428 JOHNSON ET AL.

A decision-tree-based
symbolic rule
induction system

for text categorization

We present a decision-tree-based symbolic
rule induction system for categorizing text
documents automatically. Our method for rule
induction involves the novel combination of
(1) a fast decision tree induction algorithm
especially suited to text data and (2) a new
method for converting a decision tree to a
rule set that is simplified, but still logically
equivalent to, the original tree. We report
experimental results on the use of this system
on some practical problems.

The text categorization problem is to determine pre-
defined categories for an incoming unlabeled mes-
sage or document containing text, based on infor-
mation extracted from a training set of labeled
messages or documents. Text categorization is an im-
portant practical problem for companies that wish
to use computers to categorize incoming electronic
mail, thereby either enabling an automatic machine
response to the e-mail or simply assuring that the
e-mail reaches the correct human recipient. But, be-
yond e-mail, text items to be categorized may come
from many sources, including the output of voice rec-
ognition software, collections of documents (e.g.,
news stories, patents, or case summaries), and the
contents of Web pages.

Previous text categorization methods have used de-
cision trees (with or without boosting), naive Bayes
classifiers,” nearest-neighbor methods,? support vec-
tor machines,** and various kinds of direct symbolic
rule induction.® Among all these methods, we are
particularly interested in systems that can produce
symbolic rules, because rules comprehensible to hu-

0018-8670/02/$5.00 © 2002 IBM

by D. E. Johnson
. Oles

mans often provide valuable insights in many prac-
tical problems.

In a symbolic rule system, text is represented as a
vector in which the components are the number of
occurrences of a certain word in the text. The sys-
tem induces rules from the training data, and the gen-
erated rules can then be used to categorize arbitrary
data that are similar to the training data. Each rule
ultimately produced by such a system states that a
condition, which is usually a conjunction of simpler
conditions, implies membership in a particular cat-
egory. The condition forms the antecedent of the rule,
and the conclusion posited as true when the condi-
tion is satisfied is the consequent of the rule. Usu-
ally, the antecedent of a rule is a combination of tests
to be done on various components. For example:

share>3 & year=1 & acquire>2 — acq

may be read as “if the word share occurs more than
three times in the document and the word year oc-
curs at most one time in the document and the word
acquire occurs more than twice in the document, then
classify the document in the category acq.”

In this paper, we describe a system that produces
such symbolic rules from a decision tree. We em-
phasize the novel aspects of our work: a fast deci-
sion tree construction algorithm that takes advan-

©Copyright 2002 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 41, NO 3, 2002

Figure 1 The KitCat system architecture

CONFIGURATION
FILE

DATA PREPARATION
DATA EXAMINATION
J

DATA CLEANING
L T

FEATURE EXTRACTION ‘ MACHINE LEARNING ‘

TESTING

CONVERT
TREES TO

- 1
‘ FEATURE [FEATURE BULD [gg'MEPfJETTES’
DECISION
DEFINITION || SELECTION T CONEIDENCE

TESTING I8

TREES

DATA SPLITTING ’

ANNOTATED TRAINING
INPUT DATA DATA
COLLECTION COLLECTION

TEST DATA COMPLETE
COLLECTION WORD COUNT
s TABLE

tage of the sparsity of text data, and a rule
simplification method that converts the decision tree
into a logically equivalent rule set. Compared with
a standard C4.5 tree algorithm,’ our algorithm not
only can be as much as a hundred times faster on
some text data, but also can handle larger feature
sets, which in turn leads to more accurate rules.

The prototype system described in this paper is avail-
able in product form as the IBM Text Analyzer, an
1BM WebSphere* Business Component, and it is also
embedded in the 1BM Enterprise Information Por-
tal, version 8, an IBM content-management product
offering.

System architecture

All of the methods described in this paper have been
implemented in a prototype text categorization sys-
tem that we call KitCat, an abbreviation of “tool kit
for text categorization.” The overall KitCat system
architecture is shown in Figure 1.

IBM SYSTEMS JOURNAL, VOL 41, NO 3, 2002

ONE TABLE OF
SELECTED
FEATURES
PER CATEGORY! VA

LEVELS

UNION OF TEST
ALL RULE REPORT
SETS o
ONE DECISION
TREE PER
CATEGORY

In order to support multiple categorization (a com-
mon requirement in text categorization applications),
the KitCat system induces a separate rule set for each
category by treating categorization vis-a-vis each cat-
egory as a separate binary-classification problem.
This has the secondary advantage that a person who
analyzes the rules can then concentrate on one cat-
egory at a time. Also, we associate with each rule a
confidence measure that is the estimated in-class
probability that a document satisfies the rule. In set-
tings where it is desirable to assign a single category
to a document, confidence levels enable the user to
resolve the ambiguity resulting from the multiple fir-
ing of rules for different categories.

The decision tree induction algorithm

DTREE is our implementation of the decision tree in-
duction algorithm, the component of KitCat used
to carry out the “build decision trees” function in
Figure 1. In this section we describe the novel fea-
tures of the DTREE algorithm.

JOHNSON ET AL. 429

Figure 2 Functions that can be used to define impurity
criteria

ENTROPY

GINI INDEX
MODIFIED ENTROPY
CLASSIFICATION ERROR

o 01 02 03 04 05 06 07 08 09 1

We start with a set of training documents indexed
by consecutive integers. For each integer i in the in-
dex set, we transform the ith document into a nu-
mericvectorx; = (x;, ... ,X;,) whose components
are counts of the numbers of occurrences of words
or features in the ith document. For each category,
we would like to determine a label y; € {0, 1} so
thaty; = 1 indicates that the ith document belongs
to the category, andy,; = 0 indicates that the ith doc-
ument does not belong to the category.

The dimension d of the input vector space is huge
for text categorization problems. Usually a few hun-
dred to a few thousand words (features) are required
to achieve good performance, and tens of thousands
of features may be present, depending both on the
size of the data set and on the details of feature def-
inition, such as tokenization and stemming. Despite
the large number of features potentially present in
text, the lengths of individual documents, especially
for e-mail and Web applications, can be rather short
on average. The result is that each data vector x is

typically very sparse.

However, traditional tree construction algorithms
(such as C4.57 or CART®) were not designed for
sparse data. In the following, we briefly describe the
fast decision tree algorithm that we developed spe-
cifically for text categorization applications. We as-
sume that the reader has a basic knowledge of de-
cision tree generation algorithms, so that we only
elaborate on issues that are different from standard

430 JOHNSON ET AL.

procedures, such as methods described by Quinlan’
and Breiman et al.® For a discussion of various is-
sues in developing scalable decision tree algorithms,
see Gehrke et al.’ Although the construction of a
tunable decision tree induction system especially de-
signed for text categorization was mentioned in Yang
et al.,'® few details were given there, so we cannot
compare our system to theirs.

Similar to a standard decision tree construction al-
gorithm, our algorithm contains two phases: tree
growing and tree smoothing. There are three major
aspects of our algorithm that we describe in more
detail: (1) taking advantage of the sparse structure,
(2) using a modified entropy as the impurity mea-
sure, and (3) using smoothing to do pruning.

Tree growing. We employ a greedy algorithm to grow
the tree. At each node corresponding to a subset T
of the training data, we select a feature f and a value
v so that data in 7 are partitioned into two subsets
T}, and T}, based on whether or not x,; = w:
T),={x;€T:x;y=v}and T}, = {x; € T:x;; >
v}. This partition corresponds to a decision rule
based on whether or not the word corresponding to
feature f occurs more than v times in document d;
represented by vector x;.

Letps, = P(y; = 1lx; € Tp), pi, = P(y; = 1lx; €
T?,), and p;, = P(x; € T} |x;, € T). We consider
the following transform of probability estimate r:
[0, 1] — [0, 1] defined as

J(1+\2p—1) ifp>05,

1
;A =\1-2p) ifp=05 M

r(p) =

We then define a modified entropy for p € [0, 1]
as

g(p) = —r(p) log (r(p))
—(1 =r(p)) log (1 = r(p)) (2)

For each possible split (f, v), we associate with it
a cost function

o(f, v) :Pf,v!](P;,v) + (1 _Pf,u)g(sz,u) (3)

that measures the impurity of the split. The mod-
ified entropy criterion is plotted as a function of p
in Figure 2, where we compare it with classification
error, Gini index (we use 2p(1 — p) as its defini-

IBM SYSTEMS JOURNAL, VOL 41, NO 3, 2002

tion), and the standard entropy metric. Note that the
strict concavity of the modified entropy criterion in-
dicates that it favors a split that enhances the purity
of the partition, and, in this respect, it is similar to
the Gini index and the entropy criterion.

Due to its flatness (nonstrict concavity), the classi-
fication error function does not favor a partition that
enhances the purity. Consider an example such that
Pro = 0.5,p}, =051 andp?, = 0.89 and p; , =
1,pt,=0.7andp;, = 0. The (f', v') partition
is equivalent to no partition. Clearly, the classifica-
tion error criterion gives equal scores for both par-
titions, since they both predicty = 1 for all data in
T. However, in reality, (f, v) should be preferable,
because it makes some progress: it is likely that we
can further partition 7}, so that part of the data will
be associated with a probability ofy = 1 smaller than
0.51, and hence we change the prediction from 1 to
0 for those data. This future prospect of making a
different prediction (increased purity of part of the
data) is not reflected in the classification error cri-
terion. This is why it is a bad measure for building
a decision tree.

This problem can be remedied by using a strict con-
cave, bell-shaped function. However, the widely
adopted entropy and Gini index criteria have shapes
too different from the classification error curve. The
final criterion for evaluating a tree is by its classi-
fication performance; therefore we know that a tree
with small entropy or Gini index does not automat-
ically guarantee a small classification error. The mod-
ified entropy is introduced to balance the advantage
of classification error, which reflects the final per-
formance measurement of the tree, and the advan-
tage of the entropy criterion, which tries to enhance
the prospect of good future partitions within a greedy
algorithm setting. It is designed to be a strictly con-
cave function that closely resembles classification
error. Note that, similar to the classification error
function, the modified entropy curve is also nondif-
ferentiable at p = 0.5. From our experience, this
criterion outperforms the entropy and the Gini in-
dex criteria for text categorization problems in which
we are interested. For example, on the standard Re-
uters-21578 data,!' the new criterion reduces the
overall number of errors by 6 percent compared with
the entropy splitting criterion.

We now show how we can take advantage of the
sparse structure presented in text documents to se-
lect the best partition. This aspect of our decision
tree algorithm is crucial for its speed. Note that a

IBM SYSTEMS JOURNAL, VOL 41, NO 3, 2002

standard decision tree algorithm such as CART or
C4.5 does not take advantage of sparse structure.
Since we are not aware of any previous work in the
existing literature that carefully studied sparse de-
cision tree methods, we describe this aspect of our
algorithm in detail with analysis.

In order to speed up the algorithm, we also make
an important modification to the data: that is, we
truncate the word count x, ; to be at most a value
(typically, we choose this value to be 3). Note that
this is a rather reasonable simplification for text cat-
egorization problems. For example, a ten-time oc-
currence of the word “car” is hardly a more infor-
mative predictor that a document is in a car-related
category than a nine-time occurrence. Let d be the
dimension of x, which indicates the number of fea-
tures (words) under consideration. We create an ar-
ray inclass-count[1 ... d][0 ... V], where inclass-
count[f][v] is the number of documentsx; € T such
that y; = 1 and x;; = v; and an array total-count
[1...d][0...V], where total-count[f][v] is the
number of documentsx; € T such thatx; , = v. The
time required to create and fill the table is O(|T] -
I + dV'), where I is the average nonzeros of x; €
T. This can be achieved by going through all the non-
zeros of vectorsx; € T and appropriately increasing
the counts of the corresponding entries in the inclass-
count and the total-count arrays.

After this step, we loop through f =1, ..., d: for
each f, we let v go from 0 to V. We accumulate the
total number of x; € T such that x,; = v, and the
total number of x; € T such thaty, = 1 andx,;; =
v. The probability p,,, p/, and p fz’v can then be es-
timated to compute the cost Q(f, v) defined in (3).
We keep the partition (f, v) that gives the minimum
cost. This step requires O(d}) operations.

For the tree growing stage, we recursively split the
tree starting from the root node that contains all doc-
uments, until no progress can be made. Assuming
the documents roughly have equal length/, then the
total time required to grow the tree is roughly
O(nh,l + dV M), where M is the number of nodes
in the tree, n is the total number of documents, and
h, is the average depth of the tree per document. In
our experience with text categorization, the domi-
nating factor in O(nh,l + dV M) is the first term
O(nh,l). As a comparison, a dense tree growing al-
gorithm will have complexity at least of O(nh,d),
which is usually at least ten times slower.

JOHNSON ET AL. 431

Tree smoothing. Many algorithms for constructing
a decision tree from data involve a two-stage pro-
cess: the first stage is to grow a tree as large as pos-
sible to fit the data, using procedures similar to what
we have described in the previous section. After this
stage, the tree typically “over-fits” the data in the
sense that it may perform poorly on the test set.
Therefore a second phase is required to prune the
large tree so that the smaller tree gives more stable
probability estimates, which lead to better perfor-
mance on the test set.

In this section, we describe a procedure, which in-
stead of pruning the fully grown tree, re-estimates
the probability of every leaf node by averaging the
probability estimates along the path leading from the
root node to this leaf node. To achieve this, we bor-
row the “tree-weighting” idea from data compres-
sion.'> If we use the tree for compression of the
binary class indicator string y; based on x;, then the
tree-weighting scheme guarantees that the re-esti-
mated probability achieves a compression ratio not
much worse than that of the best pruned tree.'>!?
Because we apply this method to the transformed
probability estimate r(p) rather than to p directly,
this theoretical result can be interpreted nonrigor-
ously as follows: by using the re-estimated probabil-
ity, we can achieve an expected classification perfor-
mance on the test set not much worse than that of
the best pruned tree.

Note that in statistics, this technique is also called
shrinkage because it shrinks the estimate from a node
deeper in the tree (which has a lower bias but higher
variance because there are fewer data points) toward
estimates from nodes shallower in the tree (which
have higher biases but lower variance). In Bayesian
statistics and machine learning, this method is also
called model averaging. See Carlin and Louis™ for
more discussions from the statistical point of view.

The basic idea of our algorithm can be described as
follows: consider sibling nodes 7', and 7', with a com-
mon parent 7. Let p(T,), p(T,), and p(T) be the
corresponding probability estimates. The local re-
estimated probability is w;p(T) + (1 — wy)p(T1)
for Ty and wyp(T) + (1 — wy)p(T,) for T,. The
local weight w and an accompanying function G(7)
are computed by mutual recursion, based on the fol-
lowing formulas:

wr c-exp(—|Tlg(p(T)))
1-w; exp(—|T\|G(T) — |T,|G(T>)’

432 JOHNSON ET AL.

if wy > 0.5,

1 1
g(p(T)) + T log <<1 + ;) wT>

I |T|
G(D = Il G(T) + Il G(Ty)
1
+ m log ((1 4+ ¢)(1 —wy)) otherwise

The parameter ¢ is chosen a priori to reflect the
Bayesian “cost” of a split. For a leaf node T, we de-
fine G(T) = g(p(T)) and w; = 1. We choose ¢ =
16 in our applications but the performance is not
very sensitive to this parameter.

These formulas may seem a little mysterious at first.
They are in fact derived from applying the Bayesian
model averaging method locally at each node (note
that we replace the probability p at a node with its
transformed estimate r(p)). From the bottom up,
we re-estimate the local probability at each node and
feed it into a new probability estimate by shrinking
toward its parent estimate. The quality of the re-es-
timate at each node 7 is measured by G(7'), which
is updated at each step based on the information
gathered from its children. Therefore based on
G(T), we can compute w,—the local relative im-
portance of the current node compared to its chil-
dren. Due to the limitation of space, we shall skip
the detailed derivations and theoretical conse-
quences. Interested readers are referred to Willems
et al.’? and Zhang."®

After calculating weight w; for each node recursively
(the computation is done bottom-up), we compute
the global re-estimated probability for each tree node
from top down. This step averages all the estimates
r(p) from the root node T to a leaf node 7', down
a path T, ... T,, based on weight w;. Note that
weight w7 is only the local relative importance, which
means that the global relative importance of a node
T, isw;, =1, (1 — w;)w, along the path. By def-
inition, X/, w; = 1 for any path leading to a leaf.
The following recursive procedure efficiently com-
putes the global re-estimate of the children 7', and
T, at the parent node T

WT, = w1l —wy) 4)
HT) = F(T) + Wywer(p(T) (5)

wherer(p(T)) is the transformation using Equation
1 of the probability estimate p(7') at node 7. At the
root node, we let w = 1. After 7(7',) has been com-
puted for a leaf node T),, we can use r ' (7(T})) as
its probability estimate. The label of T; is 1if 7#(7;) >

IBM SYSTEMS JOURNAL, VOL 41, NO 3, 2002

0.5 and 0 otherwise. We prune the tree from the bot-
tom up by checking whether two siblings give iden-
tical labels; if so, we remove them and use the label
for their parent. This procedure continues until we
cannot proceed. Typically, for a large fully grown tree
from the first stage, the pruned tree can be as little
as 10 percent of the unpruned tree.

The smoothing procedure consistently enhances the
classification performance of the tree. The running
time is O(M) where M is the number of nodes in the
unpruned tree. Therefore the total complexity of our
decision tree construction algorithm is O(nh;/ +
dV' M). As mentioned before, in practice, we observe
a complexity of O(nh,l).

Turning decision trees into symbolic rule
sets

An integral part of our system writes the decision
tree as an equivalent set of human interpretable
rules. The value of converting decision trees into sim-
plified logically equivalent symbolic rule sets, instead
of employing a text categorization system based
solely on decision trees, is threefold:

1. Asystem based solely on generating decision trees
from training data is useless for categories for
which there are no training data. However, it is
not hard for an intelligent person to write logical
rules to cover such a situation. Creating a deci-
sion tree by hand for the purpose of text catego-
rization would be much harder, particularly for
a person who is not mathematically sophisticated.
We envision that handwritten rule sets could be
seamlessly incorporated with machine-generated
rule sets, either permanently or as a stopgap mea-
sure pending the collection of additional train-
ing data.

2. A human user can understand and modify a rule
set much more easily than he or she can under-
stand and modify a decision tree. There are a
number of scenarios in which we envision the need
for such modifications. For instance, there may
be a discrepancy between the training data and
the anticipated application that requires hand
modification of an automatically created system,
and, in a system such as the one we are describ-
ing, this modification may be accomplished by ed-
iting a rule file. Another scenario involves a us-
er’s desire to update an existing system in order
to improve performance that may have degraded
due to a changing environment (perhaps due to

IBM SYSTEMS JOURNAL, VOL 41, NO 3, 2002

the introduction of new terminology or new prod-
ucts related to a category), without fully recre-
ating the system from scratch.

3. The fact that a rule set is logically equivalent to
a corresponding decision tree for a particular text
categorization problem guarantees that any math-
ematical analysis of the overall performance of
the decision tree (as opposed to the performance
of individual rules) with respect to text catego-
rization carries over to the rule set. This would
not be true if a rule set only approximated a de-
cision tree, as would be the case if the rule set
were derived from the decision tree by heuristics.

The most straightforward way to convert a tree into
an equivalent set of rules is to create a set with one
rule for each leaf by forming the logical conjunction
of the tests on the unique path from the root of the
tree to the leaf. This starting point is laid out in de-
tail by Quinlan’ in the discussion of how C4.5 cre-
ates rule sets from trees. In C4.5, the initial rule set
derived from a decision tree is modified based on
the way changes in the rule set affect how the train-
ing data are classified. This can be a computational
burden, but the burden is lessened by the use of plau-
sible heuristics. However, one should note that the
resulting rule set of C4.5 need not be logically equiv-
alent to the rule set initially derived from the tree.

Our approach to deriving rule sets from decision
trees differs markedly from that of C4.5. We want
a fast algorithm that produces a simplified rule set
that is logically equivalent to the rule set initially ex-
tracted from a decision tree. As long as the new rule
set is logically equivalent to the original rule set, it
does not need experimental validation to compare
the new set’s overall performance with that of the
original set. We do not propose to get a provably
minimal set of rules. Instead, our algorithm “picks
the low-hanging fruit” by

1. Carrying out, within rules, all elementary logical
simplifications related to greater than and less
than, e.g., converting (4 <3) /A (4 <2)to (A <
2)

2. Removing tests that are logically superfluous in
the context of the entire rule set, when those tests
are readily identifiable from the structure of our
decision trees

The former simplification is standard, but the latter
is not. It changes the meaning of rules associated with

JOHNSON ET AL. 433

Figure 3 Example of a decision tree

a particular leaf of a decision tree, while preserving
the overall meaning of the rule set.

Here is the precise algorithm that implements the
second rule simplification. It works for a decision tree
for a two-class problem (i.e., each leaf node is la-
beled by a class X or its complement Y), where our
aim is to produce rules for membership in the class
X.

For each leaf labeled X, create a rule for member-
ship in the class X by forming a conjunction of con-
ditions obtained by traversing the path from the root
to X, but use those conditions only in conformance
with the following:

For each node N on a path from the root to a leaf
labeled X, the condition attached to the parent of
N is to be part of the conjunction only if the sib-
ling criterion holds for N,

where the sibling criterion for N is

The node N is not the root, and the sibling node
of N is not a leaf node labeled by X.

The resulting set of rules is then logically equiv-
alent to the original tree.

It should be noted that the sibling criterion, and its
use here, is novel.

434 JOHNSON ET AL.

For example, consider the decision tree shown in Fig-
ure 3 in which we assume each feature count is in-
teger-valued, so that the negation of 4 < 2, for ex-
ample, isA = 2. If one applies the algorithm to the
decision tree in Figure 3, one sees that for each leaf
labeled X, there is only one condition on the path
from the root to the leaf that is not to be omitted
from the conjunction, and so one immediately ob-
tains the equivalent rule set

(B<2)—>X
(B=4) >X
A=2)—X

Why does this algorithm yield a set of rules equiv-
alent to the standard set derived from a binary de-
cision tree for a two-class problem? Each time a con-
dition C is a candidate for elimination, there must
be two leaf nodes labeled X, giving rise to two rules
of the form

PANC—X

where P and Q are conjunctions of conditions. These
two rules are equivalent to the single rule

PNC)\y(PN=CNQ)—X
However,

(PNC)\V/ (PN-CANQ)
=P/A(C\V(=CNQ)=PN(CVQ))
=(PAC)\V(PAQ)

Hence, the two rules above are logically equivalent
to the two rules

PANC—-X

PANQ—X

This verifies correctness of the algorithm.

In practice, decision trees obtained from text cat-
egorization problems are often very unbalanced,

which may enable the procedure outlined to accom-
plish significant simplification.

IBM SYSTEMS JOURNAL, VOL 41, NO 3, 2002

Examples

One of the most common data sets used for com-
paring categorizers is the Reuters-21578 collection
of categorized newswires.'! We used the Mod-Apte
data split, which gives a training set with 9603 items
and a test set with 3299 items. Since these data are
multiply classified, the performance is usually mea-
sured by precision and recall for each binary clas-
sification problem:

true positive

recision = — — X 100
p true positive + false positive

true positive

= o — X
recall true positive + false negative 100

The overall performance can be measured by the mi-
cro-averaged precision, recall, and the break-even
point computed from the overall confusion matrix
defined as the sum of individual confusion matrices
corresponding to the categories. Training on 93 cat-
egories, our results were micro-averaged precision
of 87.0 percent and micro-averaged recall of 80.5 per-
cent, the average of these two values being 83.8 per-
cent. In this run, 500 features were selected by using
the IG criterion in Yang and Pedersen, ** and no stop-
words list was used. The training time for the DTREE
decision tree induction algorithm on the Reuters-
21578 data set was 80 seconds on a 400 megahertz
Pentium II processor, so it is quite fast. (As a com-
parison, C4.5 takes hours to finish training on the
same data.)

DTREE compares very favorably with results using
the C4.5 decision tree induction algorithm, which has
a micro-averaged precision/recall of 78.9 percent.*
If one were willing to make the major sacrifice of
giving up human-readable and human-modifiable
rules, one could do better than DTREE alone by us-
ing boosting (i.e., adaptive resampling, with the ac-
companying generation of multiple trees). For ex-
ample, boosted DTREE with 10 trees and 1000
features yields a precision of 89.0 percent and recall
of 84.0 percent. With more than ten trees, additional
improvement can also be obtained.

We have also used KitCat-generated human-
comprehensible rules to study structures of corpo-
rate Web sites. In one instance, we obtained around
7000 Web pages using a Web crawler on the www.
ibm.com Web site. These Web pages are partitioned
into 42 categories based on the IBM Web site direc-

IBM SYSTEMS JOURNAL, VOL 41, NO 3, 2002

tory structure. Our goal was to analyze the Web site
structure and see whether it would be possible to set
up a good category scheme based on the existing di-
rectory structure. Such a category scheme could be
used to help users to navigate through the Web site.
To see how well KitCat works on these data, we stud-
ied its prediction accuracy under a three-fold cross-
validation setting. We observed that the KitCat sys-
tem worked very well on this Web site structure, with
a prediction accuracy of about 86 percent. This com-
pares favorably with our implementation of a naive
Bayes method that gave an accuracy of about 75 per-
cent, and a support vector machine (SVM) style clas-
sifier with an accuracy of about 87 percent. Note that
the KitCat rule-based system has an added advan-
tage of human interpretability. We also made some
interesting observations in this study. For example,
we found that the meta-text (for example, the key-
words and the description sections) in an HTML
(HyperText Markup Language) file were not as valu-
able as we originally expected—rules we obtained
often did not contain these meta-data. In addition,
removing them from the text representation does not
have any significant impact on classification accuracy.
In the following, we list a few example rules obtained
from this data set:

room > 0 — press @ 0.79
room < 1 & press > 0 — press @ 0.16

webcasts > 0 & ibm > 0 & letter > 0 — news @
0.95

newswire > 0 & letter > 0 — news @ 0.9
newswire > 0 & letter < 1 — news @ 0.78

job > 0 — employment @ 0.87
resume > 0 — employment @ 0.91
employment > 0 — employment @ 0.6

For each rule, the word before “@?” is the category
name, and the number after “@” is the confidence
measure (estimated probability). It is interesting to
see that the word “room” is more indicative than
“press” for the press category; “letter” is an indic-
ative word for the news category; and both “job” and
“resume” are more indicative than “employment”
for the employment category. This shows that, in gen-
eral, it can be difficult for a human to produce hand-
written rules without sufficient knowledge of the data.
On the other hand, machine-learned rules can give
people valuable insights into a category scheme.

As another example, KitCat was also applied to cat-
egorize e-mail sent to a large U.S. bank. We had 4319

JOHNSON ET AL. 435

e-mail documents, with 3943 used for training and
970 used for testing. We used nine categories, cov-
ering 86 percent of the data. The rules produced by
KitCat had a micro-averaged precision of 92.8 per-
cent and a micro-averaged recall of 89.1 percent.

Our applications of KitCat have also taught us that
it works very well on “dirty” data. Detailed analysis
shows that the rules produced for classifying e-mail
documents are quite good, even when the tester ini-
tially reports the contrary. On four categories in a
customer data set, where we were surprised by less
than stellar results as measured by the test data, Kit-
Cat rules actually were seen to have 100 percent pre-
cision, after the test data were carefully re-examined.
The initial human categorization had precision rang-
ing from 50.0 to 83.3 percent on these categories.
There were 84 instances of these categories out of
8895 documents in the test set. Thus, misclassified
test data can make even good rules look bad. How-
ever, bad data are a fact of life, and robustness in
their presence is one of KitCat’s advantages.

Conclusion

In this paper, we describe a decision-tree-based sym-
bolic rule generation algorithm for text categoriza-
tion. Our decision tree algorithm has three main
characteristics:

1. Taking advantage of the sparse structure

2. Using a modified entropy as the impurity mea-
sure

3. Using smoothing to do pruning

We also have a procedure for turning a decision tree
into a symbolic rule set by transforming a standard
rule set into a simpler equivalent one based on an
examination of the structure of the decision tree, and
we give a proof of correctness for this procedure and
some text categorization examples of the use of the
resulting KitCat system. We created an industrial-
strength state-of-the-art prototype system that even-
tually evolved into the IBM Text Analyzer product
offering.

*Trademark or registered trademark of International Business
Machines Corporation.

Cited references

1. S. M. Weiss, C. Apte, F. Damerau, D. E. Johnson, F. J. Oles,
T. Goetz, and T. Hampp, “Maximizing Text-Mining Perfor-
mance,” IEEE Intelligent Systems 14, 63—69 (1999).

2. A.McCallum and K. Nigam, “A Comparison of Event Mod-

436 JOHNSON ET AL.

els for Naive Bayes Text Classification,” Proceedings, AAAI
Workshop on Learning for Text Categorization, Madison, W1
(July 26-27, 1998), pp. 41-48.

3. Y. Yang, “An Evaluation of Statistical Approaches to Text
Categorization,” Information Retrieval Journal 1, 69-90
(1999).

4. T.Joachims, “Text Categorization with Support Vector Ma-
chines: Learning with Many Relevant Features,” Proceedings,
10th European Conference on Machine Learning, Chemnitz,
Germany (April 21-24, 1998), pp. 137-142.

5. S. Dumais, J. Platt, D. Heckerman, and M. Sahami, “Induc-
tive Learning Algorithms and Representations for Text Cat-
egorization,” Proceedings, 7th ACM International Conference
on Information and Knowledge Management, Washington, DC
(November 3-7, 1988), pp. 148-155.

6. C. Apte, F. Damerau, and S. M. Weiss, “Automated Learn-
ing of Decision Rules for Text Categorization,” ACM Trans-
actions on Information Systems 12, 233-251 (1994).

7. J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan
Kaufmann Publishers, San Francisco, CA (1993).

8. L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone,
Classification and Regression Trees, Wadsworth Advanced
Books and Software, Belmont, CA (1984).

9. J. Gehrke, R. Ramakrishnan, and V. Ganti, “Rainforest—A
Framework for Fast Decision Tree Construction of Large
Datasets,” Data Mining and Knowledge Discovery 12, No. 2/3,
127-162 (2000).

10. Y. Yang, J. Carbonell, R. Brown, T. Pierce, B. Archibald,
and X. Liu, “Learning Approaches for Detecting and Track-
ing News Events,” IEEE Intelligent Systems 14, No. 4, 32-43
(1999).

11. See http://www.daviddlewis.com/resources/ testcollections/reuters21578/

12. F. M. J. Willems, Y. M. Shtarkov, and T. J. Tjalkens, “The
Context Tree Weighting Method: Basic Properties,” IEEE
Transactions on Information Theory 41, No. 3, 653-664 (1995).

13. T. Zhang, “Compression by Model Combination,” Proceed-
ings, IEEE Data Compression Conference, Snowbird, Utah
(March 30-April 1, 1998), pp. 319-328.

14. B. Carlin and T. Louis, Bayes and Empirical Bayes Methods
for Data Analysis, Chapman and Hall, New York (1996).

15. Y. Yang and J. P. Pedersen, “A Comparative Study on Fea-
ture Selection in Text Categorization,” Proceedings, 14th AAAI
International Conference on Machine Learning, Nashville, TN
(July 8-12, 1997).

Accepted for publication March 26, 2002.

David E. Johnson IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York 10598
(electronic mail: dejohns@us.ibm.com). Dr. Johnson is a research
staff member at IBM’s Watson Research Center, where he man-
ages the computational linguistics and text mining group. His re-
search interests include natural language processing, the syntax
and semantics of natural language, and the foundations of lin-
guistic theory. He holds a Ph.D. degree in theoretical linguistics
from the University of Illinois at Urbana-Champaign, is a past
president of the Association for the Mathematics of Language,
and serves on several editorial boards.

Frank J. Oles IBM Research Division, Thomas J. Watson Re-
search Center, P.O. Box 218, Yorktown Heights, New York 10598
(electronic mail: oles@us.ibm.com). Dr. Oles has been a research
staff member at the IBM Watson Research Center since 1983.
He has a Ph.D. degree in computer and information science from

IBM SYSTEMS JOURNAL, VOL 41, NO 3, 2002

Syracuse University. His interests include text categorization, in-
formation extraction from text, inductive learning of patterns,
knowledge representation, the semantics of programming lan-
guages, and the mathematical foundations of computer science.

Tong Zhang IBM Research Division, ThomasJ. Watson Research
Center, P.O. Box 218, Yorktown Heights, New York 10598 (elec-
tronic mail: tzhang@us.ibm.com). Dr. Zhang received a B.A. de-
gree in mathematics and computer science from Cornell Univer-
sity in 1994 and a Ph.D. degree in computer science from Stanford
University in 1998. Since 1998, he has been with the IBM Watson
Research Center, where he is now a research staff member in the
Knowledge Management department. His research interests in-
clude machine learning, numerical algorithms, and their appli-
cations.

Thilo Goetz IBM Research Division, Thomas J. Watson Research
Center, P.O. Box 218, Yorktown Heights, New York 10598 (elec-
tronic mail: tgoetsz@us.ibm.com). Dr. Goetz has been a research
associate and later research staff member at IBM’s Watson Re-
search Center since 1997. He has a Ph.D. degree in computa-
tional linguistics from the University of Tiibingen, Germany. His
areas of interest include the intersection of computer science and
computational linguistics, such as parsing, finite state methods,
and compiler construction for computational linguistics, as well
as complexity theory and logic for computer science.

IBM SYSTEMS JOURNAL, VOL 41, NO 3, 2002

JOHNSON ET AL. 437

