Using fuzzy control
to maximize profits
in service level
management

The growth of e-commerce is creating
demand for services with financial incentives
for service providers. Such services are
specified by service level agreements (SLAS)
in which revenue accrues with the number of
completed transactions, and costs are
incurred if response times go above a
specified threshold. In this paper we propose
a profit-oriented feedback control system that
automates the admission control decisions in
a way that balances the loss of revenue due
to rejected work against the penalties
incurred if admitted work has excessive
response times. One approach to making
these trade-offs is to employ classical control
theory (e.g., proportional integral controllers);
however, doing so requires a labor-intensive
design process that tailors the controller to a
specific workload and profit model. Instead,
we develop a fuzzy control algorithm that
implements hill climbing logic to maximize
profits and handle the stochastics that make
profits quite “bumpy.” Our studies of a Lotus
Notes® e-mail server reveal that the fuzzy
controller requires little human intervention
and is robust to changes in workloads and
values of SLA parameters. Further, we prove
that our design of the fuzzy controller leads to
a value of the admission control parameter
that maximizes steady state profits.

The advent of e-commerce has created a business
need for high-quality information technology (IT)
services. For example, a “buy” transaction that takes
more than a few seconds may cause the customer to
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abandon the purchase. As a result, businesses are
seeking quality-of-service (QoS) guarantees from
their service providers (Sps). These guarantees are
expressed as part of service level agreements (SLAs),
often with financial incentives. For example, provider
revenues may be determined by the number of com-
pleted transactions, and providers may incur finan-
cial penalties for SLA violations (e.g., exceeding re-
sponse time guarantees). Since demand for services
is often unpredictable, providers must sometimes
make trade-offs between losing revenue (e.g., as a
result of admission control that denies access to some
customers) and incurring penalties (e.g., because
admitted work cannot be completed within the
SLA-dictated response time). Making such choices
is skill-intensive and time-consuming, and the deci-
sions must be made in real time. In this paper we
focus on QoS at the application layer, as opposed to
the network-level QoS considered in the work on
DIFFSERV and RSVP.'

A variety of SLAs have been published. Reference
2 describes a template for frame relay SLAs. Refer-
ence 3 provides guidelines for the state of Texas, in-
cluding considerations for response time, availabil-
ity, and downtime. Reference 4 does the same for
the University of Michigan IT. We generalize these
examples and consider a simple profit model in
which: (A) the service provider receives revenues for
each completed interaction (hereafter, transaction)
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Figure 1

Profit-based feedback in a hand-crafted Pl controller for a Lotus Notes e-mail server
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and (B) a cost is incurred if response times are ex-
cessive. The profit model is described by three pa-
rameters: (1) r, the revenue received for each
completed transaction; (2) W, the response time con-
straint; and (3) c, the cost incurred if a transaction’s
response time exceeds W (offending transactions).
Thus, profit is determined by the number of com-
pleted transactions and the number of offending
transactions as follows:

Revenue = r * (number of completed transactions)

Cost = ¢ * (number of responses that take
longer than W)
Profit = Revenue — cost

Diao et al.” describe this and other profit models in
more detail, including generalizations to multiple
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classes by subscripting 7, W, and ¢ to make them per-
class variables. As the first step toward building an
intelligent controller for service management, the
profit model presented above is deliberately simple.
By no means does this profit model capture all di-
mensions of QoS. In particular, we ignore any explicit
terms related to rejected requests. The rejection
scheme is implicitly considered in the above profit
model as a combination of lost revenue (the trans-
action request is not admitted) and cost of penalty
(cost of offending transactions).

SLA enforcement requires a control infrastructure,
much of which consists of feedback loops. For ex-
ample, the lower portion of Figure 1 displays a feed-
back loop for controlling response times in a Lotus
Notes™ e-mail server (the upper portion describes
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how to manually design the controller and is dis-
cussed in the section on profit-based proportional
integral [PI] controller design). Mail users interact
with the server to retrieve, browse, catalog, and send
their mail. Administrators specify policies in the form
of desired response times. The difference between
the reference value and measured response times is
the control error. This is used by the controller to
compute the setting of MaxUsers, which is the limit
on the number of users allowed to connect to a Notes
application. Note that some desired feedback ele-
ments (such as end-user response time) are user-ori-
ented metrics, which may be difficult for the SP to
obtain. However, they can be estimated from some
server-side measurements or by using client-side
probing stations.

Feedback loops have been widely studied; typically,
they are analyzed in terms of stability, steady state
error, and transient response® (usually characterized
by rise time, overshoot, and settling time). Our in-
terest is in a business-oriented analysis, in particu-
lar how to design controllers that maximize SLA prof-
its. More specifically related to our work, Reference
7 describes an implementation that manages Web
server resources based on maximizing revenue (e.g.,
responding within 8 seconds so that users are not
discouraged). However, they do not study the char-
acteristics of control actions that are preferred, nor
is the choice of profit model considered. Reference
8 describes a system that performs on-line optimi-
zation of a Web server by using hill climbing tech-
niques. However, the approach taken requires a de-
tailed knowledge of the system being optimized in
order to construct the queueing models. Reference
9 considers the optimization problem of maximiz-
ing the SLA profits based on queueing-theoretic for-
mulas, but the proposed scheme does not incorpo-
rate feedback, which makes it less adaptable in the
presence of time-varying workloads (quite common
in e-commerce systems). Others (e.g., References
10-12) have studied the performance characteris-
tics of feedback controllers used for resource man-
agement, and much work has been done on pricing
models for information systems, such as pricing band-
width and transactions (e.g., References 13, 14). In
those studies, however, the connection to profitabil-
ity through SLAs is missing and so the derivation of
the controller characteristics that maximize profits
is not addressed.

Fuzzy control has been an active area of research as

well. 1 Reference 16 uses fuzzy methods to solve the
job scheduling problems. Reference 17 applies fuzzy
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logic to some multimedia applications where the in-
formation, be it sound, image, or text, is not precisely
specified. Others have applied fuzzy techniques to
profit maximization: Reference 18 addresses bank
credit granting, while Reference 19 addresses profit
maximization for decision support. (But neither ad-
dresses profit optimization in the context of feed-
back control.) Most closely related to our study is
Reference 20, which derives fuzzy control laws to
maximize the profit of a simple queueing system. Al-
though this is a step toward profit-maximizing feed-
back control of computing systems, the results are
specific to GI/M/1 tandem queues and require prior
knowledge of arrival rates.

We are interested in a general way of constructing
profit-maximizing feedback loops that do not rely
heavily on prior knowledge about the target system.
One approach is to use classical control theory to
design feedback loops that maximize profits. We de-
scribe below experiments in which a fast proportional
integral (PI) controller (one with short settling times)
generates increased profits. Unfortunately, consid-
erable skill is required to design good PI controllers,
and this runs counter to the trend toward autonomic
computing in which computing systems are self-op-
timizing.*!

Herein, we propose a feedback control system that
directly optimizes profits and is robust to changes in
workloads, the target system (the system in which it
is used), and the underlying service level agreement
(although the last does need to be reflected in the
feedback loop). A fuzzy controller is employed to
construct a profit-maximizing feedback loop, which
avoids skill-intensive alternatives such as building a
specific queueing model or handcrafting a PI con-
troller. Our approach is based on the nature of cost
and revenue curves. In particular, we show that un-
der some reasonable assumptions for a Lotus Notes
e-mail server, profits are concave downward in the
control parameter (MaxUsers). We construct a fuzzy
controller that employs hill climbing to maximize
steady-state profits. This approach provides a con-
venient way to separate the logic of hill climbing (as
expressed in fuzzy rules) from the calculation of new
values of MaxUsers (as represented by the member-
ship functions). Such a separation is desirable in or-
der to deal with resident stochastic processes and
the resulting increase in the variability of the on-line
profit measurement. We use a Lyapunov analysis to
prove that the proposed fuzzy controller leads to the
maximum profit at steady state.
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Figure 2  High-level description of Lotus Notes e-mail server with admission control
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The handcrafted PI controller requires human in-
volvement to select control gains and reference val-
ues for specific profit models (values of W, r, and
¢) and workloads. In contrast, the profit-based fuzzy
control does not require human intervention when
the profit model or workload changes. Although
mechanisms must be in place to communicate
changes in the profit model to the controller, chang-
ing the profit model does not require a controller
redesign to get good performance. Thus, using fuzzy
control may be more economical to employ in prac-
tice.

The remainder of the paper is organized as follows.
The next section describes how a PI controller can
be handcrafted for a specific workload and profit
model. The following section details the architecture
and fuzzy rules used in the feedback loop that we
propose and provides comparisons with the hand-
crafted approach. The section after that proves that
our fuzzy rules cause the controller to converge
toward an operating point with maximum profit in
steady state. Our conclusions are contained in the
final section.
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Handcrafted PI control

In this section we describe a manual approach to con-
structing controllers that aim to maximize profits. We
begin by describing the Lotus Notes system and its
behavior for a static value of MaxUsers, a situation
referred to as open-loop control. For additional de-
tails see Reference 5.

Open-loop control. We begin with a high-level de-
scription of the Lotus Notes e-mail system. The struc-
ture of this system is displayed in Figure 2. Potential
users must pass through admission control, which is
gated by the MaxUsers parameter. Once admitted,
users cycle through two states: (1) thinking and (2)
waiting for a response to an RPC (remote procedure
call) submitted to the Notes server. Admission con-
trol rejects users if the number of users already
present in the system is greater than or equal to Max-
Users. The details here are a bit more involved since
admission control is exercised only for OpenDB RPCs,
and subsequent RPCs from the same user will bypass
the admission control scheme and enter the RPC
queue directly.'® Once admitted to the Notes sys-
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tem, users remain for the duration of their session,
and the admission controller does not force admit-
ted users to log off, nor does it know if a user logs
off by itself. This certainly affects the effectiveness
of the admission control scheme (e.g., there may ex-
ist a delay between the decrease of the tuning pa-
rameter MaxUsers and the decrease of the number
of actual served sessions). We have implemented a
simulator to model the above Notes mechanism,
which produces accurate values of response times
and transaction completions, typically within 1 per-
cent of the real system,** at least for standard bench-
marks.

Now consider the profits of a Lotus Notes system in
which MaxUsers is static. We use a time-varying
workload that mixes low and high workloads (the
workload is defined as the reciprocal of the average
user think times) as follows: Period 1 (low workload)
covers interval 1-2 hours and has think time 10 sec-
onds; Period 2 (high workload) covers interval 2—4
hours and has think time 3 seconds; Period 3 (low
workload) covers interval 4—6 hours and has think
time 10 seconds. We also define three profit models
P(1), P(2), and P(3) with different values for pa-
rameters r and c. P(1): r = ¢, that is, assigns equal
weights to completed and offending transactions;
P(2): r = 5c, assigns more weight to completed
transactions; P(3): r = ¢/5, assigns more weight to
offending transactions. Generally, our studies show
that we may not select a static value of MaxUsers
that is suitable for the whole mixed low-high work-
load, as this static value will be a compromise be-
tween the low workload and the high workload. In
particular, during light loads, response times may
rarely exceed W. Although this reduces costs, it also
means that we might be able to increase profits by
having a larger MaxUsers during light loads, since
doing so would increase completions (and hence rev-
enue) faster than it would increase response time
violations (and hence costs). Conversely, during the
heavy load, response times are mostly violated, and
so having a smaller value of MaxUsers can increase
profits. This example suggests that profits could be
increased by dynamically adjusting MaxUsers in re-
sponse to changes in workload.

Profit-based PI controller design. When designing
feedback controllers we try to ensure stability and
to provide desirable characteristics. Here, we focus
on a simple but widely used class of controllers, with
PI control and good performance specifications (i.e.,
quick convergence, zero steady-state error). PI con-
trollers compute the value of the tuning control as

IBM SYSTEMS JOURNAL, VOL 41, NO 3, 2002

1 k=1
ulk) = K ek) + 7 3 e()) (1)
j=1

where u(k) is the output of the controller (the tun-
ing control) and e (k) is the control error (difference
between the reference value and the measured value
of the controlled metric) for the & th time interval.
Intuitively, the adjustment of the tuning control de-
pends on the current value of e(k) and the sum of
past e(k) values. Their effects on the tuning control
are weighed by the proportional control gain K, for
the response to system disturbances (e.g., workload
variations) and the integral control time constant 7,
for eliminating the steady-state error. Designing a
PI controller means properly specifying K, and 7
so as to eliminate the steady-state error with certain
convergence speed.”

One way to design a profit-based PI controller is to
explore the space of controller parameters using
models and then evaluate the most promising con-
trollers on the target system (Lotus Notes, in our
case). As illustrated in the upper portion of Figure
1, we first use system identification techniques to con-
struct system models which are in the form of first
order difference equations

ylk +1) = ay(k) + bu(k) (2

where u(k) is the offset value of MaxUsers and y (k)
is the offset value of response time (the offset is the
difference between the measured value and the op-
erating point, obtained by averaging the collected
data). The model parameters a and b are estimated
using the least squares method.!® Although quite
simple, it turns out that this model can account for
88 percent of the variability in response times in our
detailed simulation of Lotus Notes. Similarly, we
have also built a first order model from MaxUsers
to completed transaction. A good fit is obtained for
completions as well.

The next step is to design the controller by properly
selecting the control gains. This is done by employ-
ing the models just described. Using Equation 2, we
study nine controllers defined by K, € {0.2,2, 20}
in combination with 7, € {2, 10, 200}. Figure 3
displays the modeled response times of these con-
trols when they are perturbed by both an increase
and a decrease in MaxUsers at 200 and 300 minutes,
respectively. (We use this perturbation to simulate
workload variation.) The x-axis is time, and the y-

DIAO, HELLERSTEIN, AND PAREKH 407



Figure 3 Comparison of transient response using first-order models with reference value 1
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axis is response time. The dotted line is the refer-
ence value of response time. The nine combinations
of Kp, T are arranged in a matrix of plots with rows
having the same 7; and columns having the same
Kp. We see that the controllers can be separated into
three groups. Controllers 2, 3, and 6 are unstable,
as can be seen by the large scale of the y-axis. Con-
trollers 4, 7, and 8 have fairly long settling times (es-
pecially controller 7) compared with controllers 1,
5, and 9. We refer to the former as slow controllers
and the latter as fast controllers. Generally, we pre-
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fer fast controllers because they are able to quickly
compensate for the disturbance so as to maintain
proper response time regardless of workload vari-
ation.

The final step is to evaluate the designed controller
and to specify the reference values. Generally, faster
controllers (i.e., 1, 5, 9) consistently have the largest
profits. Profits for controllers 2, 3, and 6 are the low-
est because they are unstable. Also, the slow con-
trollers 4, 7, and 8 do not generate high profits since
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their long settling times either indicates losing rev-
enue (if they fail to respond to lower workloads by
rapidly increasing MaxUsers) or incurring extra costs
(if they fail to decrease MaxUsers fast enough for
higher workloads). Also note that the choice of the
reference value has large impact on the profit, and
it is affected by the profit model parameters. Gen-
erally, this is a trial and error process following the
rule of thumb that a larger reference value is desired
for the profit model more favorable to the revenues,
but a smaller reference value is needed if the cost
of violating SLAs is dominant (additional details can
be found in Reference 5).

We draw two insights from the foregoing. First, fast
controllers with short settling times (e.g., controller
5) consistently result in higher profits. Second, man-
ual construction of a profit-based PI controller is
time-consuming and skill-intensive. Specifically, the
manual approach requires steps for: (1) model build-
ing, (2) model-based parameter exploration, and (3)
detailed studies of selected controllers with differ-
ent reference value settings. In the next section, we
show how much of this manual burden is alleviated
by using a fuzzy control approach.

Fuzzy controller

Fuzzy control provides a means for expressing con-
trol laws as high-level rules. Using fuzzy rules for
profit maximization can both simplify the controller
design (no need for building the model and spec-
ifying the reference value) and make it more robust
to the variations in workloads and profit models. In
this section we describe and evaluate a fuzzy con-
troller we developed for the Lotus Notes simulator
described in the previous section.

Profit model structure. In the next section we de-
scribe the design of the fuzzy controller. That de-
sign is based on certain properties of the profit model
structure that will be the focus of this section. Spe-
cifically, we show that profit is a concave downward
function of MaxUsers, if offered load is sufficiently
heavy (so that MaxUsers always has an effect). Since
we are concerned with steady state, we assume that
MaxUsers remains constant for a sufficiently long
time so that transient effects are minimal.

We begin with the number of transactions that vi-
olate the response time constraint. Let f(u) be the
number of violating transactions when MaxUsers =
u. Further, let f'(u) be the derivative of f with re-
spect to u, and f”(u) be the second derivative. We
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Figure 4 lllustrating the properties of the profit model
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intuitively infer the properties of f, f', f” by exam-
ining common queueing curves. In particular, we as-
sume the following:

(A) f(0) = 0 (i.e., if we do not admit any transac-
tions, we cannot have violations of response
time constraints)

(B) f'(u) = 0 (i.e., we get more violations as Max-
Users increases), with f'(0) = 0

(C) f"(u) = 0 in that the rate at which violations
increase grows as MaxUsers increases. The rate
of increase is small for low values of MaxUsers
since resource contention is low and the prob-
ability of a violation is small. However, the prob-
ability of a violation grows rapidly as MaxUsers
increases.

Let v(u) be the cost incurred by operating the server
at MaxUsers = u. This is v(u) = cf(u), where ¢ >
0. Since f has the above properties, so does v. This
is depicted in Figure 4A.

We can do a similar analysis for completions and rev-
enue. Let g(u) be the number of completions if Max-
Users = u. Clearly,

(D) ¢g(0) = 0 (i.e., no admissions means no com-
pletions)
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(E) ¢g'(u) = 0 (i.e., more admissions lead to more
completions), and ¢'(0) > 0 (going from no
admissions to a positive number, the number
of completions can only go up). The latter does
assume that there is no thrashing, such as oc-
curs in resource constrained virtual memory sys-
tems.

Things are a bit different for g”(u). As MaxUsers
grows large, resource bottlenecks occur that place
an upper limit on throughput. Whenu is small, g’ (1)
increases rapidly since all offered load becomes car-
ried load. However, for larger u, there are periods
in which resources are saturated and so additional
offered load does not translate into more carried
load. Thus, the rate at which ¢’ () increases begins
to slow. Put differently,

(F) g"(u) =0

Letw(u) be the revenue incurred when MaxUsers =
u. Then,w(u) = rg(u), wherer > 0. Thus, the prop-
erties (D), (E), and (F) also apply to w(u). This is
depicted in Figure 4B.

Now consider profit. Define /(u) to be the profit at
u. Then, h(u) = w(u) — v(u). We consider a sit-
uation in which for large u, ' (u) > w'(u),* which
is consistent with Figure 4. With this and if costs abide
by (A), (B), and (C) above and revenues abide by
(D), (E), and (F) above, then profits are concave
downward.

To prove this claim, note that 2’ (1) = w'(u) —
v'(u). Since w'(0) > 0 and ¢'(0) = 0, we have
h'(0) > 0. Also, since v'(%*) > w'(), we have
h'(%) < 0. Thus, if 2’ (u) is continuous, there exists
u, such that A'(u,) = 0. Moreover, note that
h"(u) = w"(u) — v"(u) < 0 (since w"(u) = 0 and
v"(u) > 0). Hence, u, is a unique maximum point.

Note that at very large values of u, f'(u) = 0 since
resource bottlenecks limit the number of transactions
and hence the number of offending transactions.
Therefore, the above analysis is only valid locally and
h'(%) < 0 only stands for large enough u; profit is
locally concave downward.

How do the foregoing relate to data we obtain from
the Notes simulations? Figure 5 shows the cumula-
tive profit for the profit models P(1)-P(3) as be-
fore in combination with light and heavy workloads.
All the profit curves are concave downward, except
under a high workload. Here, MaxUsers is large and
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so profits are flat due to the saturation of the server
and the limited number of arriving users. Note that
the profit shown is accumulated over an interval of
5 hours for Figure 5 to clearly view the trend of prof-
its. Also note that the optimal MaxUsers values for
the maximum profit are quite different for different
workloads. This motivates dynamic profit optimiza-
tion since a fixed MaxUsers selected off line may not
be proper when the workload is changing (similarly
for the change of profit models).

Controller design. In this section, we describe the
high-level architecture of our fuzzy control system
and how it differs from the PI controller introduced
before. Next, we discuss how the controller is de-
signed to exploit the profit model structure derived
above, and how it is able to handle stochastics in the
feedback. Finally, we evaluate our controller for ef-
ficiency and robustness, using a well-tuned PI con-
troller as a baseline.

Controller architecture. The architecture of our pro-
posed fuzzy control system is shown in Figure 6. Just
like the PI controller, we define a sampling interval
that dictates how often actions are taken. The feed-
back loop includes a profit model component (up-
per right) that computes the profit for each interval.
Note that the inputs for computing the profit are the
throughput (completed transactions) and response
time. To get the actual values may be difficult. How-
ever, they can be estimated from the server-side mea-
surements or client-side probing stations. Also note
that we compute and maximize the profit based on
intervals. By having a long enough interval we en-
sure that the measured interval profit is repre-
sentative. Also, this interval is not too long, so that
the controller can adapt quickly to changes in the
operating environment. The next component on the
feedback path is a differentiator, which outputs the
change in profit value (dy) between the current in-
terval and the last. The other element of the feed-
back is the change in MaxUsers value (du). As we
show below, it is more convenient for the controller
to work with du and dy rather than the original val-
ues. The output of the controller is7, an adjustment
to MaxUsers for the next time interval. An integra-
tor element converts this delta into an actual Max-
Users value for the Notes server. The internals of
the controller are described in the next section.

This profit-based fuzzy controller in Figure 6 differs
in substantial ways from the PI controller depicted
in Figure 1. Specifically, the PI controller regulates
to a desired response time by having an expert care-

IBM SYSTEMS JOURNAL, VOL 41, NO 3, 2002



Figure 5  Profit shapes for the Notes server
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fully choose the controller parameters through ex-
tensive off-line analysis of the target system (the
Notes server) and the profit model. This work may
have to be redone if there are changes in the work-
load, the target system (e.g., a software upgrade), or
the profit model. Indeed, we expect that profit mod-
els will change frequently due to negotiations of SLA
agreements that change the revenues (r) to service
providers, the costs of service level violations (c),
and the negotiated response time constraints (W).
In contrast, the fuzzy controller incorporates the
profit model as an element of the feedback loop.
Such a design allows the controller to adjust auto-
matically to changes in the workload, the target sys-
tem, and even the profit model.
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Controller components. As mentioned earlier, the
fuzzy controller’s actions are guided by a set of fuzzy
rules. The rules are stored in a rule database (or rule
base), which is part of the controller. These rules are
generally IF-THEN rules defined in terms of linguis-
tic variables, which are different from the numerical
input-or-output variables of the controller. As we dis-
cuss below, these linguistic variables are a natural
way to handle uncertainties created by the stochas-
tics present in most computer systems.

Linguistic variables exist in one-to-one correspon-
dence with some numeric variable of the system. For
example, change-in-MaxUsers is a linguistic variable
corresponding to the numeric variable for the actual
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Figure 6 Architecture of the profit-based fuzzy controller

FUZZY
CONTROLLER

INFERENCE
MECHANISM

RULE BASE

FUZZIFICATION
DEFUZZIFICATION

change in the MaxUsers value. (Similarly for change-
in-profit and next-change-in-MaxUsers.) A linguistic
variable takes on linguistic values, such as poslarge
and neglarge. (Note that neglarge is generally used in
fuzzy control literature as an abbreviation for “neg-
ative large in size” and so on for others such as pos-
large or possmall.) Linguistic variables actually take
on a “degree of truth” for each possible linguistic
value. This is represented as a continuous value be-
tween 0 to 1 where 0 is false, 1 is true, and 0.5 in-
dicates we are halfway certain. The mapping from
a numeric value to a degree of truth for a linguistic
value is done by the membership function p.

We use triangular membership functions,? as shown
in Figure 7, to map from the numeric variables (the
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change of MaxUsers value (du), the change of the
profit (dy), and the expected change of the Max-
Users as the next step (m)), to the linguistic vari-
ables (change-in-MaxUsers, change-in-profit, and
next-change-in-MaxUsers, respectively). The y-axis in-
dicates the degree of truth for each of the linguistic
values neglarge and poslarge. For example, du = 0.5
maps to 0.75 for poslarge and 0.25 for neglarge.

Note that the measured variables are normalized be-
fore applying the mapping function, which is why the
x-axis shows —1 and 1 for all the membership func-
tions. This is done by multiplying the measured nu-
meric quantities by factors known as the normaliz-
ing gains, and denoted g4, and g,,. For example, in
the membership function shown in Figure 7, we
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Figure 7 Membership functions and fuzzy inference
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would like that change-in-MaxUsers map to poslarge
if it is larger than 1. For example, if g, = 1/10,
change-in-MaxUsers is poslarge if 10 more users are
allowed to enter.

Due to the stochastic nature of computing systems,
the on-line internalized profit feedback will contain
significant variability, particularly when the sample
intervals are short. Hence, there is some uncertainty
as to how much of the change in profit from one in-
terval to the next is caused by the setting of Max-
Users and how much is due to stochastics. Fuzzy set
theory provides a natural way to handle such sto-
chastic data, by using the normalizing gains and
membership functions to characterize these uncer-
tainties (as shown in Figure 7 between —1 and 1).
In the example above, the mapping of du = 0.5 in-
dicates that we are more certain (0.75) that the “ac-
tual” value of du is positive large than negative large
(0.25).

The fuzzification component of the controller (bot-
tom of Figure 6) implements the membership func-
tions p discussed above and converts the input nu-
merical variables to their linguistic equivalents. Fuzzy
inference involves the evaluation of the fuzzy rules
in the rule set and combining the actions of rules
(the THEN parts) to yield an output in terms of a lin-
guistic variable. For details of fuzzy inference, please
refer to a standard text on fuzzy control (e.g., Ref-
erence 15). The defuzzification component is com-
plementary to fuzzification and converts the output
linguistic variable to a numerical value.

Since the concave-downward shape of the profit
model implies that there is an optimal value of Max-
Users, which we denote by u,, that maximizes prof-
its, we next describe a fuzzy rule set that implements
a hill-climbing procedure to find this optimal value.
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The fuzzy rules are easy to design based on our in-
tuitive understanding of hill climbing. Thus, if the
current MaxUsers is to the left of the optimal value,
we would want to increase MaxUsers in order to in-
crease profits. However, since the optimal value is
not known, the fuzzy rules must first determine
whether we are to the left or to the right of the Max-
Users that maximizes profits. Moreover, we must ad-
just MaxUsers in appropriate increments since too
small a change will cause slow convergence, whereas
too large a step may cause oscillation. The follow-
ing four rules are given to address these issues.

Rule 1: IF change-in-MaxUsers is neglarge AND
change-in-profit is neglarge THEN next-
change-in-MaxUsers is poslarge.

Rule 2: IF change-in-MaxUsers is neglarge AND
change-in-profit is poslarge THEN next-
change-in-MaxUsers is neglarge.

Rule 3: IF change-in-MaxUsers is poslarge AND
change-in-profit is neglarge THEN next-
change-in-MaxUsers is neglarge.

Rule 4: IF change-in-MaxUsers is poslarge AND
change-in-profit is poslarge THEN next-
change-in-MaxUsers is poslarge.

The IF part determines the position on the profit
curve, as well as the distance from the optimal point.
For example, in Rule 4, if we increase MaxUsers and
the profit increases, then we are to the left of the
maximum. The THEN part indicates the suggested
action. Again in Rule 4, we should continue to in-
crease MaxUsers. Rule 2 and Rule 4 indicate the
“correct” situations in that the profit is increasing.
Conversely, Rule 1 and Rule 3 handle the “incor-
rect actions,” where the previous action caused the
profit to decrease. Since we do not know the actual
MaxUsers value that maximizes the profit, these rules
are easier to describe in terms of changes to the Max-
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Users and profit values. This is why our controller
architecture (Figure 6) uses du and dy.

Afterwards, the consequents from all activated rules
(with nonzero w) are weighted (e.g., using the “cen-
ter of gravity” method) to compute the appropriate
adjustment to MaxUsers.

Note that the above four rules are only given to
illustrate the tuning concepts, whereas more com-
plicated rule sets can be defined to have a finer
definition of the linguistic values (e.g., neglarge, neg-
med, negsmall, zero, possmall, posmed, poslarge) to
increase the design flexibility, and to incorporate
more knowledge such as how to get out of the flat
saturation regions. Also worthy of mention is that
for a typical tracking or regulation problem where
the objective is to have zero control error, the in-
puts of the controller usually include both error and
change-in-error (similar to a PI controller, but note
that the fuzzy controller output should be a “change,”
which makes the fuzzy controller operate like a PI
controller but with nonlinear operating functions).
For the problem studied in this paper, the control
objective is to achieve maximum profit. Since this
maximum value is unknown in advance, the error
(the difference between the current profit and the
maximum profit) is also unknown and cannot be used
as an input. Instead, we use change-in-MaxUsers and
change-in-profit as control inputs, since they are both
measurable. Our later stability analysis shows that
the system can indeed be stabilized and the maxi-
mum profit can be reached under this setting and
with certain constraints.

The use of fuzzy inference allows us to separate the
logic of hill climbing from the calculation of values
of MaxUsers. The rules encode the logic, and the
membership function controls how profit and Max-
Users are weighted and adjusted during fuzzy infer-
ence.

Evaluation. Under the fuzzy control architecture and
fuzzy rule base introduced in the previous sections,
the design includes selecting the control interval and
choosing the scaling factors (normalizing gains) g 4,
9a4y> and g,,. We select a control interval of 10 min-
utes because the profit data are not measured very
frequently (e.g., by using the probing station). A large
control interval also reduces the variability in the
profit data and gives a more accurate measure. Next,
the normalizing gains are tuned by trial and error
in order to achieve good control performance. The
tuning process can be guided by some heuristic
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knowledge of the target system and its dynamics.
Generally, the larger the value of g,,, the faster the
control action, that is, the controller responds more
quickly. However, too quick a control response may
cause system oscillation as the controller overreacts
to small variations in measurements. We choose
9au = Ym = 1/20 and g,, = 1/2 based on the sys-
tem dynamics, considering that a change of 20 in
MaxUsers or of 2 in profit are reasonably large.

We compare the fuzzy controller with PI controller
5 (Figure 3) that is tuned for a specific profit model
(the response time constraint is 3 seconds) and a spe-
cific workload (the mixed light and heavy workload
as defined earlier). As Figures 8 and 9 show, the PI
controller can generate good profits, whereas the
fuzzy controller adjusts MaxUsers less rapidly, which
results in lower profits. This is because the test sce-
nario is exactly the same as that for which the PI con-
troller is tuned. We would like to highlight that al-
though the fuzzy controller is optimal in steady state,
the current workload has several transients that the
fuzzy controller (due to its slower reaction) does not
handle as well as the PI does. Also note that the PI
controller operates with a significantly smaller sam-
pling interval (5 seconds) than the fuzzy controller
(10 minutes). This is because the profit data have
much more variability than the response time. In or-
der to have a relatively smooth and accurate mea-
sure of the profit, a larger sampling interval is nec-
essary. This is also why the MaxUsers plot in Figure
8 appears “smoother.”

What happens if the profit model and/or workload
changes? Figure 10 addresses this question by com-
paring profits of PI 5 with those of the fuzzy control-
ler. Three workloads are considered (as indicated
at the top of each column). The profit model is also
varied in that the rows represent different values of
r, ¢, and the horizontal axis specifies . For PI con-
troller 5 we use K, = 2 and 7, = 10 for all cases.
The reference value depends on the profit model,
and we use 1.5 for the profit model P(1), 2 for P(2),
and 1 for P(3) (obtained according to trial and error
for the case where W = 3). We do not redesign the
fuzzy controller, which means we use the same nor-
malizing gains g,, = 20, g,, = 2, and g,, = 20 and
the same membership functions as indicated in Fig-
ure 7 for all the simulation runs shown in Figure 10.

The P1 controller does well in the range of workload
and W values for which it is trained. Otherwise, the
fuzzy controller generally produces higher profits.
Unlike selecting the reference value for the PI con-
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Figure 8 Behavior of P1 controller 5 for profit model P(1) and W=3
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Reprinted with permission from Y. Diao, J. L. Hellerstein, and S. Parekh, “A Business-Oriented Approach to the Design of Feedback Loops for
Performance Management,” Figure 8, Proceedings of the 12th International Workshop on Distributed Systems: Operations and Management

(DSOM’01), Nancy, France, October 2001, IEEE, New York (© 2001 IEEE).

troller, the design process of the profit-based fuzzy
controller is not affected by the selection of the profit
model. Hence, it is more adaptable to various profit
models (as illustrated in Figure 10 for different re-
sponse time constraints).

Stability and convergence analysis

In this section, we show that the fuzzy controller is
stable (i.e., all internal variables of the controller and
the Notes server will not go to infinity) and converges
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to the maximum profit at steady state. Due to space
limitation we provide only an outline of the proof.
We begin by summarizing the dynamics of the sys-
tem. Let u(k) denote the offset value of MaxUsers
in the & th interval (the meaning of “offset” will be
explained later), and m (k) denote the expected
change of MaxUsers as a result of the output of the
fuzzy controller. Then, from the previous section, we
know that

utk +1) =ulk) + mk) 3)
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Figure 9  Behavior of a fuzzy controller for profit model P(1) and W=3
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Equation 3 defines the relationship between Max-
Users and the change in MaxUsers. Equation 4 de-
fines the profit model. For convenience of deriva-
tion, we assume that u(k) is the offset value of
MaxUsers, that is, the difference between the mea-
sured MaxUsers and the equilibrium point (so that
whenu = 0,y = h(0) is the maximum profit). (Note
that we use a similar offset concept as that in the sec-
tion “Profit-based PI controller design,” but it is rel-
ative to the equilibrium point for maximum profit
rather than the operating point for linearization. Also
note that this equilibrium is only used for the pur-
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TIME (HOUR)

pose of analysis and its value is not unknown to the
fuzzy controller.) There is no loss of generality in
doing so because any nonzero equilibrium point can
be transformed to the origin via a change of vari-
ables. With this assumption, we can determine the
stability of the solution of the original system by
studying the stability of the origin as an equilibrium
point in the transformed system.

In order to show the system convergence to the equi-

librium point, we use the Lyapunov direct method.*
Consider the following Lyapunov function candidate

Vu(k)) = u*(k)
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Figure 10 Comparative behavior of the fuzzy controller and PI controller 5
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which characterizes the distance of the MaxUsers
from its optimal value (noting that we use a change
of variables to move the optimal value for u, to 0).
If we can show that its difference

Viuk + 1)) — V(u(k)) = u?k + 1) — u*k)
[u(k) + m(k)]* — u?(k)

m(k)[2u(k) + m(k)]

is always negative, then MaxUsers will converge to
the value that maximizes profit.
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For convenience in notation, we define the previous
adjustment of MaxUsers asdu(k) = u(k) — u(k —
1). (Note thatdu(k) = m(k — 1).) Also, define the
corresponding change of profit values as dy(k) =
y(k) — y(k — 1). Thus, our fuzzy rules imply that

IF du(k) < 0 AND dy(k) < 0 THEN m(k) > 0
IF du(k) < 0 AND dy(k) > 0 THEN m(k) < 0
IF du(k) > 0 AND dy(k) < 0 THEN m(k) < 0
IF du(k) > 0 AND dy(k) > 0 THEN m(k) > 0

L=

Note that the above four relationships are repre-
sented by the numeric variables, which are different
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from those four fuzzy rules characterized by linguis-
tic variables. For example, for a specific numeric in-
put pair du = 0.3 and dy = 0.4, all four rules will
be activated but with different certainties (comput-
ed from the membership functions). They will give
different weights to the consequents of each rule.
Then, following center of gravity defuzzification, a
crisp value can be obtained, which satisfies one of
the above relationships (e.g., IFdu = 0.3 > 0 and
dy = 0.4 > 0THENm = 0.2731 > 0). These four
relationships characterize certain properties of the
nonlinear mapping that the fuzzy rules must observe
in order to have a stable behavior. Besides this, the
proper choice of membership functions and fuzzy
rule set can improve the control performance, speed
of convergence, and so on.

Furthermore, the concave downward behavior of the
profit model can be described as follows:

IF u(k) < 0 AND du(k) < 0 THEN dy(k) <0
IF u(k) < 0 AND du(k) > 0 THEN dy(k) > 0
IF u(k) > 0 AND du(k) < 0 THEN dy(k) > 0
IF u(k) > 0 AND du(k) > 0 THEN dy(k) <0

The above relationships can be consolidated into

IF u(k) > 0 THEN m(k) < 0
IF u(k) < 0 THEN m(k) >0

Furthermore, we introduce a constraint |m (k)| <
2|u(k)| to restrict the nonlinear surface of the fuzzy
controller. Thus, ifu(k) > 0 we have m (k) < 0 and
2u(k) > —m(k),sothat V(u(k + 1)) — V(u(k)) <
0. Also, ifu(k) < 0 we have m(k) > 0 and 2u(k) <
—m(k), so that V(u(k + 1)) — V(u(k)) <0 as
well. Therefore, u converges to its optimal value.
Moreover, since 0 < a < 1, the system zero dynam-
ics x(k + 1) = ax(k) are exponentially attractive
as u = 0. Hence, x is also converging to its equi-
librium point.

Note that in the fuzzy controller we have introduced
aconstraint |m (k)| < 2|u(k)|. Since u(k) is obtained
through a change of variable and u is usually not
known in advance, the value of u (k) may not be avail-
able. Instead, we use a fixed constraint [m (k)| < 2e
where e is a small positive constant. Thus, for |u (k)|
> €, m(k)| < 2e leads to [m (k)| < 2Ju(k)|. This
implies that u (k) will converge asymptotically to an
€ neighborhood of the equilibrium point. Note that
we do not claim to have an optimal trajectory as in
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optimal control, neither do we require any assump-
tions on the arrival and service distributions.

Conclusions

The growing use of e-commerce is creating demand
for SLAs with financial incentives in which service pro-
vider revenues are determined by the number of
completed transactions and there are penalties for
SLA violations (e.g., exceeding response time guar-
antees). Thus, situations are arising in which pro-
viders must make trade-offs between losing revenue
(e.g., as a result of admission control that denies ac-
cess to some customers) and incurring penalties (e.g.,
because admitted work cannot be completed within
the SLA-dictated response time). Making such
choices is skill-intensive and time-consuming, and
the decisions must be made in real time. This mo-
tivates the use of profit-oriented feedback control.
Unfortunately, the use of classical approaches, such
as PI controllers, requires handcrafted construction
for a specific workload and profit model. This is prob-
lematic since workloads change frequently in e-com-
merce environments, and profit models must often
be adjusted as a result of SLA negotiations (which
may be done automatically in Web service environ-
ments). Herein, we propose using fuzzy control to
maximize profits and study this approach using de-
tailed simulations of a Lotus Notes e-mail server in
which the MaxUsers parameter is dynamically ad-
justed for admission control.

We propose a feedback control system that directly
optimizes profits and is robust to changes in work-
loads, the target system, and the underlying service
level agreement (although the latter does need to
be reflected in the feedback loop). A fuzzy control-
ler is employed because of its simplicity and intu-
itiveness. In particular for Lotus Notes, we argue that
profits are concave downward in MaxUsers. This is
aconsequence of: (1) how MaxUsers affects response
times and throughputs and (2) how these metrics af-
fect profits. Hence, for a given workload and profit
model, there is a unique value of MaxUsers that max-
imizes profits.

The foregoing suggests that hill climbing can be used
to maximize profits at steady state. We construct a
fuzzy controller to perform the hill climbing calcu-
lations, and our design separates the logic of hill
climbing (as expressed in fuzzy rules) from the cal-
culation of new values of MaxUsers (as represented
by the membership functions). Such a separation is
desirable in order to deal with stochastics that make
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profits quite “bumpy.” We prove that these rules con-
verge to the maximum profit at steady state. Further,
the fuzzy controller is unaffected by changes in work-
load and profit model.

Our detailed studies reveal that the fuzzy controller
has lower profits than a PI controller that is hand-
crafted for the specific workload and profit model.
However, the fuzzy controller does at least as well
as (and often much better than) the PI controller if
we stray from the environment for which the PI con-
troller is designed. This robustness, in combination
with minimizing human intervention, may make the
fuzzy controller economical to employ in practice.

Two areas of future work are of particular interest.
First, although we study Lotus Notes in this paper,
the results obtained are almost certainly not specific
to Notes. A seemingly easy generalization is to con-
sider other systems with similar mechanisms for ad-
mission control, such as the MaxClients parameter
in the Apache Web server. Further generalizations
may be possible as well, for example, to aid SLA ne-
gotiation based on the availability of system service
ability and user parameters. A second area of future
work is the speed of convergence of the fuzzy con-
troller. Our studies suggest that reducing conver-
gence time of the fuzzy controller may improve its
profits under dynamic workloads. The internal sys-
tem measurements and their available historical data
may be used to build the knowledge base and facil-
itate on-line learning and optimization.

*Trademark or registered trademark of International Business
Machines Corporation.
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