. The users of such a system
tend to be applications or machines (automatic teller
machines [ATMs), point of sale [POS] terminals, etc.),
often from more accounting or data-facing domains
and with strong analytic requirements. OLTP oper-
ations are typically synchronous, short-duration
transactions. Once transactions are complete, the
DBMS provides decision-support querying and other
analytic processing to make business decisions. The
performance of a system is often measured by its
throughput: the number of transactions or queries
it can process per second.

In contrast, a CMS, such as the 1BM Content Man-
ager (Figure 2), has its background in business doc-
ument management—managing and tracking doc-
uments electronically that would otherwise be stored
in a library or filing cabinet. Libraries and filing cab-
inets typically hold entire documents or parts of doc-
uments, and the goals of such systems are to iden-
tify documents that may contain information of
interest and to present a list of such documents to
users. These systems have evolved over time to sup-
port digital assets in many different forms. Users in
industries that have in the past relied heavily on pic-
tures or paper forms with large areas of free-form
text are major users of such systems. One example
is the insurance industry, which relies on documents,
such as policies, claims forms, photos of damage, and
accident reports.

CMSs have been used both as on-line repositories for
operational data and as archival libraries for long-
term retention. Thus, a CMS must support the com-
plete life cycle of content entities, from creating to
updating, organizing, searching, accessing, distrib-
uting, tracking, and retention. To do so, a CMS also
needs to manage a variety of meta-data that describe
these content entities. Meta-data include system at-
tributes, such as a time stamp and content entity size,
that the CMS uses to manage content. Meta-data also
include application attributes, such as author, sub-
ject, and keywords, that an application uses to de-
scribe content entities. Frequently a CMS must also
support business processes (e.g., workflow). Since
content is pervasive, the user of CMS data can be any-
one and anywhere. As a result, content applications
are usually network-centric and often interactive in
nature, perhaps along with a high-volume batch in-

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002



gestion operation. In terms of data representation,
a CMS supports higher-level semantics for content,
which needs to be instance-based for access, manip-
ulation, and control. Some applications need a com-
plex structure to represent each instance. Hence, a
CMS needs more than the simple tabulated format
(i.e., a collection of homogeneous, flat records) used
by an RDBMS for data modeling. It must maintain
various relationships among instances. Aggregations
(e.g., folders) are often needed to represent collec-
tions of heterogeneous instances, such as documents
of different kinds as well as other folders.

Because of their origins in business document man-
agement, these systems tend to deal with objects that
are “user viewable” and that often have large com-
ponents written in a natural language. Search capa-
bility is very important to users of these systems,

We believe that
information sources
will continue to be
heterogeneous
and distributed.

including both attribute searching and text search-
ing. Because large amounts of unstructured data are
involved, an update transaction can be fairly long
compared to that of a transactional system. Further-
more, a CMS must handle asynchronous operations
to accommodate content streaming and delivery to
or from a third party, to enhance performance (for
large objects and parallelism), and to improve avail-
ability. The performance of a system is often mea-
sured by its response time for returning the first set of
results of information, either the beginning of a large
result set or the beginning of a large document. For
a high-volume production system, a good through-
put rate for loading unstructured data (e.g., images)
is also essential.

Meanwhile, object-relational (OR) technology has
emerged from the RDBMS community in an effort to
extend the relational model to accommodate un-
structured data. However, OR-DBMSs have not been
deployed as a full cMS in the marketplace to sup-
port large-scale content applications, and the follow-
ing are a few of the reasons:

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

* OR-DBMS implementations are mostly based on ex-
isting general-purpose RDBMSs, which do not have
sufficient system capabilities and the infrastructure
needed to handle a large volume of unstructured
data. Examples are hierarchical storage management
function, policy-based storage administration, con-
tent retention management, separate delivery path
for unstructured data (to meet network topology,
bandwidth, streaming, and quality-of-service require-
ments), and support for asynchronous operation.

* The object-relational data model is not yet rich
enough to capture the high-level semantics of con-
tent. Although the relational model is built on a
homogeneous set of records, a CMS data model is
typically built on a document instance and heter-
ogeneous collection, plus a meta-data model. (See
later subsection on the data model.) Without the
concept of higher-level entities (documents, fold-
ers), an OR-DBMS is unable to maintain the integ-
rity of such entities, to provide suitable access con-
trol for them, and to offer high-level content
functions that enhance both usability and perfor-
mance. For example, a CMS may provide a func-
tion for retrieving a folder (and its meta-data) to-
gether with all the documents (and their respective
meta-data) that are contained in the folder. To ac-
complish the same task through an RDBMS or
OR-DBMS, a user has to understand the database
design and possibly issue many Structured Query
Language (SQL) queries.

The trade-off between generalization and specializa-
tion of these systems will be a challenge. We believe
that a DBMS will continue to support and enhance
OLTP and OLAP functions, whereas cMS will focus
on managing a large volume of content with the high-
level semantics needed by its applications. In the
foreseeable future, we do not believe that there will
be a single system that can manage both structured
data and content equally well and in a scalable man-
ner.® Instead, we believe information sources within
an enterprise will continue to be heterogeneous and
distributed.” The challenge, then, is how to integrate
such information.

The industry has come up with various federation
alternatives to handle separately managed data. One
style of federation has been across homogeneous,
structured data®’ with full-scale, composite query op-
timization, planning, and execution, along with
strongly defined schemas and transactional seman-
tics. Over the years, several systems have been de-
veloped to deal with heterogeneous database systems
(Garlic," pisco,' and TsimMIs'#"). Content sys-

SOMANI, CHOY, AND KLEEWEIN 689



Table 1 Summary of differences between a CMS and a DBMS

Content Management Data Management

General ledger and spreadsheet

Applications, specialists

Strongly data focused, heavily
computational

Individual data values

Initial problem domain
Who uses it
Type of data

Library and filing cabinet

Ordinary people, work group

Human readable with heavy
text or image

Entire document or
document fragment

Archival and retrieval

Data granularity

Usage scenario Analytic, transactional application

Search task

documents
Typical data set sizes ~O(petabytes)
Performance metric

interactions)

Parametric and text, to find

Time to first response (user

Mostly parametric with text
extension, to find data values

~O(terabytes)

Transactions/queries per second
(TPC-C**, TPC-H**)

tems, in contrast, have provided unified access to het-
erogeneous information ' with broadcast (“union”
searching over loosely defined schemas across dis-
tributed sources. We discuss differences in federa-
tion in more detail later.

Thus, the two kinds of systems are designed for very
different problem domains, supporting different ap-
plications and different users. They manage data of
different types, granularity, representation, and se-
mantics and behavior. They offer different functions,
and the access pattern and transaction model are
quite different. The differences in the two systems
can be summarized in Table 1.

Detailed comparisons of differences
between a CMS and a DBMS

Although these systems initially addressed different
problem domains, that is no longer the case. Cus-
tomers increasingly demand consistent, high-func-
tion access to all information assets, wherever they
reside and however they are stored. They no longer
want merely a database management system; they
require an integrated information system.'

There are many properties such a system must ex-
hibit at the technical level to satisfy the needs of the
CcMs market as well as the DBMS market. At the high-
est level, it must offer consistent functionality across
a wide variety of existing data sources. Clearly the
scope of this effort is tremendous, and a detailed in-
vestigation into all aspects of such an effort is well
beyond the scope of this paper. Rather than merely
mention the required areas of convergence, however,
we focus on the problem of integration across het-
erogeneous data. Hence, our detailed comparison
focuses on three key data-access technologies:

690 SOMANI, CHOY, AND KLEEWEIN

* Data federation to provide in-place access to ex-
isting data

e Anexpressive data model that accommodates data
from very disparate sources

* Search over meta-data and data

Federation. Data federation is one technology that
can deliver consistent, high-function access to existing
data.'® Transactional systems®!” and rich media sys-
tems' currently offer different data federation capabil-
ities that are well-suited to the historical use of those
respective systems. These differences can be character-
ized in terms of the data that are being searched, the
functions and capabilities exposed through that search,
and the amount of precision required in the search.

A data federation solution for a transactional sys-
tem, such as the IBM DataJoiner® multidatabase
server, is designed to search transactional data and
federate across transaction systems (Figure 3). As
a result, this type of solution is focused on queries
over very fine granules of data stored in transaction
systems. Queries typically are used not only for
search but also aggregation, summarization, and
complex analytic capabilities, combining data from
multiple locations in complex ways and supporting
join-type operations in addition to union-type op-
erations. Because of the strong transactional history,
this solution produces exact results. True to its
spreadsheet and ledger heritage, it must produce re-
sults that would survive an audit.

To perform this type of federation and because it is
necessary to map data to very fine data granules, a
transactional system requires very detailed information
about the schema and types of data in the sources to
be federated. It must also have a detailed understand-
ing of the semantics of the data sources across a wide

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002



Figure 3 DBMS federation

CLIENT

FEDERATED
DATABASE
SERVER

variety of subject areas (concurrency control, interro-
gation language, transaction model, etc.) to provide de-
tailed data access. Because the data granules used in
these operations are relatively small, care is taken to
push operations to data sources to reduce data trans-
fer. (Because the applications are analytic, the user typ-
ically sees the result of the operations, not the source
data.)

A data federation solution for content systems, such
as the IBM Enterprise Information Portal (EIP) (Fig-
ure 4), is designed to federate document and rich
media systems. The design of EIP is based on an ex-
tensible architecture of connectors, offering a loose
federation of heterogeneous content sources through
a common programming environment. The feder-
ation model is to provide a single-search application
programming interface (API) for multiple, usually un-
related, content sources. EIP is built on a card-cat-
alog paradigm where searching over meta-data that
describe the content is crucial. The search that is sup-
ported is more for document discovery. An EIP fed-
erated query primarily performs a union operation
to combine the search results obtained through na-
tive connectors—those backend stores included in
the search scope of that query. The “join” operation,
as offered by RDBMSs, is not supported by EIP. The
advantage of the “union” search is that the engine
can start streaming results as soon as they become
available. This is especially good for federating over

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

BACK-END
DATA SOURCE

BACK-END
DATA SOURCE

Figure 4 Enterprise Information Portal

APPLICATION

FEDERATED SERVICES

(WORKFLOW, KNOWLEDGE MANAGEMENT, ...)
FEDERATED SEARCH

CONNECTOR | CONNECTOR

CONTENT CONTENT
SOURCE SOURCE

systems that are not always available or have differ-
ent latencies to various query requests. Overall,
searching is more fuzzy in a CMS, and the system is
designed to withstand the rigors of human interac-
tion. We explore search in more detail later.

SINGLE
SIGN-ON,

SEARCH
TEMPLATE

Thus, the differences between content federation and
transactional federation can be summarized in Ta-
ble 2.

Data model. In this subsection, we describe the two

data models, one transactional and the other con-
tent.

SOMANI, CHOY, AND KLEEWEIN

691



Table 2 Differences between content federation and transactional federation

Content Federation

Transactional Federation

What is searched
Federated schema
What functions are provided

Required precision
Transactional semantics

Meta-data and content data

Loosely defined

Union search
“Loosely coupled” parametric,
text and image search

Fuzzy

ACID (atomicity, consistency,
isolation, durability) within a
source (or whatever the data
source supports)

Data

Strongly typed and defined

Join, aggregation, analytic
Numerical analysis and search

Exact

ACID across sources with
support for two-phase commit
(2PC)*

TThis presumes that each data source supports ACID by itself and can participate in a two-phase commit.

Transactional data model. The data in a transactional
system is modeled around the widely understood re-
lational model.'® In a relational database, such as
one managed by DB2, each relation is a collection of
records of the same schema and is represented in
the form of a table. Each row in this table is a record,
and each column a specific attribute. The schema
for a relation is simply a predefined set of attribute
names and their type information. In contrast, in a
hierarchical database, such as one managed by the
IBM Information Management System (IMS*), the
record structure defined by a schema is a hierarchy
of attributes.

Regardless of the record structure, a transactional
system is designed to selectively store, filter, aggre-
gate, search, retrieve, update, and delete business
records and homogeneous sets of records efficiently.
Such business actions are frequently executed pro-
grammatically.

Content data model. Content data models are de-
signed to manage unstructured or semi-structured
data, which are typically consumed by a person. Early
content management systems, such as the IBM Im-
agePlus™ system, were designed to manage a large
volume of scanned image documents. To facilitate
document search and to support business activity,
application-defined meta-data in the form of a set
of attributes are maintained to describe each doc-
ument. ” To group documents for filing and process-
ing (e.g., workflow) purposes, a folder paradigm is
used to represent ad hoc collections of documents
and other folders, regardless of their type. Later sys-
tems, such as the 1BM Content Manager, were de-
signed to manage text documents and digital media
assets as well. Such systems require a more flexible
data model for meta-data, with user specifiable sche-
ma; a content search capability, especially full-text

692 SOMANI, CHOY, AND KLEEWEIN

search; and versioning support. Other systems, such
as Lotus Notes*, were designed to manage structured
documents, with unstructured data captured as doc-
ument attributes. For some applications, it is not nec-
essary to maintain a distinction between “content”
and “meta-data.”

Regardless of their intended applications, content
management systems typically support a document-
centric? data model (in terms of handling, manip-
ulation, and access control) that accommodates un-
structured or semi-structured data and offers full-
text search, versioning support, and collection of
heterogeneous documents (as well as collection of
collections). The structural aspect of the data model
(often for the meta-data) usually varies from system
to system.

Search. In the case of a federated DBMS, the primary
access and query mechanism is declarative—essen-
tially SOL with object-relational extensions for invok-
ing table functions and other user-defined functions.
Query processing is based on the notion of a “me-
diator” architecture.” In the setup phase prior to
query processing, each remote data source is mod-
eled as a “local relational view” (called a NICKNAME
in DB2); the appropriate wrappers that implement
the native query and access mechanism of the re-
spective data source are deployed. In DB2, when the
application submits an SQL query to the federated
engine, the query compiler in turn cooperates with
one or more wrappers written for the remote data
sources to come up with an optimized execution plan
for the query. If a native data source does not sup-
port a particular relational algebra type operation
(such as select, project, join, etc.) the federation en-
gine can compensate for it (for example, a file sys-
tem may not support selection predicates such as
“date < 1/1/2002,” and the engine could provide for

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002



Table 3 Differences between a CMS search and a DBMS search

DBMS Search

Results returned

CMS Search
Search Meta-data and data
Query mechanism Primarily procedural
Global query planning and No
optimization
Compensation No

Synchronous plus asynchronous

Mostly data
Declarative (SQL with OR extensions)
Yes

Yes
Synchronous

that). The end applications gain consistent function-
ality across all data sources; however, the trade-off
is that each wrapper needs to be much more sophis-
ticated.

In contrast, in a federated content system such as
EIP, the primary query mechanism is procedural.
There are APIs to enable search and access across
the various back ends. Data entities are represented
using the Dynamic Data Object (DDO) of the Ob-
ject Management Group (OMG), plus the Extended
Data Object (XDO) to handle unstructured data. The
remote data sources are modeled as DDO and XDO
sources. An administrator can create federated
search templates, each of which defines a search
scope (the set of back-end sources to search) and a
mapping of the schema to the native data model of
each back-end source. The mapping information is
maintained by the EIP federation engine. An appli-
cation program builds a query expression that can
be a combination of a key-value pair style paramet-
ricsearch (e.g., PE < 30 && sector = “Health Care”),
text search, and image querying on top of the fed-
erated schema. The federated engine in turn trans-
lates the query into the native query language for
each of the underlying data sources without any at-
tempt at query planning or optimization across the
various data sources.

The federated connector uses persistent identifiers
(PIDs) as the naming scheme to identify content en-
tities across the heterogeneous back ends. Each PID
is a native content ID along with a back-end source
ID. The result of a federated query is a list of PIDs
that can be returned synchronously or asynchro-
nously. This is in contrast to transactional federa-
tion systems in which the results are returned syn-
chronously. The application can then use the PIDs
to retrieve the actual objects of interest. This two-
step approach turns a heterogeneous result set into
a homogeneous one and makes a large result set
more manageable. Search in CMSs is also similar: an
application first finds the objects of interest through

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

the meta-data repository and then retrieves or ma-
nipulates the objects by directly talking to the ap-
propriate content servers.

In a cMsS, text search plays a much more important
role than traditional DBMS-style analytics on the para-
metric data (Table 3). Often, the contents of doc-
uments cannot be programmatically interpreted and
are returned primarily for viewing purposes. Care is
taken to limit the number of objects returned to the
user by filtering on the meta-data that describe the
content.

Information integration architecture

Clearly a major challenge of an integrated informa-
tion system that unifies the CMS and DBMS domains
is providing a consistent and powerful architecture
for such a system.

With the advent of the Extensible Markup Language
(XML)* and related standards, structured and semi-
structured information can now be represented in
an application-independent and nonproprietary for-
mat. With the flexibility of XML, together with the
expressiveness and modeling capability of XML
Schema and the querying power of the XQuery lan-
guage, XML not only allows information in different
representations to be exchanged between applica-
tions in a generic format, it also offers an opportu-
nity to establish a framework for integrated access
to information managed by heterogeneous systems,
including DBMSs and CMSs.

We see an “information integration” system that of-
fers two sets of interfaces to access an open feder-
ation of heterogeneous data stores, each built around
a standard: a set of XML-based APIs and a set of
SQL-based APIs. In spite of the growing popularity
of XML, we expect the popularity of SQL to continue
because of the simplicity and formal basis of the re-
lational model, its wide acceptance in the market-
place, the maturity of relational technology, and the

SOMANI, CHOY, AND KLEEWEIN 693



Figure 5 Information integration architecture

CLIENT SERVER

DATA SQLX) [RELATIONAL RELATIONAL
MANAGEMENT INTERFACE STORAGE
CLIENT

DB2

SERVER
c ER | XQuen [y X
CLIENT INTERFACE STO
APPLICATION

availability of tools. As discussed earlier, the basis
of the federation system is a wrapper architecture
in which a wrapper is implemented for each data
store to pass data in either a relational representa-
tion or an XML representation, whichever is more
appropriate for that data store. The system would
also perform any necessary transformation and merg-
ing of data to support either an XML view or an SQL
view, depending on the API called. (See Figure 5.)

These APIs would handle structured and semi-struc-
tured data quite well. However, they are not as suit-
able for unstructured data, especially for large-size,
nontext content entities. First of all, such entities, in
a large volume, often require a specialized server to
manage, €.g., to provide hierarchical storage man-
agement (HSM) support and a policy-driven storage
administration. Second, because of the sizes involved,
direct delivery of these entities from the server to
an application (and vice versa) is needed even in a
multi-tier environment. Third, depending on the data
type, some type-specific behavior (methods and con-
straints) may need to be maintained, or a special pro-
tocol may be needed to deliver the data. This leads
to a type-specific server, and possibly even a special-
ized network connection. For example, streaming
video to an application requires a large bandwidth,
a push model, and a “quality of service” protocol.
For these reasons, separate interfaces for unstruc-
tured data are needed. We propose using a URL (uni-
form resource locator) to identity each unstructured
entity, including the hosting server and the protocol
to use for accessing the entity. This URL is obtain-
able through either the XML APIs or the SQL APIs.

Challenges for information integration

We now discuss some of the major challenges the
research community and the industry face in bring-
ing together these different paradigms.

694 SOMANI, CHOY, AND KLEEWEIN

API, query language, and data model. As discussed
in the last section, we believe there is a need for de-
clarative query language support both for regular re-
lational data (SQL) as well as for dealing with hier-
archical dataa la XML (XQuery). The challenge lies,
however, in the ability to provide for higher-level se-
mantics required by the CMSs either through exten-
sions to the base languages or through new APIs. An
example of a higher-level semantics construct would
be providing for versioning of documents, schema,
collections, and so on, with detailed change manage-
ment. A good but primitive first step in this direc-
tion for document management systems is the Web-
DAV APL.Z Also, standards for meta-data are
needed to describe the content,? and model collec-
tions of entities (e.g., “folders”) and inter-entity re-
lationships.

An integrated system also needs an ability to insert,
update, and delete complex objects through the
query languages or APIs supported. Specifically, syn-
tax and semantics for XML modification operators
(insert, update, and delete operations on a docu-
ment) need further definition.

Transactional semantics. Although we did not dis-
cuss core systems issues such as concurrency con-
trol, recovery, and transaction models, we believe
typical DBMS algorithms for addressing these prob-
lems do not apply as is for typical CMS transaction
notions. Some requirements are an ability to sup-
port long duration locks for checkin/checkout capa-
bility, versioning, and stateless clients. Indeed, to sup-
port logging and recovery for an unstructured data
repository such as Lotus Notes required substantive
modifications to base ARIES-style recovery algo-
rithms.?

In the context of providing update support across
federated data sources, a multisite transaction is
needed, requiring a two-phase commit® or equiv-
alent protocol. This transaction is a challenge since
not all the data stores necessarily offer such a ca-
pability. This inter-site synchronization problem goes
beyond transaction support. It also requires a coor-
dinated backup and recovery of the data stores par-
ticipating in multisite transactions so that they can
be restored to a mutually consistent state after a fail-
ure.

Next generation data federation. DBMS-based fed-
erated query processing needs to evolve to accom-
modate asynchronous, as well as slow, responses
from a data store. Also, algorithms for providing

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002



top-N ranked results for distributed data sources are
going to become increasingly important.?”*

The system must accommodate large result sets. Cur-
sor support is needed to allow an application to fetch
only the portion of results that is needed. The chal-
lenge is how to provide an efficient cursor support
when it is not supported by a data store, and how
to support effective stream-based processing of rich
media objects, XML documents and fragments, and
collections of these entities.

Performance challenges. Rich media and semi-
structured information (e.g., Hypertext Markup Lan-
guage, or HTML, XML, etc.) increase the data volume
requirements of the system from the terabyte (10'%)
or petabyte (10") range to the exabyte (10'®) range.
In this context, processing techniques to optimize for
the first N responses will be crucial. Another inter-
esting technical challenge is in the area of defining
benchmarks to measure performance for CMS as well
as enhancing benchmarks for DBMS to incorporate
the information integration requirements (e.g., data
federation, time to first response, and interactive

querying).

XQuery is a new language and, as such, consider-
able work on query optimization and processing tech-
niques is required. Perhaps, much like relational al-
gebra and query processing algorithms,* XML query
processing would benefit from a formal treatment
of XQuery operations.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Transaction Process-
ing Performance Council.

Cited references and notes

1. DB2 Product Family, IBM Corporation, see http:/www.
software.ibm.com/data/db2/.

2. IBM Content Manager portfolio, IBM Corporation, at
http://www-3.ibm.com/software/data/cm/.

3. In this paper, heterogeneity refers to different types of data,
not to schematic heterogeneity, which is an area of active re-
search.*

4. R. Miller and L. Haas, principal investigators, and R. Fagin,
M. Hernandez, L. Popa, Y. Velegrakis, X. Wang, and L.-L.
Yan, members, of Project Clio: Managing Schematic Het-
erogeneity in Database Management Systems, see http://
www.cs.toronto.edu/~miller/Research/hetero.html.

5. B.D. Czejdo, M. Rusinkiewicz, and D. W. Embley, “An Ap-
proach to Schema Integration and Query Formulation in Fed-
erated Database Systems,” Proceedings of the Third Interna-
tional Conference on Data Engineering (ICDE) (February 3-5,
1987), pp. 477-484.

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

. Nevertheless, we do believe a CMS ought to exploit RDBMS

capabilities, including object-relational technology when it
is suitable.

. Some are RDBMS-based, whereas others are content-ori-

ented.

. CrossAccess Corporation, Data Integration Infrastructure,

at http://www.crossaccess.com.

. J. Kleewein, “Practical Issues with Commercial Use of Fed-

erated Databases,” Proceedings of the 22nd International Con-
ference on Very Large Data Bases (VLDB96), Bombay, India
(September 1996), p. 580.

The Garlic Project, IBM Corporation, Research Division,
http://www.almaden.ibm.com/cs/garlic/.

A. Tomasic, L. Raschid, and P. Valduriez, “Scaling Access
to Distributed Heterogeneous Data Sources with DISCO,”
IEEE Transactions on Knowledge and Data Engineering 10,
No. 5, 808—-823 (1998).

Y. Papakonstantinou, H. Garcia-Molina, and J. Wido, “Ob-
ject Exchange Across Heterogeneous Information Sources,”
IEEE 11th International Conference on Data Engineering
(ICDE) (March 1995), pp. 251-260.

L. M. Haas, D. Kossman, E. L. Wimmers, and J. Yang, “Op-
timizing Queries Across Diverse Data Sources,” Proceedings
of the 23rd International Conference on Very Large Data Bases
(VLDB97) (1997), pp. 276-285.

Enterprise Information Portal, IBM Corporation, http://
www.software.ibm.com/data/eip/.

M. A. Roth, D. C. Wolfson, J. C. Kleewein, and C. J. Nelin,
“Information Integration: A New Generation of Information
Technology,” IBM Systems Journal 41, No. 4, 563-577 (this
issue, 2002).

D. Kossman, “The State of the Art in Distributed Query Pro-
cessing,” ACM Computing Surveys 32, No. 4, 422-469 (De-
cember 2000).

R. Williams et al., R*: An Overview of the Architecture, Re-
search Report RJ3325, IBM Corporation, San Jose, CA (De-
cember 1981).

E. Codd, “A Relational Model of Data for Large Shared Data
Banks,” Communications of the ACM 13, No. 6,377-387 (June
1970).

In contrast, in a DBMS, the schema definitions are some-
times considered the “meta-data,” but it is not the same as
CMS meta-data.

Here, “document” is merely an abstraction for an information
entity that has a richer structural representation than a “record.”
G. Wiederhold, “Intelligent Integration of Information,” Pro-
ceedings of the ACM Conference on Management of Data
(1993), pp. 434-437.

XML, XML Schema, XQuery, Xpath, see http://www.w3c.org.
Web-based Distributed Authoring and Versioning, see
http://www.webdav.org.

Dublin Core Metadata Initiative, http://www.dublincore.org/.
C. Mohan, R. Barber, S. Watts, A. Somani, and M. Zaha-
rioudakis, “Evolution of Groupware for Business Applications:
A Database Perspective on Lotus Domino/Notes,” Proceedings
of the 26th International Conference on Very Large Databases
(VLDB 2000), Cairo (September 2000), pp. 684—687.

J. Gray and A. Reuter, Transaction Processing: Concepts and
Techniques, Morgan Kaufmann Publishers, San Francisco, CA
(1993).

R. Fagin, “Combining Fuzzy Information from Multiple Sys-
tems,” Proceedings of ACM Symposium on Principles of Da-
tabase Systems (1996), pp. 216-226.

S. Chaudhari and L. Gravano, “Optimizing Queries over
Multimedia Repositories,” Proceedings of the 1996 ACM

SOMANI, CHOY, AND KLEEWEIN

695



International Conference on Management of Data (SIGMOD
96) (1996), pp. 91-102.

29. P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and
T. Price, “Access Path Selection in a Relational Database
Management System,” Proceedings of the 1979 ACM SIGMOD
International Conference on Management of Data, Boston
(1979), pp. 23-34.

Accepted for publication June 20, 2002.

Amit Somani IBM Software Group, 555 Bailey Avenue, San Jose,
California 95141 (electronic mail: asomani@us.ibm.com). Mr. So-
mani is a senior software engineer and leads the unstructured
information integration effort in the Data Management group.
Prior to this, he was at IBM Research where he made significant
contributions in the areas of data-driven e-commerce applications,
log-based recovery technology for Lotus Notes, SMP-Query Par-
allelism for DB2 UDB, and TPC-C/TPC-D benchmarking for the
IBM DB2/NT/PCServer. He has a B. Tech. in computer science
and engineering from IT-BHU, India, and an M.S. in computer
science from the University of Wisconsin at Madison.

David Choy IBM Software Group, 555 Bailey Avenue, San Jose,
California 95141 (electronic mail: dchoy@us.ibm.com). Dr. Choy
is the manager of the Database Technology Institute for Content
Management at the IBM Silicon Valley Laboratory, responsible
for content management and information integration technolo-
gies. He is the designer for the new IBM Content Manager (Ver-
sion 8) architecture. Prior to joining the Silicon Valley Labora-
tory in 2000, he spent 26 years at the IBM Almaden Research
Center, where he did research in relational DBMS, office systems,
storage systems, and digital libraries. His professional activities
included serving on the Executive Committee of the IEEE Com-
puter Society Technical Activities Board for a number of years,
and he authored the X/Open backup/recovery standard (XBSA).
He holds a Ph.D. in electrical engineering from the University
of Illinois at Urbana-Champaign.

James C. Kleewein IBM Software Group, Silicon Valley Lab-
oratory, 555 Bailey Avenue, San Jose, California 95141 (electronic
mail: kleewein@us.ibm.com). Mr. Kleewein is a Distinguished En-
gineer working in database architecture, strategy, and technol-
ogy at the IBM Silicon Valley Laboratory. He has worked for IBM
in the database business for the last 15 years. His technical ex-
pertise can be seen across a wide range of IBM data manage-
ment products, including IMS, DB2/MVS, DB2/390, DB2 sysplex
data sharing, DB2 Spatial Extender, DataJoiner, and Discovery-
Link™. Mr. Kleewein is a lead architect for Xperanto, focusing
on expanding the role of DB2 from a structured data store to a
structured and semistructured data store by adding XML capa-
bilities to the DB2 engine.

696 SOMANI, CHOY, AND KLEEWEIN IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002



