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Predictive algorithms play a crucial role in
systems management by alerting the user to
potential failures. We report on three case
studies dealing with the prediction of failures
in computer systems: (1) long-term prediction
of performance variables (e.g., disk utilization),
(2) short-term prediction of abnormal behavior
(e.g., threshold violations), and (3) short-term
prediction of system events (e.g., router
failure). Empirical results show that predictive
algorithms can be successfully employed in
the estimation of performance variables and
the prediction of critical events.

An important characteristic of an intelligent agent
is its ability to learn from previous experience in or-
der to predict future events. The mechanization of
the learning process by computer algorithms has led
to vast amounts of research in the construction of
predictive algorithms. In this paper, we narrow our
attention to the realm of computer systems; we dem-
onstrate how predictive algorithms enable us to an-
ticipate the occurrence of events of interest related
to system failures, such as CPU overload, threshold
violations, and low response time.

Predictive algorithms can play a crucial role in sys-
tems management. The ability to predict service
problems in computer networks, and to respond to
those warnings by applying corrective actions, brings
multiple benefits. First, detecting system failures on
a few servers can prevent the spread of those fail-
ures to the entire network. For example, low re-
sponse time on a server may gradually escalate to
technical difficulties on all nodes attempting to com-

municate with that server. Second, prediction can
be used to ensure continuous provision of network
services through the automatic implementation of
corrective actions. For example, prediction of high
CPU demand on a server can initiate a process to bal-
ance the CPU load by rerouting new demands to a
back-up server.

Several types of questions are often raised in the area
of computer systems:

● What will be the disk utilization or CPU utilization
next month (next year)?

● What will be the server workload in the next hour
(n minutes)?

● Can we predict a severe system event (e.g., router
failure) in the next n minutes?

The questions above differ in two main aspects: time
horizon and object of prediction. The former char-
acterizes our ability to perform short-term or long-
term predictions and has a direct bearing on the kind
of corrective actions one can apply. Any action re-
quiring human intervention requires at least several
hours, but if actions are automated, minutes or even
seconds may suffice. The latter relates to the out-
come of a prediction and can be either a numeric
variable (e.g., amount of disk utilization) or a cat-
egorical event (e.g., router failure).
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Both time horizon and object of prediction are im-
portant factors in deciding which predictive algo-
rithm to use. In this paper, we present three major
predictive algorithms addressing the following prob-
lems: (1) long-term prediction of performance var-
iables (e.g., disk utilization), (2) short-term predic-
tion of abnormal behavior (e.g., threshold violations),
and (3) short-term prediction of system events (e.g.,
router failure). The first problem is solved using a
regression-based approach. A salient characteristic
of a regression algorithm is the ability to form a piece-
wise model of the time series that can capture pat-
terns occurring at different points in time. The sec-
ond problem employs time-series analysis to predict
abnormal behavior (e.g., threshold violations); pre-
diction is achieved through a form of hypothesis test-
ing. The third problem predicts critical events by us-
ing data-mining techniques to search for patterns
frequently occurring before these events.

Our goal in this paper is to provide some criteria in
the selection of predictive algorithms. We proceed
by matching problem characteristics (e.g., time ho-
rizon and object of prediction) with the right pre-
dictive algorithm. We use our selection criteria in
three case studies corresponding to the problems de-
scribed above.

Extensive work has been conducted in the past try-
ing to predict computer performance. For example,
work is reported in the prediction of network per-
formance to support dynamic scheduling,1 in the pre-
diction of traffic network,2 and in the production of
a branch predictor to improve the performance of
a deep pipelined micro-architecture.3 Other stud-
ies reported in the literature4–7 focus on predicting
at the instruction level, whereas we focus on predict-
ing at the system and event level (e.g., response time,
CPU utilization, network node down, etc.). A com-
mon approach to performance prediction proceeds
analytically, by relying on specific performance mod-
els; one example is in the study of prediction models
at the source code level, which plays an important
role for compiler optimization, programming envi-
ronments, and debugging tools.8 Our view of the pre-
diction problem is mainly driven by historical data
(i.e., is data-based). Many studies have tried to bridge
the gap between a model-based approach versus a
data-based approach.9

The rest of the paper is organized as follows. First
we provide a general view of prediction algorithms
and describe our approach to selecting an algorithm
for the problem at hand. In the following section we

discuss algorithms for long-term prediction of com-
puter performance. Next we discuss an algorithm for
detecting threshold violations of workload demands,
and then we describe our approach to the predic-
tion of system events. We list our conclusions in the
last section.

Prediction in computer networks

We begin by giving a general view of the prediction
problem. We then provide some criteria for select-
ing a predictive algorithm to use, based on the char-
acteristics of the problem at hand.

A formulation of the prediction problem. To make
predictions, one needs access to historical informa-
tion. We define historical information as an ordered
collection of data, Si , that starts at a point in time
t1 , covering events up to a final time t i . Specifically,
Si � {s j}, 1 � j � i, where the j th element is a
pair s j � (v j , t j). The first element of the pair, v j ,
indicates the value of one or more variables of in-
terest, whereas the second element of the pair, t j ,
indicates its occurrence time. The elements of Si are
ordered, that is, t j � t k for any j � k.

As an example, assume monitoring systems capture
the disk utilization on a server at five-minute inter-
vals during an experiment of one hour. In this case,
the historical information is the collection of pairs
{(v j , t j)} j�1

12 , where v j is the disk utilization at time
t j , and time increases in five-minute steps. In some
cases we want to capture the values associated with
several variables at time t j , where the first element
of each event pair is a vector ṽ j . For example, ṽ j �
(v j1 , v j2 , v j3), where the values on the right repre-
sent the disk utilization, the memory utilization, and
the CPU utilization at time t j , respectively. We col-
lect data up to a point in time t i , and the goal is to
predict the disk utilization at a time t i�k (i.e., k steps
in the future).

A prediction is an estimation of the value of a vari-
able v i�k occurring at time t i�k in the future condi-
tioned on historical information Si . Hence, a
prediction is the output of a generic function con-
ditioned on Si , v i�k � g(Si) � � i , in which g� is
a function capturing the predictable component and
� i models the possible noise.

Normally, the further out our prediction, the less ac-
curate the result. Hence, a predicted value is ideally
accompanied by a probability term that reflects our
degree of confidence. This confidence can be mea-
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sured by a conditional probability, P(v i�k �Si). Al-
though determining the conditional probability
P(v i�k �Si) is always desirable, it is not always
possible.

Data characteristics. Variables of interest whose val-
ues we might want to predict include the memory
utilization or disk utilization on a host or group of
hosts, the number of HyperText Transfer Protocol
(HTTP) operations per second in a Web server, and
the status of a network node (up or down) at a given
time. In all these cases we rely on historical infor-
mation to anticipate future behavior. We wish to em-
phasize the temporal component of this information:
knowing when an event occurred in the past is as
important as its nature.

A first step in prediction is looking for a technique
matching the characteristics of the problem. Impor-
tant factors are the discrete or continuous nature of
the data, whether observations are taken at equal
time intervals or not, and whether the data are ag-
gregated over time intervals or correspond to instan-
taneous values. For example, most techniques based
on time series analysis deal with discrete observa-
tions taken at equal time intervals.

We characterize historical information along two di-
mensions: data type and sampling frequency. Data
types can be either numeric (e.g., memory utiliza-
tion is 80 percent) or categorical (e.g., event type is
“router failure”). The sampling mechanism depends
on the data collecting method and is either periodic
sampling (i.e., equal time intervals) or triggered sam-

pling (i.e., data collected when a predefined condi-
tion is satisfied). Data collected by periodic sampling
include performance measurements such as utiliza-
tion and end-to-end response time to a probing agent
(e.g., “ping” and mail server probe).

Prediction techniques. Once the problem is well
characterized, there are often a wide variety of pre-
diction techniques available. In some cases we rely
on classical time-series analysis, whereas in other
cases we employ data-mining techniques. An impor-
tant factor that differentiates among techniques is
whether or not the model is homogeneous through
time. A homogeneous model captures key charac-
teristics of the time series such as the general trend,
seasonal variation, and variation in the stationary re-
siduals.10 Figure 1A shows the general trend and sea-
sonal variation on a time series. The general trend
could correspond to a constant rate of increase of
the CPU utilization on a server over months, whereas
the seasonal variation could reflect some, say,
monthly activity particular to the customer. If one
were to remove these variations from the data, the
result would be a stationary time series (as explained
later in this paper). When these variations are
present, the general assumption is that they persist
throughout the entire time interval.

We also consider the case where key characteristics
on the time series vary significantly depending on
the time and the state of the system being modeled.
Figure 1B shows a scenario where both trend and
seasonal effects are not constant through time. It is
under these conditions that using new techniques can

A B

Figure 1 A homogeneous (A) and a nonhomogeneous (B) time series
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add flexibility to the prediction process, and as we
show later, this flexibility often results in improved
accuracy.

Selection criteria. Selecting the right predictive al-
gorithm depends on at least two factors: the time of
the prediction and the type of data. The first factor
can be divided into short-term prediction and long-
term prediction. A difficulty inherent to this differ-
entiation is to ascribe a precise meaning to both
terms. In the context of computer systems, it is rea-
sonable to assume short-term prediction in the range
of minutes or hours, and long-term prediction in the
range of days, weeks, or months. The second factor
can be either numeric or Boolean. In some cases it
is also important to note if the observations were
made at equal time intervals or not.

Table 1 presents our selection guidelines for a pre-
diction technique based on the factors above. Long-
term predictions of numeric data need to consider
the general trend and seasonal variations. The gen-
eral trend measures the long-term change in the
mean level, whereas seasonal variations are normally
the result of long-term fluctuations. Trend and sea-
sonal variations normally account for most of the
long-term behavior of a time series. We exemplify
this case in the next section.

Short-term predictions of numeric variables are at-
tained by applying classical time-series analysis over
stationary data. The data obtained by removing the
general trend (or mean) and the seasonal variations
are usually stationary (no systematic change is de-
tected). For equally spaced sampling of data, one
can use models such as autoregressive processes and
moving averages.10 We exemplify this case in the sec-
tion “Predicting threshold violations.”

On the other hand, short-term predictions of cat-
egorical variables (not necessarily from equally
spaced data) are attainable by relying on data-
mining techniques. Recent years have seen an ex-

plosion in the study of data-mining techniques look-
ing for different forms of temporal patterns.11–14 A
common technique is to find frequent subsequences
of events in the data. An additional step, however,
is needed to integrate these patterns into a model
for prediction.15–18 We exemplify this case in the sec-
tion “Predicting target events in production net-
works.”

Our last scenario deals with long-term predictions
of Boolean data, for which there are two different
methods available: use of periodic patterns and use
of failure models. Periodic patterns are represented
as sets of events occurring at regular intervals of
time.19 In computer networks, for example, a peri-
odic pattern may correspond to high CPU utilization
on several servers at regular time intervals due to
scheduled maintenance. Periodic patterns may be re-
moved if they reflect normal behavior, or used for
prediction if signaling uncommon situations. Fail-
ure models have been used to model device life
times.20 Modeling involves a mathematical equation
(e.g., Poisson lift span, independent failures) that
must capture the true data distribution.

The next three sections describe real applications
that exemplify our choice of predictive algorithms.
We focus on the first three cases described above in
the context of computer systems.

Predicting computer performance

Our first study deals with the problem of long-term
predictions on numeric data (Table 1). We wish to
predict performance parameters, such as response
time or disk utilization, for capacity planning.21 Es-
timating the future value of a performance param-
eter is helpful in assessing the need to acquire ad-
ditional devices (e.g., extra memory or disk space)
to ensure continuity in all network services. Here we
focus on the nonstationary components of the time
series. In particular, we look at the general trend.
We overview two different approaches: the tradi-
tional k-step extrapolation, and learning to map k-
steps ahead. We look at each approach in turn.

Extrapolation. A familiar approach to the prediction
of the general trend is to fit a model to the data and
then to extrapolate k steps ahead in time. For ex-
ample, a simple technique is to assume the data fol-
low a linear trend plus noise of the form

vj � �1 � �2tj � �i, 1 � j � i (1)

Table 1 Selecting a predictive algorithm based on domain
properties

Short-Term
Predictions

Long-Term
Predictions

Numeric Data Stationary models
for time series

Trend and seasonal
analysis

Boolean Data Data mining Periodicity analysis
failure model
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where �1 and �2 are constants and � j is a random
variable with zero mean. Prediction is simply a mat-
ter of projecting Equation 1 to find the value of v i�k .
For example, applying a linear least-squares regres-
sion over disk utilization vs time on a computer server
where data are aggregated on a monthly basis can
indicate a critical threshold will be reached in ap-
proximately five months. In some cases we may find
we can do a better job by fitting the data using poly-
nomial curves.

Learning to predict k steps ahead. A different per-
spective to the prediction problem uses concepts
from machine learning. Instead of fitting a model to
our historical data we could try to learn a mapping
between the state of a computer at time t j and the
state of the computer at time t j�k . The mapping can
be described by the following equation:

vj�k � g�vj� � �j (2)

In other words, we try to learn how to estimate the
value of the performance variable k steps in the fu-
ture by creating a set of pairs {(v j , v j�k)}, using our
historical data (i.e., match each measurement with
the measurement k steps ahead). The problem is now
transformed into that of function approximation: we
want to approximate the function that generated
these points. Learning this mapping gives a direct
model for prediction, which we can use to estimate
v i�k , where v i is the last observation in Si . The na-
ture of g can take on different forms: it can be rep-
resented as a linear function of v j , as a decision tree,
a neural network, etc. We do not restrict the nature
of function g to a specific form, but simply indicate
its functionality: to map computer states from time
t j to time t j�k .

Approximating function g obviates any form of ex-
trapolation. The difference with extrapolation is that
in this formulation we need to approximate a dif-
ferent function g for each value of k. The advantage
lies on the flexibility imbued in the model: it enables
us to deal with time series where key characteristics
may vary significantly through time (see the subsec-
tion “Prediction techniques,” earlier).

The general approach to learn to perform predic-
tions is to transform the original database to reflect
the mapping between a state at time t j and a state
at time t j�k . The idea is to cast the prediction prob-
lem into a learning problem. In a learning problem,
the input data are normally represented in tabular

form, where each record represents an example char-
acterized by features, and the last column is the tar-
get class to which the example belongs. A numeric
class calls for regression methods (as in our case),
whereas a categorical or nominal class calls for clas-
sification methods. The goal is to learn how to map
feature values into class values in order to predict
the class of new examples.22,23

Returning to the problem of predicting computer
performance, remember our historical data are an
ordered collection of events. Each event can play the
role of an example characterized by one or multiple
performance variables at time t j . The target class of
the example corresponds to the value of the predic-
tive variable at time t j�k (in order to learn to predict
the value of the performance variable k steps in the
future).

Empirical findings. Different algorithms can be used
to learn the mapping mentioned above, including lin-
ear and nonlinear regression methods and decision
trees for regression. Our experiments using these
techniques reveal two interesting findings. First, cast-
ing the prediction problem into a learning problem
yields significant gains in accuracy compared to tra-
ditional techniques. Our conclusions come from ex-
periments on a central database that contains infor-
mation on the performance of thousands of
IBM AS/400* computers. Each record in the database
reports the values of tens of performance parame-
ters for a particular machine and month of the year.
We form predictions for six important parameters:
response time, maximum response time, CPU utili-
zation, memory utilization, disk utilization, and disk
arm utilization. Figure 2 compares a multivariate lin-
ear regression model using the learning approach
vs the extrapolation approach. We measure relative
error defined as the ratio between the error of the
multivariate linear model and the error of a simple
baseline model that takes the mean of all past val-
ues to predict future values. For all six performance
variables under study, applying the model on the
learning approach yields significant gains in accuracy
(Figure 2).

A second interesting finding is that learning from
data extracted from multiple computers of similar
architecture yields better accuracy than learning from
data extracted from a single computer. It is reason-
able to suppose that computers having similar ar-
chitecture will experience similar performance if the
overall utilization is the same. Hence, looking for
patterns across computers increases the evidential
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support for correlations between performance var-
iables and target variables. As an example, assume
CPU utilization is a function of the memory size. Data
from a single computer may show evidence of a pos-
itive correlation, but with high variance due to the
limited number of points available. In contrast, data
from multiple computers enables us to increase our
confidence in the quality of the model and therefore
in our predictions.

Predicting threshold violations

Our second study deals with the problem of short-
term predictions on numeric data (Table 1). We as-
sume the existence of Internet-attached servers that
have time-varying workloads. We describe a system-
atic, statistical approach to the characterization of
normal operation for time-varying workloads, and
we apply this approach to problem detection for a
Web server by predicting threshold violations.24

We show how our method can be used to construct
a predictive model for the purposes of workload fore-
casting. We begin by developing a statistical model
of the time-varying behavior of the data and then
remove the nonstationary components. This prob-
lem differs significantly from the study in our pre-
vious section. Here we assume a performance line
centered around a constant value (�). Our goal is
not to predict the general trend, but to detect when

a deviation from the trend is extreme. We do this
by first removing mean and seasonal effects (i.e., the
nonstationary components). We then look to the re-
siduals in search of abnormal behavior.

Removing mean and seasonal effects. The data we
consider span a time interval of eight months (June
1996 through January 1997) from a production Web
server at a large corporation. Data are aggregated
over five-minute intervals. The variable of interest
is HTTP operations per second (httpops), since this
is an overall indicator of the demands placed on the
Web server.

We begin by considering the effect of time of day.
Let v jd be the value of httpops for the j th five-minute
interval (time-of-day value) and the d th day in the
data collected. Figure 3A plots v jd for a work week
(Monday through Friday) in June of 1996 and a work
week in November of 1996. The x-axis is time, and
the y-axis is httpops.

We partition v jd into three components: the grand
mean, the deviation from the mean due to the j th
time-of-day value (e.g., 9:05 A.M.), and a random er-
ror term that captures daily variability. The grand
mean is denoted by �. The j th time-of-day devia-
tion from the grand mean is denoted by � j (note that
¥ j � j � 0). The error term is denoted by � jd .

The model is:

vjd � � � �j � �jd (3)

We use the residuals to look for more patterns in
the data after time-of-day effects have been removed.
Figure 3B plots the residuals for Equation 3. Ob-
serve that much of the rise in the middle of the day
(as evidenced in Figure 3A) has been removed.

A further examination of Figure 3B indicates that
there is a weekly pattern. Let �w denote the effect
of the w th day of the work week. As with �, this is
a deviation from the grand mean (�). Thus, ¥w �w �
0. Our extended model is:

vjdw � � � �j � �w � �jdw (4)

Note that since we include another parameter (day
of week), another subscript is required for both v
and �. The residuals of this model are plotted in
Figure 3C.

Figure 2 A comparison of multivariate linear 
 regression models using the learning  
 approach vs the extrapolation approach
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Looking further, we observe that another pattern re-
mains: httpops is larger in November than it is in
June. To eliminate this, we extend our model to con-
sider the month. Let �m denote the effect of the mth
month. As with � and �, ¥m �m � 0. The model
here is:

vjdwm � � � �j � �w � �m � �jdwm (5)

Once again, another subscript is added to both v and
�.

An autoregressive model. Until now we have been
able to account for the mean, daily, weekly, and
monthly effects. Figure 3D still has time serial de-
pendencies. To remove these dependencies, we ex-
tend the characterization in Equation 5. We assume
that the time index time t can be expressed as a func-
tion of ( j, d, w, m). Then, we consider the follow-
ing model:

�t � 	1�t�1 � 	2�t�2 � ut (6)

0 50 100 150 200

0 50 100 150 200

0 50 100 150 200
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Reprinted from Computer Networks, Vol. 35, No. 1, J. L. Hellerstein, F. Zhang, and P. Shahabuddin,  “A Statistical Approach to Predictive Detection,”  
pp. 77-95, Figure 2, (c) 2001, with permission from Elsevier Science.

Figure 3 Rate of HTTP transactions vs time for a Web server
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This is a second-order autoregressive model
(AR(2)). Here, 	1 and 	2 are parameters of the
model (which are estimated from the data), and the
ut are independent and identically distributed ran-
dom variables. The model parameters are estimated
using standard techniques.25

Now consider the prediction of threshold violations.
Current practice for problem detection is to estab-
lish threshold values for measurement values. If the
observed value violates its threshold, an alarm is
raised. Threshold values are obtained from histor-
ical data, such as the 95th quantile.26

Unfortunately, there is a significant difficulty with
this approach in practice: normal load fluctuations
are so great that a single threshold is inadequate.
That is, a single threshold either results in an exces-
sive number of false alarms, or the threshold fails
to raise an alarm when a problem occurs. Some per-
formance management products attempt to over-
come this difficulty by allowing installations to spec-
ify different thresholds at different times of the day,
day of the week, etc. However, requiring that instal-
lations supply additional thresholds greatly adds to
the burden of managing these installations.

Prediction using change-point detection. We pro-
pose here an approach in which we use the charac-
terization model to remove all known patterns in the
measurement data, including the time-serial depen-
dencies. For httpops in the Web server data, this
means using Equation 5 to remove “low frequency”
behavior, and then applying Equation 6 to the re-
siduals of this equation so as to remove time-serial
dependencies. The residuals of Equation 6 consti-
tute filtered data for which all patterns in the char-
acterization have been removed. Last, a change-point
detection algorithm is applied to these filtered data
to detect anomalies, such as an increase in the mean
or the variance.

There are many algorithms for change-point detec-
tion.27 Herein, we use the GLR (Generalized Like-
lihood Ratio) algorithm. This is an on-line technique
that examines observations in sequence rather than
in mass. When a change has been detected, an alarm
is raised.

First, we introduce some terminology. Recall that
ut is the t th residual obtained by filtering the raw
data using a characterization such as Equations 5 and
6. We consider two time windows, that is, a set of
time indexes at which data are obtained. The first

is the reference window; values in this window are used
to estimate parameters of the “null hypothesis” in
the test for a change point. The reference window
starts with the time at which the last change point
was detected; it continues through the current time
(t). Within the reference window, ut has variance

u

2 . The second time window is the test window. Val-
ues in this window are used to estimate parameters
of the “alternative hypothesis” that a change point
has occurred. The test window spans t � L through
t. L should be large enough to get a stable estimate
of 
u�

2 (the variance of ut in the test window), but
small enough so that change points are readily de-
tected.

Empirical findings. We apply the foregoing approach
to the Web server data collected on July 15, 1996,
a day for which no anomaly is apparent. Figure 4A
displays httpops for this day. The vertical lines in-
dicate where change points are detected using the
GLR algorithm. Note that not taking into account
normal load fluctuations, as is often done in prac-
tice, would have resulted in six alarms even though
no problem is apparent. Figure 4B plots the resid-
uals after using Equation 5 to filter the raw data and
Equation 6 to filter the residuals produced by it. Ob-
serve that the GLR algorithm does not detect any
change point. Hence, taking normal behavior into
account enables our algorithm to reduce the num-
ber of false alarms to only those cases where abnor-
mal deviations from the mean are authentic.

Predicting target events in production
networks

Our third study deals with the problem of short-term
predictions on categorical data (Table 1). The pre-
diction targets are computer-network events, corre-
sponding either to single hosts (e.g., CPU utilization
is above a critical threshold), or to a network (e.g.,
communication link is down). Monitoring systems
capture thousands of events in short time periods;
data analysis techniques may reveal useful patterns
characterizing network problems.28

The task of predicting target events across a com-
puter network exhibits characteristics different than
the problems discussed in the last two sections (pre-
dicting performance variables or predicting thresh-
old violations). A prediction here is an estimation
of a categorical or nominal value in the near future
(e.g., communication link will be down within five
minutes).
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Target events and correlated events. We let the user
specify what events are of interest. For example, a
system administrator may wish to understand what
causes a printer error, or why a particular server is
not responding within a specified time threshold. We
refer to these events, such as all occurrences of a
printer error, as the set of target events. 29,30 We as-
sume the proportion of target events with respect to
all events is low; target events do not represent a
global property, such as periodicity or constant trend,
but rather a local property, such as a computer at-
tack on a host network.

Figure 5 shows the idea behind our predictive algo-
rithm. We look at those events occurring within a
time window of size W (user-defined) before a tar-
get event. We are interested in finding sets of event
types, referred to from now on as eventsets, frequently
occurring before a target event. A solution to the
problem above is important to many real applica-
tions. Understanding the conditions preceding a sys-
tem failure may pinpoint its cause. On the other
hand, anticipating a system failure enables us to ap-
ply corrective actions before the failure actually oc-
curs. For example, an attack on a computer network
may be characterized by an infrequent but highly cor-
related subsequence of events preceding the attack.

Technical approach. The problem of finding mean-
ingful eventsets preceding the occurrence of target
events, which we then use to build a model for pre-

diction, can be divided in three steps: (1) use asso-
ciations to find frequent eventsets within the time
windows preceding target events; (2) validate those
eventsets against events outside the time windows
considered in step 1; (3) build a rule-based model
for prediction. We explain each step next.

Finding frequent eventsets. Our first step makes use
of mining of frequent itemsets as follows. Consider
a single target event e*. The conditions preceding
e* can be characterized by simply recording the event
types within a window of size W. For example, if each
target event is preceded by four different events

Figure 5 Target events and correlated events
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within a window of size W, then each window can
be represented as an event transaction T made of
four event types (e.g., T � {e1 , e2 , e3 , e4}). Note
that it is admissible for consecutive target events to
generate time windows that overlap.

The procedure above can be applied over all occur-
rences of target events to generate a set of event
transactions D. More specifically, our algorithm
makes one pass through the sequence of events in
D, which we assume to be in increasing order along
time. With each new event, the current time is up-
dated; the algorithm keeps in memory only those
events within a time window of size W from the cur-
rent time. If the current event is a target event, the
set of event types contained in the most recent time
window become a new transaction in D. Finally, we
use association-rule mining31 to find large eventsets,
that is, eventsets with frequency above minimum sup-
port (e.g., a priori algorithm). Our work is in some
sense related to the area of sequential mining,11–14

in which traditional association mining is extended
to search for frequent subsequences.

Note that the ordering of events and the interarrival
time between events within each time window is not
relevant. This is useful when an eventset occurs un-
der different permutations, and when interarrival
times exhibit high variation (i.e., signals are noisy).
These characteristics are present in many domains,
including the real production network used for our ex-
periments. For example, we observed that a printer-
network problem may generate a set of events un-
der different permutations and with interarrival-time
variation in the order of seconds. Our approach to
overcome these uncertainties is to collect all event
types falling inside the time windows preceding tar-
get events, which can then be simply treated as da-
tabase transactions.

Validating eventsets or patterns. For a target event
such as “host A is down,” an example of an eventset
Z frequently occurring before the target event is “low
response time and high CPU utilization.” We refer
to Z as a pattern. We may associate a pattern Z with
the occurrence of the target event if Z does not oc-
cur frequently outside the time windows preceding
target events. Otherwise Z would appear as the re-
sult of background noise, or of some global prop-
erty of the whole event sequence. For example, if
“low response time” is constant through time, it can-
not be used for prediction.

We start by computing the confidence of each event-
set or pattern, filtering out those below a minimum
degree of confidence. Confidence is an estimation
of the conditional probability of Z belonging to a
time window that precedes a target event, given that
Z matches the event types in that same time win-
dow. Specifically, if D is the database capturing all
eventsets preceding target events, then let D� be de-
fined as the complement database capturing all
eventsets occurring within time windows of size W
not preceding target events. Let x1 and x2 be the
number of transactions in D and D�, respectively,
matched by eventset Z. We eliminate all Z below
a minimum confidence level, where confidence is de-
fined as follows:

confidence�Z, B, B�� � x1/� x1 � x2� (7)

In addition, our filtering mechanism performs one
more test to validate an eventset. The reason is that
confidence alone is not sufficient to guarantee that
the probability of finding an eventset Z within da-
tabase D is significantly higher than the correspond-
ing probability in D�; confidence does not check for
negative correlations.32 Thus, we add a validation
step described as follows.

Let P(Z�D) denote the probability of Z occurring
within database D, and P(Z�D�) the corresponding
probability within D�. Eventset Z is validated if we
can reject the null hypothesis

H0�P�Z�D� � P�Z�D�� (8)

with high confidence. If the number of events is large,
one can assume a Gaussian distribution and reject
the null hypothesis in favor of the alternative hypoth-
esis

H1�P�Z�D� � P�Z�D�� (9)

if for a given confidence level � the difference be-
tween the two probabilities (normalized to obtain a
standard normal variate) is greater by z� standard
deviations. In such case we reject H0 . The proba-
bility of this happening when H0 is actually true is
�. By choosing a small � we can be almost certain
that Z is related to the occurrence of target events.

In summary, our validation phase ensures that the
probability of an eventset Z appearing before a tar-
get event is significantly larger than the probability
of Z not appearing before target events. The vali-
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dation phase discards any negative correlation be-
tween Z and the occurrence of target events. In ad-
dition, this phase serves as a filtering step to reduce
the number of candidate patterns used to build a
rule-based model for prediction.

Rule-based system for prediction. Our last step uses
the set of validated patterns to build a rule-based
system for prediction. Previous work exists combin-
ing associations with classification.15–18 This work dif-
fers in the temporal nature of the data, and in the
nature of the rule-based system.

The rationale behind our rule-based system is to find
the most accurate and specific rules first.23 Our as-
sumption of having a large number of available
eventsets and few target events obviates ensuring
each example is covered by a rule. Specifically, our
algorithm sorts all eventsets according to confidence
(ties are resolved by larger frequency and larger size).
In general, other metrics can be used to replace con-
fidence,33 such as information gain, gini, or �2. Start-
ing with the highest-confidence eventset Zi , we elim-
inate all other eventsets more general than Zi .
Eventset Zi is said to be more general than eventset
Zj , if Zi � Zj . For example, eventset {a, b} is more
general than eventset {a, b, c}. This step eliminates
eventsets that refer to the same pattern as Zi but
are more general. The resulting rule is of the form
Zi 3 targetevent. The search then continues with
the next highest-confidence eventset, until no more
eventsets are left.

The final rule-based system R can be used for pre-
diction by checking for the occurrence of any of the
eventsets in R along the event sequence set apart

for testing. The model predicts finding a target event
within a time window of size W after any such event-
set is detected.

Empirical findings. We report results obtained from
a production computer network. Data were obtained
by monitoring systems active during one month on
a network having 750 hosts. One month of contin-
uous monitoring generated over 26000 events, with
165 different types of events. All events serve as in-
put to the system. Our analysis concentrates on two
types of target events labeled as critical by domain
experts. The first type, URL (uniform resource lo-
cator) Time-Out, indicates a Web site is unacces-
sible. The second type, EPP (end-to-end probing plat-
form) Event, indicates that end-to-end response time
to a host generated by a probing mechanism is above
a critical threshold.

The first 50 percent of events serve for training and
the other 50 percent serve for testing. Error is com-
puted on the testing set only as follows. Starting at
the beginning of the sequence, nonoverlapping time
windows of size W that do not intersect the set of
time windows preceding target events are considered
negative examples; all time windows preceding tar-
get events are considered positive examples. Error
is defined as the fraction of examples incorrectly clas-
sified by the rule-based model.

We investigate the effect of varying the time window
preceding target events on the error of the rule-based
model. In all our experiments, the error correspond-
ing to false positives is small (�0.1) and does not
vary significantly while increasing the time windows.
We focus on the false negative error rate defined as

Figure 6 Error of rule-based model vs size of window preceding target events
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the proportion of times the rule-based model fails
to predict a true target event. Figure 6A shows our
results when the target event corresponds to URL
Time-Out on a particular host. With a time window
of 300 seconds, the error is 0.39 (9/23). But as the
time window increases, the error decreases signif-
icantly. Evidently, larger time windows enable us to
capture more information preceding target events.
Figure 6B shows our results with a different target
event: EPP Event on a particular host. With a time
window of 300 seconds the error is as high as 0.83
(9/62). Increasing the window to 2000 seconds brings
the error rate down to 0.16. Our results highlight the
importance of the size of the time window preced-
ing target events in order to capture relevant pat-
terns.

We also investigate the effect of having a warning
window before each target event in case the rule-
based model were used in a real-time scenario with
a need for corrective actions to take place. In this
case, the algorithm does not capture any events
within the warning window while characterizing the
conditions preceding target events. Our results show
a degradation of performance when the safe window
is incorporated, albeit to a small degree. On the EPP
Event, for example, a time window of 300 seconds
and a safe window of 60 seconds produces the same
amount of error as when the safe window is omit-
ted.

Conclusions

In this study of predictive algorithms, we establish
a distinction between short- and long-term predic-
tions and between numeric and categorical data. We
describe three case studies corresponding to the fol-
lowing scenarios: (1) long-term prediction of perfor-
mance variables, (2) short-term prediction of abnor-
mal behavior, and (3) short-term prediction of system
events. Empirical results show how predictive algo-
rithms can be successfully employed in the estima-
tion of performance variables and critical events.

Future work will look at possible ways to unify the
mechanism behind predictive algorithms to enrich
our understanding of their applicability. For exam-
ple, we note that problems characterized by numer-
ical data can be converted into categorical data and
vice versa. Aggregating events over fixed time inter-
vals converts categorical data into numerical data.
For example, workload in a server is computed by
aggregating the number of site requests over fixed
time units. Conversely, thresholding can be used to

transform numbers into categories. For example, a
measure of the end-to-end response time of a ser-
vice request such as ping or mail probe, is often cat-
egorized as normal or abnormal, depending on
whether the end-to-end response time exceeds a pre-
defined threshold.

The transformation above can extend the applica-
bility of predictive algorithms. For example, aggre-
gating the number of times a host is down over fixed
time intervals enables us to analyze the trend and
seasonal variation of the host-down frequency. Since
there may be occasions in which bringing a host down
is part of scheduled maintenance, the same trans-
formation can be used to detect if host-down fre-
quency falls into abnormal behavior. In the exam-
ple above, all three predictive algorithms described
in previous sections can play an important role. Our
goal is to develop tools to transform the input data
so as to enable the use of different predictive algo-
rithms. The result would increase the amount of in-
formation necessary to determine the root cause of
a problem and the amount of evidence to perform
accurate predictions.
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