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We consider the use of probing technology
for cost-effective fault diagnosis in computer
networks. Probes are test transactions that
can be actively selected and sent through the
network. This work addresses the probing
problem using methods from artificial
intelligence. We call the resulting approach
intelligent probing. The probes are selected
by reasoning about the interactions between
the probe paths. Although finding the optimal
probe set is prohibitively expensive for large
networks, we implement algorithms that find
near-optimal probe sets in linear time. In the
diagnosis phase, we use a Bayesian network
approach and use a local-inference
approximation scheme that avoids the
intractability of exact inference for large
networks. Our results show that the quality of
this approximate inference “degrades
gracefully” under increasing uncertainty and
increases as the quality of the probe set
increases.

As distributed systems and networks continue to
grow in size and complexity, tasks such as fault lo-
calization and problem diagnosis become signifi-
cantly more challenging. As a result, tools are needed
that can assist in performing these management tasks
by both responding quickly and accurately to the ev-
er-increasing volume of system measurements, such
as alarms and other events, and also actively select-
ing informative tests to minimize the cost of diag-
nosis while maximizing its accuracy.

In this paper, we address the problem of diagnosis
in distributed computer systems by using test trans-
actions, or probes. A distributed system can be rep-
resented as a “dependency graph,” where nodes can
be either hardware elements (e.g., workstations, serv-
ers, routers) or software components or services, and
links can represent both physical and logical connec-
tions between the elements (see Figure 1A). Probes
offer the opportunity to develop an approach to di-
agnosis that is more active than traditional “passive”
event correlation and similar techniques. A probe
is a command or transaction (e.g., ping or traceroute
command, an e-mail message, or a Web-page access
request), sent from a particular machine called a
probing station to a server or a network element in
order to test a particular service (e.g., IP [Internet
Protocol]-connectivity, database access, or Web ac-
cess). A probe returns a set of measurements, such
as response times, status code (OK or not OK), and
so on. Probing technology is widely used to measure
the quality of network performance, often motivated
by the requirements of service-level agreements. Ex-
amples of probing technology include the IBM T. J.
Watson Research Center EPP technology1 and the
Keynote measurement product.2

The use of probing technology for cost-effective di-
agnosis requires addressing two issues: a planning
phase in which the probes are selected, followed by
a diagnosis phase in which problem determination
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is performed using the results of the probes. The
planning phase requires selecting a small but effec-
tive subset of all the possible probes. The diagnosis
phase requires making inferences about the state of
the network from the probe results.

To use probes, probing stations must first be selected
at one or more locations in the network. Then the
probes must be configured; it must be decided which
network elements to target and from which station
each probe should originate. Using probes imposes
a cost, both because of the additional network load
that their use entails and also because the probe re-
sults must be collected, stored, and analyzed. Cost-
effective diagnosis requires a small probe set, yet the
probe set must also provide wide coverage in order
to locate problems anywhere in the network.

By reasoning about the interactions among the probe
paths, an information-theoretic estimate of which
probes are valuable can be constructed. This esti-
mate yields a quadratic-time algorithm that finds
near-optimal probe sets. We also implement a linear-
time algorithm that can be used to find small probe
sets very quickly; a reduction of almost 50 percent
in the probe set size is achieved.

Once the probes have been selected and sent, fault
diagnosis is performed by analyzing the probe out-
comes. In real-life scenarios this analysis must be
done in an environment of noise and uncertainty.
For example, a probe can fail (e.g., because of packet
loss) even though all the nodes it goes through are
operational. Conversely, there is a chance that a

probe succeeds even if a node on its path has failed
(e.g., dynamic routing may result in the probe fol-
lowing a different path). Thus the task is to deter-
mine the most likely configuration of the states of
the network elements.

We use the graphical framework of Bayesian net-
works3 that provides both a compact factorized rep-
resentation for multivariate probabilistic distribu-
tions as well as a convenient tool for probabilistic
inference. An example of a simple Bayesian network
for problem diagnosis is shown in Figure 1B: a bi-
partite (two-layer) graph where the top-layer nodes
represent marginally independent faults or other
problems4 as a set X � (X1, X2, X3) of network el-
ements and the bottom-layer nodes represent probe
results, T � (T1, T2). Since the exact inference in
Bayesian networks is generally hard (NP-hard, Non-
deterministic Polynomial-time hard—a set or prop-
erty of certain problems in computational complex-
ity theory),5 we investigate the applicability of
approximation techniques and present experimen-
tal results that suggest that a local-inference ap-
proach performs well and provides a cost-effective
method for fault diagnosis in large networks.

The probing problem is typical of many practical ap-
plications in which a set of tests must first be selected
and then a diagnosis is made from the test outcomes.
Other examples arise in medical diagnosis, the iden-
tification of defective parts, code construction for
noisy channel transmission, and so on. In general,
the planning phase requires selecting a small but
effective subset of all the possible tests. The diag-

 A

Figure 1 (A) An example of a probing environment; (B) a two-layer Bayesian network structure
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nosis phase requires making inferences from the test
results in an environment of noise and uncertainty.

In the next section of this paper we formulate the
probe selection problem as a constrained optimiza-
tion problem—find the minimal subset of probes that
has the ability to diagnose the problems of interest.
Algorithms for solving this problem are presented,
and their experimental results are shown. In the sub-
sequent section we formulate the problem of prob-
abilistic fault diagnosis using a noisy-AND Bayesian
network framework, derive a lower bound on the er-
ror of diagnosis, and examine a local-inference ap-
proximation scheme for performing diagnosis. This
approach yields better approximations for higher
quality probe sets and “degrades gracefully” with in-
creasing noise. Related work is discussed in the
fourth section, and the last section presents some
overall conclusions and directions for future work.

Probe set construction

We now formulate the probe selection problem.

Notation and approach. We first describe our no-
tation and explain our approach.

Suppose the network has n nodes. Each probe is rep-
resented as a binary string of length n, where a 1 in
position j denotes that the probe passes through node
Nj . This defines a dependency matrix D(i, j), where
D(i, j) � 1 if probe Pi passes through node Nj , D(i,
j) � 0 otherwise. D is an r-by-n matrix, where r is
the number of probes. (This formulation is motivated

by the “coding” approach to event correlation sug-
gested by Kliger et al.6)

For example, consider the network in Figure 2.
Suppose one probe is sent along the path N13N23
N5 while another is sent along the path N1 3
N33 N6. The resulting dependency matrix is shown
to the right of the network (probes are indexed by
their start and end nodes).

Each probe that is sent out either returns success-
fully or fails to do so. In a noise-free environment,
if a probe is successful, then every node and link
along its path must be up; conversely, if a node or
link is down, then any probe passing through that
node or link fails to return. Thus r probes result in
a “signal” of a binary string of length r, each digit
denoting whether or not that probe returned suc-
cessfully (we do not consider exploiting the actual
value of the return time if the probe is successful).

For example, in Figure 2 if only N2 is down, then
probe P15 (subscript denotes the origin and desti-
nation nodes) fails, but P16 succeeds. Similarly, if only
N5 is down, then P15 fails, but P16 succeeds. Thus,
these two failures result in the same signal, because
their columns in the dependency matrix are identical.

If N1 is down, both probes will fail, and no other sin-
gle node failure causes both probes to fail. Thus a
failure in N1 can be uniquely identified by these two
probes, as shown by the fact that the column of N1

in the dependency matrix is unique.

In general, any problem whose column in the de-
pendency matrix is unique generates a unique sig-
nal and as a result can be unambiguously diagnosed.
(However, a problem whose column is all zeroes can-
not be detected even if its column is unique, so to
avoid this technicality we add a column of all zeroes
to the dependency matrix to represent the case of
no failure occurring.) The goal is to find the small-
est probe subset that can uniquely diagnose a fail-
ure in any node. (To extend this approach to mul-
tiple simultaneous failures see Reference 7.)

It is important to note that the network model is quite
general. For example, layering can be accommodated
if a Web server depends on Transmission Control
Protocol/Internet Protocol (TCP/IP) running, which
depends on the box being up; this can be modeled
as a node for the box with a link to TCP/IP from the
box and a further link from TCP/IP to the Web server.
Thus, nodes may represent applications and link de-

Figure 2 An example network and dependency matrix
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pendencies between those applications. Similarly, a
node may represent a subnetwork of many nodes
whose interconnections are unknown. In this case,
probing will determine that the problem lies some-
where in that subnetwork, at which point some form
of local system management (perhaps including lo-
cal probing) may be used to pinpoint the problem.

Problem statement. We can formulate probe selec-
tion as a constrained optimization problem, as fol-
lows. The initial probe set P and the dependency ma-
trix D are given. Let P� be any subset of P. Define,
for j � 1 to n, Cj � {Dij}, Pi � P�; Cj is the jth
subcolumn of D, with the extracted rows correspond-
ing to the probes in P�. Then the number of diag-
nosable problems is given by counting the number
of unique columns: h(P�) � ¥1

n c j , cj � 1 if Cj is
distinct from C1 , . . . , Cj�1 (otherwise cj � 0).

The probe selection problem is to find the smallest
probe subset that can diagnose all the problems, that
is, min �P�� such that h(P�) � n.

Determining the initial probe set. The set of candi-
date probes can be provided from whatever sources
are available; for example, a human expert may spec-
ify which probes are possible. However, it may also
be useful to compute the available probes from the
network structure and the location of the probe sta-
tions.

We begin by selecting from the n nodes a subset of
k nodes as the probe stations. (In this work we do
not address the question of how to select the probe
stations, since they usually cannot be chosen to op-
timize the probing strategy.) A probe can be sent to
any node from any probe station. In the example we
will assume that the probe follows the shortest path
from probe station to target. This assumption cre-
ates a candidate set of probes of size r � O(n); note
that this set is sufficient to diagnose any single node
being down because one can simply use one probe
station and send a probe to every node.

Determining the diagnostic ability of a set of probes.
In general, the count h(P) of the number of unique
problems detectable by a probe subset P is not a good
measure of the diagnostic ability of P (unless h(P) �
n). For example, suppose probe set P 1 induces the
decomposition S1 � {{1, 2}, {3, 4}}, and probe
set P2 induces the decomposition S2 � {{1}, {2,
3, 4}}. Although P2 can uniquely diagnose one node
and P1 cannot, it is possible to add just a single probe
to P1 and diagnose all the nodes, whereas at least

two additional probes must be added to P2 before
all nodes can be diagnosed. Therefore, S1 is a “bet-
ter” decomposition than S2 .

We define the diagnostic ability H(P) of a set of
probes P to be the conditional entropy (see Refer-
ence 8) H(N�G), where N � {1, . . . , n} denotes
the node, and G � {1, . . . , k} denotes which group
contains the node in the decomposition induced by
P; each group contains nodes whose failures cannot
be distinguished from one another. Let ni be the
number of nodes in group g i . Then:

H�P� � H�N�G�

� �
i�1

k

p�G � gi� H�N�G � gi�

� �
i�1

k ni

n ���
j�1

n

p�N � j�G � gi�

log �P�N � j�G � gi���
� �

i�1

k ni

n ���
j�1

ni 1
ni

log�1
ni
�� � �

i�1

k ni

n
log�ni�

For any node in g i , at least log(ni) additional probes
are needed to uniquely diagnose that node. Since a
random node lies in g i with probability ni /n, the di-
agnostic ability H(P) is simply the expected mini-
mal number of further probes needed to uniquely
diagnose all nodes. Note that lower values for H(P)
correspond to better probe sets.

For example,

H�P1� � H���1, 2�, �3, 4���

�
1
2 log2 �

1
2 log2 � log2 � 1

whereas

H�P2� � H���1�, �2, 3, 4���

�
1
4 log1 �

3
4 log3 �

3
4 log3 � 1.19
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This formula for H(P) is valid if failures are equally
likely in any node. If this is not the case, prior knowl-
edge about the likelihood of different types of fail-
ures can be incorporated into the measure of diag-
nostic ability. The decomposition induced by a probe
set can be efficiently computed row-by-row using the
fact that adding a probe always results in a more ex-
tensive decomposition, because nodes in distinct
groups remain distinguishable. An additional probe
can only have the effect of distinguishing previously
indistinguishable nodes.

Finding the minimal set of probes. In general, one
probe station and n probes can locate any single
failed node because a probe can be sent to every
node. However, in many situations far fewer probes
may suffice. Because r probes generate 2 r possible
signals (one of which corresponds to the case that
there is no failure), in the ideal situation only
log(n) � 1 probes are needed to locate a single fail-
ure in any of n nodes. However, this condition is only
achievable if all the necessary links exist in the net-
work and it is possible to guarantee that a probe fol-
lows a specified path. In the case of shortest-path
routing with an arbitrary network structure, the min-
imal number of probes may lie anywhere between
log(n) � 1 and n; the exact value depends on the
network structure and the location of the probe sta-
tions.

We now examine algorithms for finding the mini-
mal probe set. Since the probe selection problem is
NP-hard9 and an exhaustive search is therefore im-
practical for large networks, two approximation al-
gorithms are considered: one (“subtractive search”)
requiring linear time and the other (“greedy search”)
requiring quadratic time. An experimental compar-
ison of the algorithms is presented shortly.

Subtractive search. Subtractive search starts with the
initial set of r probes, considers each probe in turn,
and discards it if it is not needed, that is, if the diag-
nostic ability remains the same even if it is dropped
from the probe set. This process terminates in a sub-
set with the same diagnostic ability as the original
set but which may not necessarily be of minimal size.
The running time is linear in the size of the original
probe set, because each probe is considered only
once.

The order of the initial probe set is quite important
for the performance of this algorithm. If the probes
are ordered by probe station, the algorithm will re-
move all the probes until the last n (all of which are

from the last probe station), since these suffice to
diagnose any node. This reduces the opportunity of
exploiting probes from different probe stations. The
size of the probe set can be reduced by randomly
ordering the initial probe set, or ordering it by tar-
get node.

Greedy search. Another approach is a greedy search
algorithm where at each step we add the probe that
results in the “most informative” decomposition, us-
ing the measure of diagnostic ability defined previ-
ously. The additive algorithm starts with the empty
set and repeatedly adds the probe that gives the de-
composition of highest diagnostic ability. This algo-
rithm also finds a nonoptimal probe subset with the
same diagnostic ability as the original set. The run-
ning time of this algorithm is quadratic in r, the size
of the original probe set, because at each step the
diagnostic ability achieved by adding each of the re-
maining probes must be computed.

Experiments. This subsection investigates experi-
mentally both the general behavior of the minimum
set size and how the two approximation algorithms
compare with exhaustive searching in computing the
probe set. The main result is that the approximation
algorithms find a probe set that is very close to the
true minimum set size and can be effectively used
on large networks where exhaustive searching is im-
practical.

For each network size n, we generate a network with
n nodes by randomly connecting each node to four
other nodes. Each link is then given a randomly gen-
erated weight to reflect network load. The probe sta-
tions are selected randomly. One probe is generated
from each probe station to every node using shortest-
path routing. The three algorithms described pre-
viously are then executed. This process is repeated
ten times for each network size and the results av-
eraged.

Figure 3 shows the case of three probe stations. The
size of the probe set found by all the algorithms lies
between log(n) � 1 and n, as expected. The min-
imal size is always larger than the theoretical lower
bound of log(n) � 1, for two reasons:

● The networks are not very dense; since each node
is linked to four other nodes, the number of edges
increases only linearly with network size. Thus
many probe paths are simply not possible.

● Since the probes follow the least-cost path from
probe station to node, the probe paths tend to be
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short, passing through few nodes, resulting in a re-
duction of opportunities for exploiting interactions
between probe paths.

The results also show that the approximation algo-
rithms perform well. The size of the probe set is much
closer to the true minimum than to the upper bound.
Figure 3 also illustrates the performance of these al-
gorithms on larger networks for which exhaustive
searching is not feasible. The quadratic-time algo-
rithm slightly outperforms the linear-time algorithm,
but its computational cost is higher. An alternative
approach is to run the linear-time algorithm many
times with different initial orderings and take the best
result.

Probabilistic diagnosis

In this section we assume that a set of probes has
already been constructed and focus on using it for
fault diagnosis. Until now, we have assumed that the
probe signal is received correctly; no data in the net-
work are lost or spuriously altered. If network er-
rors are possible, we require that the distance be-
tween probe signals (the codebook “radius” in the
terminology of Kliger et al. 6) is larger than a single
bit, thereby providing robustness to noise and lost
packets. Dynamic network routing is another source
of uncertainty, since the path probes through the net-
work may not be known accurately. Other changes
to the network may occur; for example, nodes and

links are continually being added, removed, and re-
configured. For these reasons the dependency ma-
trix may need to be regularly updated. Another ap-
proach is to include the uncertainties in the model
itself. We will next show how the dependency ma-
trix can be naturally extended to a Bayesian network
that encodes probabilistic dependencies between the
possible faults in the network (causes) and the probe
outcomes (symptoms).

A noisy-AND Bayesian network for fault diagnosis.
As before, we consider a simplified model of a com-
puter network where each node (router, server, or
workstation) can be in one of two states, 0 (fault)
or 1 (no fault). To avoid confusion with the previ-
ous section, we change notation slightly: the states
of the network elements are denoted by a vector
X � (X1 , . . . , Xn) of n unobserved Boolean vari-
ables. Each probe, or test, Tj , originates at a par-
ticular node (probing workstation) and goes to some
destination node (server or router). A vector T �
(T1, . . . , Tm) of observed Boolean variables denotes
the outcomes (0 � failure, 1 � OK) of m probes.
Lowercase letters, such as x i and t j , denote the val-
ues of the corresponding variables, i.e., x � ( x1, . . . ,
xn) denotes a particular assignment of node states,
and t � (t1 , . . . , tm) denotes a particular outcome
of m probes.

We assume that the probe outcome is affected by all
nodes on its path, and that node failures are mar-

logn +1
Exhaustive Search 
(True Minimum)
QuadraticApprox
LinearApprox
NetworkSize

logn +1
Three Probe Stations 
Two Probe Stations
One Probe Station
NetworkSize

Figure 3 Algorithms for computing probe sets: (A) True minimum and two approximation algorithms on small networks; 
 (B) the approximation algorithms on large networks
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ginally independent. These assumptions yield a
causal structure depicted by a two-layer Bayesian net-
work, such as the one in Figure 1B. Let pa(T1) de-
note the set of parents of Ti , that is, the nodes point-
ing to Ti in the directed graph (the nodes on the
probe path). The joint probability P(x, t) for such
a network can then be written as follows:

P�x, t� � �
i�1

n

P� xi� �
j�1

m

P�tj�pa�tj�� (1)

where P(t j �pa(t j)) is the conditional probability dis-
tribution (CPD) of node Ti given the set of its par-
ents, and P( x i) is the prior probability that Xi � x i

before any probes have been sent.

In general, a CPD defined on binary variables is rep-
resented as a k-dimensional table where k � �Pa(t j)�.
Thus, just the specification complexity is O(2 k) which
is very inefficient, if not intractable, in large networks
with a long probe path (i.e., large parent set). It seems
reasonable to assume that each element on the path
of the probe affects the outcome of the probe inde-
pendently (the assumption known as causal indepen-
dence10). For example, in the absence of uncertainty,
a probe fails if and only if at least one node on its
path fails, i.e., Ti � Xi1

	 . . . 	 Xik
, where 	 de-

notes logical AND, and Xi1
, . . . , Xik

are all the nodes
probe Ti goes through. Therefore, once it is known
that some Xij

� 0, the probe fails independently
of the values of other components. In practice, how-
ever, this relationship may be disturbed by “noise.”
For example, a probe can fail even though all nodes
it goes through are fully operational (e.g., if network
performance degradation leads to high response
times interpreted as a failure). Vice versa, there is
a chance the probe succeeds even if a node on its
path has failed, e.g., because of a routing change.
Such uncertainties yield a noisy-AND model that im-
plies that several causes (e.g., node failures) contrib-
ute independently to a common effect (probe fail-
ure) and is formally defined as follows:

P�t � 1�x1, . . . , xn� � �1 � l � �
xi�0

n

qi, and

P�t � 0�x1 � 1, . . . , xn � 1� � 1 � l (2)

where l is the leak probability that accounts for the
cases of a probe failing even when all the nodes on
its path are operational, and the link probabilities,

qi , account for the second kind of “noise” in the
noisy-AND relationship, namely, for cases when a
probe succeeds with a small probability qi even if
node Xi on its path fails.11,12

Once a Bayesian network is specified, the diagnosis
task can be formulated as finding the maximum prob-
able explanation (MPE), that is, a most likely assign-
ment to all nodes Xi given the probe outcomes,

x* � arg max
x

P�x�t� � arg max
x

P�x, t�

� max
x

�
j�1

n

P� xj� �
i�1

m

P�ti�pa�ti�� (3)

An alternative approach is to look for the most likely
value x*i of each node Xi separately, namely, to con-
struct a diagnosis x� � ( x�1 , . . . , x�n), where x�i �
arg maxxi

P( x i �t), i � 1, . . . , n. Computing x� is
sometimes easier than finding the MPE, but gener-
ally, x* 	 x�.

When there is no noise in noisy-AND (i.e., leak and
link probabilities are zero), the CPDs become deter-
ministic, that is, each probe outcome Ti � t i imposes
a constraint t i � x i1

	 . . . 	 x ik
on the values of its

parent nodes Xi1
, . . . , Xik

. Now, finding the MPE can
be viewed as a constrained optimization problem of
finding x* � arg maxx1 ,. . ., xn


 j�1
n P( xj) subject to those

constraints. Clearly, the quality of diagnosis depends
on the set of probes: in general, the only way to guar-
antee the correct diagnosis is to have a constraint
set with a unique solution. This guarantee can only
be achieved for m � n, since 2 m probe outcomes
must “code” uniquely for 2 n node state assignments.
Earlier we explored the single fault case and showed
how considerable savings could be achieved in this
case.

Accuracy of diagnosis. In this subsection, we derive
a lower bound on the MPE diagnosis error. The MPE
error, or loss, LM , is the probability that the MPE di-
agnosis X* differs from the true state X (by at least
one bit). Given particular values T � t, X � x, and
diagnosis X* � x*, we have P(x 	 x*�t) � I x	x*�t
where I s is the indicator function, I s � 1 if s � true
and I s � 0 otherwise. Then the MPE error is

LM � P�X � X*�T� � Ex,t Ix	x*�t

� Et�1 � P�x*�t�� � 1 � �
t

P�x*, t� (4)
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where x* is an MPE assignment, and Ez denotes ex-
pectation over z. Similarly, we can define the bit er-
ror, or bit loss, Lb � P(Xi 	 X*i �T). (Clearly, the
MPE error is generally higher than the bit error.)

In the following, we assume that the priors—the prior
probability of node failure before sending any
probes—are the same for all nodes, that is, P(Xi �
0) � p for all i � 1, . . . , n; without loss of gen-
erality, we also assume p � 0.5. Then

P�x*, t� � max
x

�
j�1

n

P� xj� �
i�1

m

P�ti�pa�ti��

� �1 � p� n �
i�1

m

max
x

P�ti�pa�ti�� (5)

The noisy-AND definition (Expression 2) and the fact
that 0 � qi � 1 yield maxx P(t i � 1�pa(t i)) � 1 �
li, and maxx P(ti � 0�pa(ti)) � 1 � minx P(ti � 1�pa
(ti)) � 1 � (1 � li) 
xj�pa(ti)

n qj. Substitution of these
two expressions in Expression 5 yields

P�x*, t� � �1 � p� n �
ti�1

�1 � li� �
ti�0

� �1 � �1 � li� �
xj�pa�ti�

n

qj� (6)

In order to further simplify the derivation, we as-
sume equal leak probabilities, l i � l for i � 1, . . . ,
m, equal link probabilities qj � q for j � 1, . . . ,
n, and equal parent set size (or probe route length)
�pa(t i)� � r. Using the notation Pk(x*, t) instead of
P(x*, t) where k is the number of t i � 1 in t, we can
write Expression 6 as Pk(x*, t) � (1 � p) n� k(1 �
�q r) m�k � (1 � p) n� k� m�k , where � � 1 � l and
� � 1 � �q r . Since there are (k

m) vectors t having
exactly k positive components t i , we obtain

�
t

P�x*, t� � �1 � p� n �
k�0

m �m
k � � k� m�k

� �1 � p� n�� � �� m (7)

Since � � � � (1 � l )(1 � q r) � 1, we finally
obtain a lower bound on MPE error LM:

LM � 1 � �
t

P�x*, t� � 1 � �1 � p� n

��1 � l ��1 � q r� � 1� m � LM (8)

Note that in the absence of noise (l � 0 and q �
0), we obtain LM � 1 � (1 � p) n2 m . Thus, for uni-
form fault priors, p � 0.5, an error-free MPE diag-
nosis is only possible if n � m, as we noted before;
however, for smaller p, zero error can be achieved
with a smaller number of probes. Namely, solving
LM � 0 for m yields the necessary condition for zero
lower bound, m � �n[log(1 � p)/log(1 � (1 �
l )(1 � q r))], plotted in Figure 4A as a function of
p. Generally, solving LM � 0 for m provides a way
of specifying the minimum necessary number of
probes that yield zero lower bound for specified val-
ues of other parameters.13

Also, from Expression 8 we can see that the lower
bound on the MPE diagnosis error is a monotone
function of each parameter, n, m, p, l, q, or r, given
that other parameters are fixed. Namely, the error
(bound) increases with an increasing number of
nodes n, fault probability p, leak probability l, and
link probability q, but decreases with an increasing
number of probes m and probe route length r, which
agrees with one’s intuition that having more nodes
on the path of a probe, as well as a larger number
of probes, provides more information about the true
node states. For example, the sensitivity of the error
bound to noise is illustrated in Figure 4B: note a rel-
atively sharp transition from zero to 100 percent er-
ror with increasing noise; sharpness increases with
increasing m and r.

Computational complexity of diagnosis and MPE
approximations. Let us first consider the complex-
ity of diagnosis in the absence of noise. Finding the
most likely diagnosis reduces to constraint satisfac-
tion in two cases. The first case is when the probe
constraints allow exactly one solution (an assignment
x simultaneously satisfying all constraints). The sec-
ond case corresponds to uniform priors P( xi), which
yield uniform posterior probability P(x�t). Therefore,
any assignment x consistent with probe constraints
is an MPE solution. Although constraint satisfaction
is generally NP-hard, the particular problem induced
by probing constraints can be solved in O(n) time
as follows.

Each successful probe yields a constraint xi1
	 . . . 	

x ik
� 1 that implies x i � 1 for any node Xi on its

path; the rest of the nodes are only included in con-
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straints of the form x i1
	 . . . 	 x ik

� 0, or equiv-
alently, ¬ x i1


 . . . 
 ¬ x ik
� 1 imposed by failed

probes. Thus, an O(n)-time algorithm assigns 1 to
every node appearing on the path of a successful
probe, and 0 to the rest of the nodes. This is equiv-
alent to unit propagation in Horn theories, which are
propositional theories defined as a conjunction of
clauses, or disjuncts, where each disjunct includes
no more than one positive literal. It is easy to see
that probe constraints yield a Horn theory and thus
can be solved by unit propagation in linear time.
Therefore, finding the MPE diagnosis takes O(n) time
when it is equivalent to constraint satisfaction in the
absence of noise, as in cases of uniform priors or
unique diagnosis. In general, however, even in the
absence of noise, finding the MPE is an NP-hard con-
strained optimization problem with worst-case com-
plexity O(exp(n)).

Similarly, in the presence of noise, finding the MPE
solution in a Bayesian network has complexity
O(exp(w*)), where w* is the induced width of the
network,14 that is, the size of the largest clique cre-
ated by an exact inference algorithm, such as vari-
able elimination. It is easy to show that w* � k,
where k is the maximum number of parents of a
probe node, and w* � n in the worst case.15,16

Thus, we focused on approximating MPE and stud-
ied empirically the algorithm approx � mpe(i) (with

i � 1, to be precise), which belongs to a family of
the mini-bucket approximations for general con-
strained optimization, and particularly, for finding
MPE.17–19 The idea of the mini-bucket approxima-
tion20,21 is to compute an upper bound on MPE �
maxx 
 i P( x i �pai) � 
 i maxxi ,pai

P( x i �pai) � U and
a lower bound L as a probability of an assignment
x computed in a particular way, similarly to finding
a solution to a constraint satisfaction problem after
partial constraint propagation. Indeed, in the deter-
ministic case, the approx � mpe(1) scheme is equiv-
alent to arc-consistency in a constraint network, or
unit propagation in propositional satisfiability19 (in-
creasing the parameter i corresponds to a more
“coarse” partitioning of P( x i �pai) into subproducts
before maximization, e.g., i � n yields the exact MPE
computation).

We tested approx � mpe(1) on networks constructed
in a way that guarantees the unique diagnosis in the
absence of noise. (Particularly, besides m probes
each having r randomly selected parents, we also gen-
erated n additional probes each having exactly one
parent node, so that all Xi nodes are tested direct-
ly.) Since approx � mpe(1) is equivalent to unit prop-
agation in the absence of noise, its diagnosis coin-
cides with the MPE. Adding noise in the form of link
probability q caused “graceful degradation” of the
approximation quality, as shown in Figure 5A, which
plots the fraction of cases when the ratio L/MPE

Figure 4 (A) Minimum number of probes to guarantee zero error bound versus fault prior p; (B) lower bound on MPE error
 versus link probability q (“noise”)
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was within the interval [1 � e, 1] for small values
of e, that is, where the approximation quality is mea-
sured as P(L/MPE) � 1 � e for e � 0.01 and e �
0.1. The quality is higher when the noise is smaller
and when the probe path is longer (r � 8 vs r � 4).
This resulted in a diagnosis error very close to the
error obtained by exact diagnosis, both for MPE er-
ror and bit error (Figure 5B).

Also, as demonstrated in Figures 6A and B, there
is a clear positive correlation between MPE value and
approximation quality measured both as L/MPE
(Figure 6A) and U/L (Figure 6A). There is also an
interesting threshold phenomenon: the approxima-
tion quality suddenly increases to practically perfect
(L/MPE � 1) once the MPE reaches a certain thresh-
old value determined by the network parameters m,
n, and r. The results are summarized for 30 “signals”
per network, 30 random networks with n � 15 nodes,
n � n probes, r � 8 parents per probe, leak l � 0
and varying link q (“noise”) from 0.005 to 0.64. Fig-
ure 6A shows a sharp transition in approximation
quality for MPE � 2e � 6; similar results observed
for other networks, where the “transition point” is
determined by parameters n, m and p. Figure 6B
shows that the lower bound L is often more accu-
rate than the upper bound U (U/L is far from 1 when
L/MPE is near 1).

Related work

The problem of fault diagnosis in a system of inter-
connected components dates back to the papers in
References 22 and 23. Since that time a large body
of literature has developed.24 In contrast with that
work, in our case it is not possible for every node in
the network to be used to test other nodes—only a
small number of nodes can be used as probe stations
to generate the tests. As a result of this limitation,
the probing problem becomes a “constrained-cod-
ing” problem, as explained above.

The formulation of problem diagnosis as a “decod-
ing” problem, where “problem events” are decoded
from “symptom events,” was first proposed by Kliger
et al.6 In our framework, the result of a probe con-
stitutes a “symptom event,” whereas a node failure
is a “problem event.” However, beyond this concep-
tual similarity the two approaches are quite differ-
ent. The major difference is that we use an active
probing approach versus a “passive” analysis of
symptom events: namely Kliger et al.6 select code-
books (a combination of symptoms encoding par-
ticular problems) from a specified set of symptoms,
and we actively construct those symptoms (probes),
a much more flexible approach. Another important
difference is that Kliger et al.6 lack a detailed dis-

Figure 5 (A) “Graceful degradation” of MPE approximation quality with noise; (B) MPE diagnosis error and bit diagnosis error
 for both exact and approximate diagnosis
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cussion of efficient algorithms for constructing
optimal codebooks; they mention only a greedy
pruning algorithm. For more detail on event corre-
lation see also Leinwand and Fang-Conroy25 and
Gruschke.26

Other approaches to fault diagnosis in communica-
tion networks and distributed computer systems have
been presented during the past decade, including
Bayesian networks27 and other probabilistic depen-
dency models.28 Another approach is statistical learn-
ing to detect deviations from the normal behavior
of the network.29

In Huard and Lazar,27 a decision-theoretic approach
using Bayesian networks is presented. The goal is to
find the minimum-cost diagnosis of problems occur-
ring in a network. Dependencies between a prob-
lem and its possible causes and symptoms are rep-
resented using Bayesian networks, which are
manually constructed for each problem, and prob-
abilities are assigned using expert knowledge. The
goal is to minimize the total cost of tests needed to
diagnose a fault; a single fault at a time is assumed.
This approach may become intractable in large net-
works because of the NP-hardness of inference in
Bayesian networks; also, considering more than one

Figure 6 Approximation  quality of algorithm approx - mpe(1) tends to be higher for higher MPE: (A) L/MPE versus MPE
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fault at a time leads to an exponential increase in
complexity. Therefore, approximation methods as
proposed in this paper will be needed in practical
applications that involve a large number of depen-
dent components.

The approach in Katzela and Schwartz28 uses a graph
model in which the prior and conditional probabil-
ities of node failure are given and the objective is
to find the most likely explanation of a collection of
alarms. It is shown that the problem is NP-hard, and
a polynomial-time approximation algorithm is giv-
en; the performance of this algorithm can be im-
proved by assuming that the probabilities of node
failure are independent of one another.

However, to the best of our knowledge, none of those
previous works includes an active approach to probe
set selection, which allows us to control the quality
of diagnosis. Also, they lack a systematic study of
diagnosis with a focus on using probes, which would
include theoretical bounds on the diagnostic error,
asymptotic behavior of diagnosis quality, and a sys-
tematic study of the quality of approximate solutions,
as presented herein.

Conclusions

Using probing technology for the purposes of fault
diagnosis in distributed computer systems requires
that the number of probes be kept small, in order
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to control network load and data storage costs. In
this paper we have proposed a framework in which
this can be done by exploiting interactions among
the paths traversed by the probes. However, finding
the smallest number of probes that can diagnose a
particular set of problems is computationally expen-
sive for large networks. We have shown that approx-
imation algorithms can be used to find small probe
sets that are very close to the optimal size and still
suffice for problem diagnosis. These approximation
algorithms enable system managers to select their
own trade-off between the computational cost and
probe set size needed for effective fault localization.
Probing provides a flexible approach to fault local-
ization because of the control that can be exercised
in the process of probe selection.

Next, we extended the deterministic framework to
a probabilistic one in order to handle uncertainties.
We use a Bayesian network approach and investi-
gate the accuracy versus efficiency trade-off when
using approximate diagnostic techniques instead of
exact ones, since the latter are often intractable
for large networks. An empirical study of a local-in-
ference approximation scheme demonstrates the
promise of using such approximations for network
diagnosis: the approximation quality “degrades
gracefully” with increasing uncertainty (“noise lev-
el”) and increases with the increasing quality of the
probe set, which is measured by the information gain
it provides about the unknown variables.

Finally, we are planning to pursue several directions
for future work:

● Efficient search algorithms for finding a probe set
able to diagnose an arbitrary combination of faults,
in other words, an algorithm for constructing a set
of constraints (probes) over the set of variables
(node states) so that the number of possible so-
lutions (diagnoses) to the resulting constraint-sat-
isfaction problem are minimized (can also be
viewed as constructing a good “code”)

● Probe selection in the presence of uncertainty
● Adaptive probing, that is, adjusting the probe set

dynamically in response to the state of the network
● Handling temporal information, such as changes

in the state of the network (thus, changing probe
results), and nonstationarities in the network sta-
tistics. The latter would require tuning the model,
that is, on-line learning, which can also be done
actively by using probe selection to improve learn-
ing (e.g., only update the part of the model that
is currently relevant).
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