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Automatic generation of test programs plays
a major role in the verification of modern
processors and hardware systems. In this
paper, we formulate the generation of test
programs as a constraint satisfaction
problem and develop techniques for
dealing with the challenges we face, most
notably: huge variable domains (e.g.,
magnitude of 264) and the need to randomly
generate “well distributed” samplings of the
solution space. We describe several
applications of our method, which include
specific test generators targeted at various
parts of a design or stages of the verification
process.

Functional verification is widely acknowledged as the
bottleneck of the hardware design cycle.1 Because
simulation is the main vehicle for the functional ver-
ification of large and complex designs, stimuli gen-
eration for simulation plays a central role in this field.
The IBM Haifa Research Laboratory (HRL) has been
developing methodology and tools for stimuli gen-
eration for more than a decade. These tools aim at
designs that are driven by complex micro-architec-
tures, that support rich interface semantics, and that
range from processor subunits to large multiproces-
sor systems.

The generated stimuli, usually in the form of test pro-
grams, are designed to trigger architecture and mi-
cro-architecture events defined by a verification
plan.2 The input for a test program generator is a
specification of a test template. An example of such
a test template would be a set of tests that exercise

the data cache of the processor and that are formed
by a series of double-word store and load instruc-
tions. The generator produces a large number of dis-
tinct well-distributed test program instances that
comply with the user’s specification. The variation
among different instances is achieved through a large
number of random decisions made during the gen-
eration process. In addition, generated test programs
must meet two inherent requirements: (1) tests must
be valid, that is, their behavior should be well de-
fined by the specification of the verified system; (2)
test programs should also be of high quality, in the
sense that they should expand the coverage of the
verified system and focus on potential bugs.

Early tools developed at HRL demonstrated a biased
pseudorandom dynamic generation scheme, coupled
with a traditional expert system paradigm.3 Evolu-
tion of the tools led to the model-based test gener-
ation scheme,4 where a generator is partitioned into
a generic, system-independent engine and a model
that describes the verified system. In recent years,
technology has shifted toward constraint-based for-
mulations of the generation task and generation
schemes driven by solving constraint satisfaction
problems (CSPs).5

A constraint satisfaction problem consists of a finite
set of variables and a set of constraints. Each vari-
able is associated with a set of possible values, known
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as its domain. A constraint is a relation defined on
some subset of these variables and denotes valid
combinations of their values. A solution to a con-
straint satisfaction problem is an assignment of a
value to each variable from its domain, such that all
the constraints are satisfied. A constraint network is
a hyper-graph whose nodes are the variables of a CSP
and whose hyper-edges (“arcs”) represent con-
straints; the members of an arc are those variables
that appear in the constraint it represents.

Validity, quality, and test specification requirements
are naturally modeled through constraints. As an ex-
ample of a validity constraint, consider the case of
a translation table RA � trans(EA), where EA
stands for the effective address and RA stands for
the real (physical) address. A quality constraint may
require, for example, that several load and store in-
structions access the same cache line, thus causing
contention on resources shared between different
processors. For CSP to drive test program genera-
tion, the program, or its building blocks, should be
modeled as constraint networks. A random test pro-
gram generator can, therefore, be viewed as a CSP
solver. It constructs a CSP from the user requirements
and the system model, and produces a large number
of distinct program instances that satisfy the con-
straints.

Constraint satisfaction problems that represent test
programs share several characteristics. Test program
generation requires random, well-distributed solu-
tions over the solution space,2 as opposed to the tra-
ditional requirement of reaching a single solution,
all solutions, or a “best” solution.5 Huge domains
are the result of large address spaces in modern ar-
chitectures. The combination of huge domains (e.g.,
264 values), linear constraints (e.g., a � b � c) and
nonlinear nonmonotonic constraints (e.g., A � B Q
C, where A, B, and C are bit vectors, and Q is the
bit-wise xor operation) make storing and operating
on these domains a difficult task. Other character-
istics include a hierarchy of hard and soft constraints6

and dynamic modeling7 (i.e., new variables being
“born” when values are assigned to other variables).

Maintaining Arc Consistency (MAC)8 is a commonly
used family of CSP solution algorithms. Arc consis-
tency is a strong filtering (pruning) component, which
allows MAC to operate well on problems with large
search space. Most of our tools use refinements and
variations of this scheme. We use AC-39 to achieve
arc consistency because of its relative simplicity and
because it is less affected by the domain sizes than

other arc consistency algorithms. In some of our ap-
plications, we break a single, large problem, into a
set of smaller loosely connected ones, and solve them
separately.

We use a common set of algorithmic and modeling
aids developed at HRL, known as the Generation
Core toolbox. These include: (1) a mechanism for
automatic construction of procedures that achieves
consistency over single arcs/constraints; (2) a library
of data structures for set representation, used to rep-
resent and perform various operations on variable
domains.

We apply these tools to four different random test
program generators, all based on CSP techniques. FP-
Gen is oriented toward floating point unit verifica-
tion; Piparazzi is a micro-architecture test genera-
tor; Genesys-Pro is aimed at the architectural level;
and X-Gen is oriented toward the verification of an
entire system.

IBM, as well as other micro-processor manufactures
(AMD, STMicroelectronics, Transmeta Corporation),
have gathered extensive experience using test gen-
erators developed by HRL for numerous processors
and systems. This experience shows that CSP-based
generators allow a compact and natural description
of the verified systems and the required set of tests.
Additionally, when the verified system is modified,
the CSP-based generators can easily be updated. Fi-
nally, these tools achieve high coverage of the ver-
ified systems, often reaching cases that are less likely
to be generated with other technologies.

The rest of the paper is structured as follows. In the
section that follows, we describe related work and
alternatives to CSP. Then we discuss the character-
istics of CSP induced by the field of random test pro-
gram generation. In the section that follows, we fo-
cus on the techniques we use for formulating the CSP
and for providing solutions to it. We then describe
several applications of our method, which include
specific test generators targeted at various parts of
a design, or stages of the verification process. The
last section contains our concluding remarks.

Related work and alternatives to CSP

To date, there is no published work in the field of
stimuli generation and test program generation that
models the complete problem as a CSP, or that uses
a CSP framework during the generation process. Ref-
erence 10 presents the results of extensive research
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and practice using the technique of input vector gen-
eration for production testing, a field known as Au-
tomatic Test Pattern Generation (ATPG). Traditional
ATPG deals with the propagation of gate-level sig-
nals and not with high-level behavior scenarios. Sim-
ilar techniques, however, may be used to explore ex-
ecution paths at a somewhat higher abstraction
level.11 The method involves reducing the number
of equations and variables through algebraic manip-
ulation. In the context of test program generation,
Reference 12 presents a primitive grammar for con-
straint expressions. The expressive power of the
grammar, however, is limited, and the solution
scheme deals only with unary constraints. Another
test generation technology that deploys a specialized,
nongeneric scheme is described in Reference 13. In
Reference 14, the power of a general CSP framework
is illustrated for the specific subdomain of address
handling, where a MAC scheme is deployed to solve
constraint-expressions in the service of a test pro-
gram generator.

In addition to CSP, there are several methods that
restrict the values assigned to a set of variables. Of
these, linear programming,15 SAT,16 and Planning17

are probably the most widely known. We believe CSP
best suits the needs of random test program gener-
ation because, when compared to other methods, it
imposes few restrictions on the type of variables and
constraints.

Representing a test program as a SAT16 problem is
unnatural because of the large domains and the type
of constraints involved. Still, we believe further re-
search is required regarding the issue of conversion
from random test generation CSPs to SAT.18 Integer
linear programming,15 as its name implies, can nat-
urally handle linear constraints, but dealing with
other types of constraints, which are common in the
domain of test generation, requires greater effort.
Planning17 is usually defined as the task of finding
a series of actions that lead from a given initial state
to a final goal state. Modeling and generating of test
programs using planning techniques suffers from two
main drawbacks. First, the vast majority of test pro-
gram specifications do not include a goal state re-
quirement. Second, most of the actions (operators)
available for a complex hardware design (e.g., ma-
chine instructions in the design of processors) mod-
ify broad aspects of the verified system’s state. Plan-
ning techniques are better suited for problems in
which each operator modifies a small set of the sys-
tem’s properties.

Characteristics of CSP for test generation

In this section we describe a number of properties
of the CSP technique. We show that some of these
properties, particular to test program generation,
raise special challenges.

Well-distributed random sampling of the solution
space. The number of possible bugs in a system, and
thus the number of possible scenarios that can lead
to their discovery, is huge. It is impossible to exactly
specify all the test programs that are needed for full
coverage, and even harder to generate all the tests.
This means that users of test program generators in-
tentionally underspecify the test requirements and
expect the test generators to fill in the gaps between
the specification and the required tests. In other
words, a test generator is required to explore the un-
specified space and to help find the bugs for which
the user is not directly looking.19

There are two ways to explore the unspecified space,
systematically or randomly. A systematic approach
has several drawbacks that make it impractical: good
systematic exploration is possible only if the explored
space is small or well-understood. Otherwise, any sys-
tematic exploration can cover only a small and un-
representative subspace. In our case, the space to
be explored is huge and a good systematic explora-
tion requires a thorough understanding of the un-
specified space—something we do not usually have.

Therefore, the best way to cover the unspecified
space is to generate pseudorandom tests. That is,
tests that satisfy user requirements and at the same
time uniformly sample the derived test space.4 How-
ever, finding a uniformly distributed random solu-
tion is equivalent to counting the number of possi-
ble solutions to the underlying CSP, which is known
to be a hard problem.20

Large variable domains. Modeling random test gen-
eration as a CSP requires modeling architectural and
micro-architectural resources and their content as
CSP variables. These resources include registers,
memory cells, and cache lines. In modern proces-
sors, these resources can take a very large number
of values (e.g., 264 for a 64-bit wide register). Con-
sequently, CSP variables that represent these re-
sources have very large domains.

These domains raise significant challenges in the rep-
resentation and the solution of such problems. Ob-
viously, it is impossible to explicitly represent a set
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with cardinality of 264. Explicit representation of con-
straints over variables with large domains is also
problematic, and as in the case of variables, the con-
straints have to be represented implicitly. Moreover,
large domains make conversion of n-ary constraints
to binary constraints impractical. Finally, the size of
these domains and the way in which they are rep-
resented can make the uniform selection of values
difficult. For example, uniform selection of a value
from a Disjunctive Normal Form (DNF) represen-
tation of a set (see the subsection “Set representa-
tion,” later) requires that the clauses be disjoint, but
then converting to disjoint clauses can increase their
number exponentially.

Dynamic modeling of CSPs. The traditional defi-
nition of a constraint satisfaction problem contains
a fixed, predefined set of variables. Many real-world
problems, however, are hard to model this way, be-
cause the structure of the problem often depends
on the values assigned to variables.7 Random test
generation problems modeled as CSPs often include
dynamic modeling aspects. Consider, at the system
level, variables representing attributes of compo-
nents participating in a certain transaction. The iden-
tity of these components may depend on the values
assigned to some of the variables. For example, con-
sider a case where an access to an odd address is
routed through component A, whereas an access to
an even address is routed through component B.

Constraint network topology. A test program is typ-
ically comprised of a series of transactions—instruc-
tions at the processor level and interactions at the
system level. Many of the variables in a CSP model
of a test program represent attributes of transactions.
In many cases, there is a large number of constraints
among variables of the same transaction, whereas
constraints among different transactions are sparse.
The resulting constraint network comprises a large
number of small, dense clusters, where each cluster
represents a single transaction.

The term global constraints21 is used to describe con-
straints that affect a large portion of the variables in
a CSP. In spite of the clustered nature of CSPs that
represent test programs, such CSPs often include con-
straints that affect variables from a large number of
clusters. These constraints can be viewed as global
constraints. For example, all the load and store in-
structions in a test are affected by a single constraint:
any two load instructions that retrieve data from the
same memory location must read the same value,

unless a third store instruction between them mod-
ifies it.

Constraint hierarchy. As input, test generators ac-
cept a specification of a test template, as well as va-
lidity and quality requirements derived from the
model of the verified system. For a test to be valid,
its behavior should be well defined by the specifi-
cation of the verified system. The simulation envi-
ronment often imposes additional validity restrictions
on tests. For example, it may require that all re-
sources used by the test program are initialized. The
two layers of requirements—validity and quality—
derive two types of constraints: validity constraints
are always mandatory, while quality constraints are
not. Quite often, quality constraints contradict each
other. Consider the case of a floating point add in-
struction fadd c 4 a, b, where a, b, and c are uni-
formly chosen from the set of possible inputs. The
probability of hitting the corner cases of a � b �
0, a � b � �� or a � b � �� is extremely low.22

A CSP model of the fadd instruction would thus in-
clude three contradicting “soft” quality constraints
that aim at these cases.

Extensive research was done regarding constraint
systems in which not all the constraints are manda-
tory.6 The term constraint hierarchy is often used to
describe a list of sets C0 , . . . , Cn of constraints,
where (A) the constraints in C0 are mandatory, while
the remaining constraints are “soft”; (B) all the con-
straints within a given set Ci are of equal strength;
(C) constraints at a given level Ci completely dom-
inate those at weaker levels. Given two solutions to
a hierarchy of constraints, Borning et al.6 defined
several solution comparators, used to determine
which of the two solutions is “better.” A solution to
the complete CSP is a maximum over all solutions,
according to the partial order imposed by the com-
parator. We found the locally predicate better com-
parator useful for the domain of random test pro-
gram generation. This comparator denotes that a
solution x is better than y, if and only if it satisfies
each constraint that y does at each level through
some level k, and at least one additional constraint
at level k.

Nonlinearity. Many of the constraints in a CSP that
represents a test program have a nonlinear nature.
Common examples include translation tables, bit-
wise operators, and disjunctive constraints. A trans-
lation table is typically a large array of arbitrary en-
tries that is used to transform an input value to an
output value (e.g., an effective address to a physical
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address). Bit-wise operators, such as xor and and arise
from the corresponding instructions implemented by
most processors. An example for a disjunctive con-
straint can be found in the dependency concept,
where an instruction x depends on another instruc-
tion y if either of its registers was used by y.

Directional constraints. A constraint, as previously
mentioned, is a relation over the Cartesian product
of the domain of its variables. In the random test
generation world, we often face directional con-
straints. Given one subset of the constraint’s vari-
ables, it is computationally easy to calculate match-
ing values for the other variables. However, given a
different subset of the constraint’s variables, calcu-
lating values for the remaining variables is either
computationally or technically difficult. A constraint
involving a memory address, a number of bytes, and
the corresponding data illustrates the issue of direc-
tionality. Given the address and the number of bytes,
finding the corresponding data is easy. Going in the
other direction, from the data to the address, requires
a search of a very large space.

Solution techniques

To face the challenges that arise from the charac-
teristics just described, we developed a set of solu-
tion techniques especially suited for the random test
program generation domain. Some of these tech-
niques are adaptations of well-known algorithms
(e.g., the MAC scheme). In this section, we first
present a modeling scheme and environment, then
we review the MAC algorithm, and finally we describe
aids for data and constraint representation used to
enable efficient deployment of these algorithms. To-
gether, these tools and techniques constitute an ef-
ficient solution scheme for the vast majority of prob-
lems tackled by our test generators.

Modeling. When using the CSP for random test pro-
gram generation, the first step is formulating the sys-
tem and the test requirements as a CSP. This section
presents two aspects of a formulation (modeling)
methodology. First, we discuss how a CSP represent-
ing a test program can be partitioned into multiple
subproblems to efficiently cope with large CSPs. Then
we describe how these subproblems can be modeled
using common building blocks and object-based tech-
niques, thus reducing the amount of human effort
involved in the modeling process.

Partitioning and abstraction. In some of our random
test program generators, we chose to break up the

problem of generating a single test program into a
series of loosely connected subproblems. Modeling
these subproblems is easier than modeling a single
large problem, and solving them is computationally
easier than solving the entire problem. We choose
the subproblems to correspond to a single transac-
tion: for processor architectural test generation, an
instruction, and for an entire system, an interaction.
We choose to partition the problem at this level for
the following reasons:

● The “density” of constraints within a transaction
(instruction or interaction) is much greater than
the density of constraints involving different trans-
actions (see the section “Constraint network to-
pology”).

● After every transaction, the system or processor
goes through a complex stage of state update. An
addRc4 Ra , Rb instruction, for example, updates
the value of the register Rc and several other con-
dition registers. As a result, modeling an Execute
constraint becomes a complex task. It is much eas-
ier to solve the CSP that represents a single instruc-
tion, and then compute the next state of the sys-
tem based on the singleton assignments associated
with each relevant resource.

● The representation of a test program as a single
CSP imposes a significant restriction on program
length. Assuming CSP solution engines are limited
in the number of variables, the larger the test pro-
gram, the more difficult it is to treat a test program
as a single CSP. For this reason, test program gen-
erators that represent the entire program as a sin-
gle CSP usually generate shorter tests.

In certain applications, the CSP induced by a single
transaction is still too large or complex to solve in
a single step. This is primarily due to the highly dy-
namic nature of the constraint network that repre-
sents a transaction. Therefore, we add another axis
of partition and generate every transaction in two
steps. First, we solve a CSP that determines the struc-
ture of the transaction, thus eliminating most of its
dynamic aspects. Only then do we construct a more
detailed CSP and solve it. This approach can be
viewed as a form of CSP abstraction, a known method
in the literature.23

The partitioning approach runs into difficulties when
dealing with interdependencies between the sub-
problems. These interdependencies typically arise
when it is necessary to generate architectural and
micro-architectural events that involve a large num-
ber of transactions. An event in which an instruc-
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tion causes an exception that stops the execution of
all other instructions currently executing is such a
case. Solving the test program CSP sequentially, and
ignoring constraints imposed by later instructions,
may cause the generation to fail. A simple solution
is to perform backtrack and return to the beginning
of the current section of the test. However, this ap-
proach often fails when the problem is tightly con-
strained.

A better solution is to propagate the constraints im-
posed by later transactions to earlier transactions.
We perform this by constructing a high-level inter-
transaction CSP that includes constraints among
transactions and the variables they affect directly. It-
eratively, before every transaction is generated, we
reach arc-consistency over the high-level network.
The domains of the CSP variables in the currently
generated transaction that are shared by the high-
level network are then reduced accordingly. After
the transaction is generated, the corresponding var-
iables in the high-level CSP are reduced to the single
values of the transaction solution.

When generating a single transaction at a time, ev-
ery transaction must be aware of the decisions made
for previous ones. If, for example, register R1 con-
tains the value 0x1234 as a result of the first instruc-
tion, the CSP model of the second instruction must
represent this fact. The large number of registers in
a processor and, moreover, the huge number of
memory addresses, rules out a CSP model in which
every register and every memory cell has a corre-
sponding CSP variable. Instead, we use global data
structures (a map or a hash table) to maintain the
values stored in registers and in memory at every
stage of generation. Some of the constraints in a
CSP transaction model can then use these data struc-
tures. For the above example, the constraint
synchronize register data uses the global struc-
ture and affects two variables: the register index,
which is in our case 1, and the number contained in
it, which is 0x1234.

Building blocks: Increasing modeling productively.
Identifying commonly used subproblems and defin-
ing them as building blocks has proved to be an effec-
tive way to simplify and accelerate the modeling pro-
cess. Building blocks are specific to the application
domain. While modeling the architectural structure
and semantics of processor instructions as CSPs, we
found operands to be useful building blocks. For ex-
ample, a Register-Operand is a sub-CSP defined over
the following variables: register-file (e.g., floating-

point, fixed-point, condition), register-id, contents, and
sense (which signifies whether the operand serves as
the input of the instruction or as its output). The in-
struction xor Rt 4 Ra, Rb calculates xor (the exclu-
sive or) of the contents of two registers of the same
register file (Ra and Rb) and stores the result in Rt.
The CSP model of the xor instruction uses three in-
stances of the Register-Operand building block.
Moreover, the model of almost every arithmetic and
logic instruction defined by the PowerPC*24 archi-
tecture may use the same building block.

Building blocks may also be used to construct other,
more complex building blocks. For example, a
Base-Index-Operand is a sub-CSP that specifies an op-
erand located in main memory. The address in mem-
ory is specified using two registers and is defined
to be the sum of their respective contents. A
Base-Index-Operand is defined over the following
variables: address, length, contents, and sense. It is also
defined over two instances of the Register-Operand
building block, named Base and Index. The follow-
ing constraint applies: address � Base.contents �
Index.contents.

To support efficient modeling, a building block
should capture a well-defined semantic entity. It
should also be possible to specify most of the rela-
tions between its variables independently of the CSP
that may host it as a building block. Subtle variations
may be applied to a building block by adding con-
straints at the usage environment.

We found that an object-based framework supports
the required encapsulation; Register-Operand and
Base-Index-Operand are both instances (member ob-
jects) of the class Operand. Every instance of the class
Instruction is an aggregate of instances of the class
Operand. A full-blown object-oriented framework
suggests additional important modeling capabilities:
Inheritance, for example, provides a powerful mech-
anism to construct building blocks that are variations
of existing building blocks. There has been some
work on object-oriented CSP modeling, for example
in Reference 25.

The MAC algorithm. CSP solution algorithms can be
roughly divided into two families: exhaustive search
and stochastic search. Stochastic search algorithms26

typically require a local heuristic to find solutions to
hard CSPs. We found it difficult to use these meth-
ods, because in our applications local heuristics are
often unknown.
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Most exhaustive CSP solution methods contain the
following four components: a filtering algorithm to
prune the search tree before or during the search;
a variable ordering algorithm to decide which vari-
able domain is to be reduced next; a value ordering

or domain reduction algorithm to decide which val-
ue(s) to examine next; a backtracking algorithm to
use when a dead end is reached. In general, strong
filtering mechanisms are better suited to problems
in which the search space is large.27 In such cases,
the overhead of the pruning action is smaller than
the cost of searching large branches without reach-
ing a solution. Maintaining Arc Consistency (MAC)8

is a family of CSP solution algorithms that use a pro-
cedure for achieving arc-consistency as its filtering
component. A constraint (arc) is said to be consis-
tent if, for any variable of the arc, and any value in
the domain of that variable, there is a valid assign-
ment to the other variables of the arc that satisfies
the constraint. A constraint network is said to be arc-
consistent if all of its constraints are locally consis-
tent. We use the term projection to refer to the pro-
cess of achieving consistency over a single constraint.
This process reduces the domains of affected var-
iables by removing values that cannot participate in
any solution. Following is an outline of the MAC al-
gorithm.

1. Achieve arc consistency over the network (e.g.,
execute AC-3)
a. If any of the domains becomes empty, back-

track
b. If all the domains are singletons—success

2. Choose a variable x
3. Choose a value v � Domain(x), and assign x4 v
4. Go to step 1

Most of our tools use refinements and variations on
the MAC scheme with random value ordering and,
in some cases, random variable ordering. We choose
MAC because its filtering component is relatively
strong—CSPs that represent test programs usually
have a very large search space, mostly due to the large
size of their domains. There are several known al-

gorithms to achieve arc-consistency over a constraint
network.9 We choose AC-3 because of its relative sim-
plicity and because it is less affected by the domain
sizes than other arc consistency algorithms. Follow-
ing is an outline of AC-3.

Q 4 {Constraints of the CSP}
while Q is not empty

Select and delete any constraint C from Q
Achieve local consistency over C (projection)
For each variable v � vars(C), v modified by the
projection

For each C� � C, v � vars(C�)
Q 4 Q � {C�}

Endfor
Endfor

endwhile

The previously described characteristics of CSP for
test program generation allow several enhancements
of the basic MAC/AC-3 algorithm. The most signif-
icant of these—random solution, dynamic modeling,
approximations, and constraint hierarchy—we de-
scribe below.

To reach a random solution to a CSP, we use uni-
form random variable ordering and uniform random
value ordering. This approximates uniform distribu-
tion over the solution space. Many heuristics are
based on intelligent value and variable ordering28 and
aim to direct the search to promising areas and thus,
ease and speed up the search. At the same time, these
heuristics reduce the ability to explore the whole
search space and find uniformly distributed random
solutions. Therefore, the CSP solvers used by random
test generators have to balance between the use of
heuristics to speed up the solution and the use of
naive techniques that allow uniform exploration of
the search space. Specifically, in some cases our solv-
ers use heuristics for variable ordering, but avoid us-
ing heuristics for value ordering.

We use two approximation techniques to deal with
constraints that are hard to project. We define pro-
jection precondition as a mechanism that associates
Boolean predicates with constraints. A constraint is
projected only if the predicate is evaluated to true.
If the predicate is not satisfied, the projection is post-
poned. This approach is often used with directional
constraints (see the section “Directional con-
straints”) and is demonstrated by one of the con-
straints involved in a load instruction model. When

We choose MAC because its strong
filtering component is well suited

to the very large search space
associated with test programs.
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the domain of the address variable is too large, it is
impractical to project a constraint that synchronizes
address and data, and we therefore have a precon-
dition attached to the address variable. Our variant
of the MAC algorithm is aware of constraints that have
not yet been projected, and avoids instantiating the
variables they affect. Another approximation method
is the inexact projection procedure, aimed at reduc-
ing the computational complexity. An example is the
constraint a � b � c, where the domains of a, b,
and c are very large. Bounds propagation29 is a
known example for this approach. It is essential to
both methods (precondition and inexact projection)
that, when the domains of the affected variables be-
come small enough in the course of the solution pro-
cess, the precondition predicate is true and the pro-
jection is exact. This ensures that even though parts
of the solution process are approximated, the solu-
tions themselves are exact (e.g., an assignment pro-
vided by the solver always satisfies all the constraints
in the CSP).

As previously described, CSP models of test programs
often contain dynamic components, in which the
structure of the problem depends on values assigned
to some of the variables. To cope with this difficulty,
subnetworks of the CSP are declared conditional and
an additional Boolean existence variable is associ-
ated with them. A conditional subnetwork is part of
the solution only if its corresponding existence vari-
able is assigned true. If a constraint C(v1 , v2 , . . . )
affects variables from the conditional subnetwork,
it is implicitly transformed into v e3 C(v1, v2, . . . ),
with v e being the existence variable of the subnet-
work. When an existence variable is instantiated to
false, its corresponding conditional subnetwork is ig-
nored. Moreover, when C cannot be satisfied, the
projection procedure of v e3 C(v1, v2, . . . ) reduces
v e to false, thus removing the entire conditional sub-
network from the CSP.

Test programs are often modeled through a hierar-
chy of constraints, as previously described. The MAC
algorithm, with relatively minor modifications can
find a solution to a hierarchy of constraints, where
a solution is measured by the locally predicate bet-
ter.6 Step 1 of the MAC algorithm is performed it-
eratively, where at each iteration, the set of con-
straints Q over which consistency is achieved is
expanded by one constraint, according to the algo-
rithm below.

Q 4 C0 Mandatory constraints.
Using AC-3, achieve consistency over Q

For l � 1 . . . n
While Cl � �

c 4 a constraint from Cl

Cl 4 Cl �{c}
If AC-3(Q � {c}) succeeds

Q 4 Q � {c}
Else

Undo the last AC-3 execution
Endif

Endwhile
Endfor

The exact algorithm that deals with a combination
of constraint hierarchy, random solution, approxi-
mations and conditional subnetworks is more com-
plex, and its precise description is beyond the scope
of this paper.

Projection. The original MAC8 algorithm was de-
signed for binary constraints networks and uses the
Reviseprocedure to achieve arc consistency on a sin-
gle binary constraint. In theory, any CSP can be trans-
formed to a network of binary constraints. 30 The
transformation procedure builds a new variable for
every n-ary constraint and the domain of that vari-
able is the set of tuples allowed by the constraint.
The large domains encountered when modeling test
programs as CSPs make it impractical to use this trans-
formation. Other traditional approaches to the im-
plementation of MAC with n-ary constraints (Gen-
eral Arc Consistency or GAC31) include representing
it as an explicit list of tuples, or holding relatively
large data structures regarding the support of every
value in a variable domain.31 Neither of these meth-
ods is applicable to CSPs defined over very large do-
mains. Pruning methods other than consistency (e.g.,
bounds propagation29) assume constraints are con-
structed only from monotonic, or even linear,
operators.

We choose a different way to use MAC with n-ary
constraints, by providing a consistency achieving pro-
cedure—a projector—for each constraint in the CSP.
Such a procedure accepts a domain for each vari-
able affected by the given constraint as input, and
produces reduced domains with the following two
properties: (1) minimality—any value which does not
participate in any tuple that satisfies the constraint
is removed; (2) preservation—all the values in the
original domains that participate in a tuple that sat-
isfies the constraint, remain in the output domains.
Figure 1 demonstrates the projection of a constraint
R onto two input domains, A and B, and the result-
ing reduced domains: A� and B�.
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The complexity of building a constraint projector is
often not dependent on the linearity of the constraint.
For example, projecting the constraint a � b Q c,
(Q being the bit-wise xor operator) is relatively easy.

Modeling and solving aids. Most of the ideas de-
scribed in this section are implemented in the Gen-
eration Core toolbox. This C�� class library, devel-
oped at HRL, provides services and building blocks
for the construction of stimuli generation tools. The
set of services includes an advanced modeling envi-
ronment consisting of an object-oriented database
and a semi-visual browser. When designing a new
generator, one defines a class hierarchy for the da-
tabase, leading to an application-specific modeling
language. This class hierarchy is derived from a set
of base classes that define a generic projector inter-
face and a generic interface for variables. A MAC solv-
ing engine, which supports preconditions, directed
projectors, conditional sections of CSP networks, and
a constraint hierarchy (following the ideas in the sec-
tion on the MAC algorithm) is also provided. We de-
scribe below two special components: (1) a constraint
projection procedure constructed automatically from
an expression that defines the constraint relation; and
(2) a set of classes that provide efficient represen-
tation methods for large variable domains and that
support a large set of efficiently implemented oper-
ations on these domains.

Expression-driven constraint projector. We developed
an algorithm for the automatic construction of pro-
cedures for projecting constraints over large domains
and using nonmonotonic, nonlinear operators. By
using the algorithm, we avoid the error-prone and

labor-intensive process of developing a special-pur-
pose procedure for each constraint. We use this al-
gorithm to project a large variety of constraints.

Our algorithm accepts an expression that represents
the constraint, e.g., (a � b � c) � (c � d), and
produces a procedure for projecting the constraint.
Expressions are given in a context-free grammar and
include arithmetic, logical, and bit-wise operators.
Apart from the definition of the grammar, the al-
gorithm only requires a local projection function for
each of the operators in the grammar. For example,
a binary plus operator requires a ternary projection
function, which operates on the two additive vari-
ables and the sum. Our experience shows that build-
ing new local projection functions, thus expanding
the supported grammar, is relatively easy for many
commonly used operators.

The algorithm transforms the parse tree of an expres-
sion into a constraint network: (A) every variable in
the expression appears once in the new network; (B)
operators in the original expression are constraints
in the network; (C) additional variables represent
intermediate calculations, such as the value b � c
in the example above. When the resulting network
is acyclic, achieving arc consistency on the network
through the usage of local projection functions pro-
duces the required result. The domains are reduced
to hold all, and only, the necessary values. This re-
sult can be derived from Reference 32.

We use a combination of several methods to deal
with more complex constraints. First, in the case of
a constraint comprised of several subconstraints

(A) CONSTRAINT R AND SETS A AND B (B) INTERSECTION R    ( A x B ) (C) PROJECTION OF R ONTO A' AND B'

B

A

R

B'

B

A A'

R

A

R

B

Figure 1 Projecting constraint R onto two input domains
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joined by the or operator (e.g., (a � b) � (b � a �
c) � (c � 3 � a)) we project each subconstraint sep-
arately and combine the results to produce the pro-
jection of the full constraint. Consider the above con-
straint with the input domains A � {1, 2, 3}, B �
{3, 4, 5}, and C � {4, 5}. The projection of the
separate subconstraints produces the results shown
in Figure 2A.

To produce the projection of the full constraint we
calculate the union of the entries in every column.
When a certain variable does not participate in a sub-
constraint, we take the original (input) domain of
that variable, unless the subconstraint cannot be sat-
isfied. In this case, we ignore the subconstraint. In
the above example, our algorithm produces the re-
sults shown in Figure 2B. The sets in parentheses
show the projection of the subconstraints as used dur-
ing the calculation of the full constraint projection.

In other cases, an expression that produces a cyclic
graph can be projected using the algorithm for the
acyclic cases. If one of the variables along the cycle
is assigned the same single value in every projection
of the constraint, then the cycle can be broken. A
typical example of this case is the constraint (a �
b) � (b � c). Figure 3A shows the graph that rep-
resents this constraint as produced from the parse
tree of the expression. The two intermediate vari-
ables x1 and x2 are assigned true in any tuple that
satisfies the constraint. Therefore, the cycle can be
broken by separating x1 into two nodes with single-
ton domains true, as shown in Figure 3B.

For more complex constraints we try to decompose
the graph that represents the expression into a set
of acyclic components by finding cycle cut-set var-
iables.33 When the cross product of the cycle cut-set
variables domains is small enough, our algorithm it-
eratively assigns them every possible combination of
values. Doing so, we break the full constraint into
a series of disjunctive subconstraints. If, for exam-
ple, we iterate on the domains Da � {1, 2, 3} of
the variable a, the original constraint C is replaced
by (C � a � 1) � (C � a � 2) � (C � a � 3).
At least one of the variables in each cycle of the sub-
constraints has a singleton variable. These subcon-
straints can, therefore, be projected using the acy-
clic projection algorithm. We combine the projection
of the disjunctive subconstraints using the join al-
gorithm depicted above.

Set representation. The method used to represent the
domains of the variables of a CSP is one of the main

factors that affect the efficiency of a CSP solution al-
gorithm. The representation method affects the space
needed to store the variables and the efficiency of
performing operations on them. Specifically, the MAC
algorithms with random solutions used by our ran-
dom program test generators present the following
requirements: (A) support representation of very
large variable domains; (B) be compact to allow ef-
ficient use of the memory space of the program; (C)
support efficient operations required by the MAC al-
gorithm to perform projection, and (D) support an
efficient uniformly distributed random selection of
an element from the domain (this operation is
needed to find a random solution for the CSP).

The techniques we use to model random test gen-
eration as CSPs lead to the use of many types of var-
iables with domain size ranging from very small (e.g.,
2) to very large (e.g., 264). We developed a class li-
brary that supports the variable types commonly used
in our CSP. For each of the types supported by this
class library, the library offers one or more efficient
ways to represent domains (sets of values) of this
type, and basic operators that correspond to oper-

Figure 2 Projecting a disjunctive constraint

(A) 

SUBCONSTRAINT  A B C

a = b {3} {3} _

b = a + c {1} {5} {4}

c = 3 . a  { } _ { }
    

(B) 

SUBCONSTRAINT A  B C

a = b {3} {3} ({4,5})

b = a + c {1} {5} {4}

c = 3 . a  { } ({ }) { }

RESULTS {1,3} {3,5} {4,5}
    

(A) 

= =

x1 x2

(B) 

= =

{t}
x2

{t}

a b c a b c

AND AND

Figure 3 Singleton variables in a cycle
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ations often performed on these types. Currently, the
library supports integers, bit-vectors, Booleans, and
strings.

Integers and bit-vectors are the two most commonly
used types in our CSPs. These two types are often in-
terchangeable, since the binary representation of an
integer can be viewed as a bit-vector, whereas the
binary number represented by a bit-vector can be
viewed as a signed or unsigned integer. Supported
operations can be divided into three main groups:
set operations, such as union, intersection and ran-
dom selection of elements; arithmetic operations,
such as addition and multiplication; and bit-wise logic
operations, such as bit-wise xor. The arithmetic op-
erations are more natural to integer domains,
whereas the bit-wise operations are more natural to
the bit-vector domains. Still, both types need to sup-
port both sets of operations.

There are several possible methods for implicit rep-
resentations of a set of values over bit-vectors and
integers. Unfortunately, none is efficient for all op-
erations. The representation methods currently used
in our class library are:

Set of ranges—The values in a domain are repre-
sented as a set of nonoverlapping intervals (e.g., {(0–
100), (200–299)}). Ranges are a natural way to rep-
resent integers and it is efficient to perform certain
arithmetic operations, such as addition and subtrac-
tion over them. Ranges are also efficient in perform-
ing set operations, such as union and intersection,
with other sets of ranges. On the other hand, per-
forming bit-wise operations on ranges can be hard.

Set of masks (DNF)—A mask is a bit-vector with
“don’t-care” values for some of its bits. It represents
the set of bit-vectors that may be obtained by de-
termining don’t-care bits. For example, the mask
XXXXXX00 represents all the bit-vectors that end with
two 0s (i.e., all the numbers divisible by 4). Masks
are very effective representations for bit-wise oper-
ations and can be used efficiently in set operations
with other masks. They are also convenient as input
media. However, performing arithmetic operations
on masks is hard.

Binary Decision Diagrams (BDDs)—Binary Decision
Diagrams34 are data structures commonly used to
represent Boolean functions. A BDD represents a set
of values in a domain through the characteristic func-
tion of the set (memberD( x) � 1 iff x � D). Some
operations performed on integers and bit-vectors can

be done very efficiently on BDDs (e.g., set operations).
BDDs also have efficient algorithms for some arith-
metic operations, such as addition.34 BDDs, on the
other hand, are less efficient than masks in handling
bit-wise operations.

The representation method of each variable is se-
lected by the modeler of the CSP, based on the op-
erations in which the variable is involved. When an
operation is performed on two variables with differ-
ent representations, the CSP engine converts the rep-
resentation to the one most efficient for the oper-
ation. In general, we try to avoid conversions between
representation methods due to their cost.

Applications

We developed a set of random test program gen-
erators, based on the solution framework described
in the previous section. These generators are targeted
at different components of the verified design and
are used during various stages of the verification
process.

We focus in this section on Genesys-Pro, a multi-
processor-oriented architectural-level test program
generator. We briefly describe three other genera-
tors: FP-Gen, a generator dedicated to floating-
point-unit verification; Piparazzi, oriented toward the
verification of the control flow of a single processor;
and X-Gen, oriented toward verifying an entire sys-
tem. The tools have different verification scopes, and
the abstraction level in each one of them is set ac-
cordingly: tools with broader verification goals have
a less-detailed understanding of the verified design.

Most of these generators are model-based. That is,
they are partitioned into a generic, system-indepen-
dent part, and a model that describes the verified
design. The modeling language of each tool is de-
signed to suit its specific verification needs. For ex-
ample, the modeling language of X-Gen contains sys-
tem-level terms and concepts, such as components
and the connections between them, whereas the
modeling language of Genesys-Pro focuses on pro-
cessor-related concepts such as instructions and reg-
isters.

When designing a CSP-based random test program
generator, there is an inherent tension between the
“problem language” and the “solution language.”
The vocabulary of verification engineers includes
words such as registers, instructions, and pipelines,
and they prefer this terminology for requirements
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description. CSP modelers, on the other hand, must
consider the need to efficiently represent the test pro-
gram as a CSP. Therefore, they use the terminology
of constraints and variables.

The size properties of typical CSPs solved by these
generators are displayed in Table 1. We display the
total number of variables and constraints in the CSP,
as well as information about the size of a typical sub-
problem (see section “Partitioning a CSP,” above).
Constraints are classified according to their arity and
variables according to the size of their domains. Run
time was measured on a 375 MHz IBM RS/6000* ma-
chine.

Processor architecture. Genesys-Pro is the main test
program generation tool for verification of PowerPC
processors in many of IBM’s development laborato-
ries. The model used by Genesys-Pro contains a de-
scription of the functional specification of the pro-
cessor (i.e., its architecture). This description
includes the instruction set of the processor, its ar-
chitectural resources (e.g., registers), and global rules
of behavior (e.g., the value read from a register is
the last value written to it). For each instruction in

the instruction set, the description contains a list of
operands, the resources it reads or modifies, and its
behavior. For the entries marked (1) in Table 1,
Genesys-Pro and X-Gen break a single problem into
multiple constraint networks (subproblems). Some
of the constraints have a relatively small arity when
viewed in the context of a single constraint network,
but use global data structure that represent relation-
ships with hundreds or thousands of variables from
other networks.

The model for each instruction contains a constraint
network that describes the relations between the var-
ious operands and the resources the instruction reads
and modifies. For example, the model of a load in-
struction contains a constraint specifying that the
memory address accessed by the instruction is equal
to the sum of the content of a base register, whose
number is the second operand of the instruction, and
a displacement, which is the third operand (see an
example later in this section). The constraint net-
works of the instructions, combined with the global
behavior rules, provide the validity requirements of
a generated test program.

Table 1 Size properties of typical CSPs

Piparazzi Genesys-Pro X-Gen

Subproblem Variables �10 1433 45 5
(by domain) 10..1000 406 11 42

1000..264 254 19 30
264 � 27 1 8
Total 2120 76 85

Constraints �10 4903 49 96
(by arity) 10..100 813 2

100 � 188 (1) (1)
Total 5904 51 96

Run time (Sec.) 399 0.17 0.45

No. of Subproblems 3 100 3250

Complete CSP Variables �10 4299 4500 9500
(by domain) 10..1000 1218 1100 137500

1000..264 762 1900 100000
264 � 81 100 25500
Total 6360 7600 272500

Constraints �10 14709 4900 312000
(by arity) 10..100 2439 200

100 � 564 (1) (1)
Total 17712 5100 312000

Run time (Min.) 20 0.58 24
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In addition to the model of the verified processor,
Genesys-Pro has two other components: testing
knowledge and user directives. The testing knowl-
edge specifies generic events of interest used to en-
hance the quality of the generated tests (e.g., the re-
sult of an add instruction is zero). The testing
knowledge is described as constraints on the re-
sources of an instruction and their values, or as con-
straints between resources and values of several in-
structions in the test.

Through its user interface, Genesys-Pro allows user
directives that can range from specific requirements,
leading to generation of an event, to general direc-
tives that attempt to provide wide coverage to some
part of the design. Among other things, the user di-
rectives include specification of the instructions that
need to be generated, and guidelines on how, and
how often, to use the testing knowledge.

Because Genesys-Pro is required to generate long
tests of hundreds or thousands of instructions, it can-
not solve the entire test-wide CSP as a single CSP net-
work. Therefore, it uses the following generation
scheme: Genesys-Pro generates a test program one
instruction at a time, where the instructions are gen-
erated in the order of their execution. The gener-
ation of each instruction in the test consists of the
following steps:

1. Selecting the instruction to be generated
2. Building the CSP network for the instruction. The

network includes constraints from the model of
the instruction, specific user directives for the in-
struction, projection of global constraints on the
instruction, and constraints from the testing
knowledge according to the user directives and
the guidelines in the testing knowledge. Usually,
constraints from the testing knowledge are soft
constraints.

3. Solving the CSP for the generated instruction and
updating a reflection of the processor state ac-
cordingly

Example: A CSP model of an instruction. Consider the
case of a load instruction of the form load Rx 4
Ry(disp). The instruction loads the data at memory
address [Ry] � disp into the register Rx , where [Ry]
is the value held in the register whose index (address)
is y. Table 2 defines the variables in a simplified CSP
model representing the instruction. We model four
sets of variables: register x, register y, displacement,
and memory. Each set (except for displacement) con-
tains three variables: an address, the data before the
instruction is executed (data-in) and the data after
the execution (data-out). Variable domains are given
in parentheses. The constraints in Table 3 must be
satisfied for the instruction to be valid. A more re-
alistic CSP model of a load instruction would con-
tain a larger number of variables and validity con-
straints, as well as some quality (soft) constraints.

To solve this kind of constraint network, we use some
of the solution techniques described in the previous
section. The constraint network itself represents only
a single instruction, whereas the CSP solved by
Genesys-Pro represents a complete test program, of-
ten with hundreds or thousands of instructions. This
demonstrates the partition principle previously de-
scribed. We use the MAC-based algorithm described
in a previous section to solve this part of the CSP by
providing a constraint projector for each of the con-
straints. Some of these should be especially noted:
(A) Due to the huge domains of the variables in-
volved, the projection of mem.addr � y.in � disp.in
is approximated. When the domains of two of the
three variables become small enough (in the course
of the solution process), the projection can be per-
formed precisely. (B) The last three constraints in
the table form the relationship between this instruc-
tion and previous ones. They use global data struc-
tures to access the resources values (memory, reg-
isters) resulting from previous instructions. (C) The
constraint Initial_value (mem.addr, mem.in) has
a precondition on the variable mem.addr. As long as
the domain of this variable is too large, we cannot
project the constraint because it is practically impos-

Table 2 CSP model of a “load” instruction—variables

Address Data-in Data-out

Register x x.addr: (0 . . 31) x.in (64-bits) x.out (64-bits)
Register y y.addr: (0 . . 31) y.in (64-bits) y.out (64-bits)
Displacement — disp.in (16-bits) —
Memory mem.addr: (64-bits) mem.in (64-bits) mem.out (64-bits)

BIN ET AL. IBM SYSTEMS JOURNAL, VOL 41, NO 3, 2002398



sible to iterate over a huge number of memory ad-
dresses and check their contents.

The domains of the variables are represented using
the techniques described in the section “Set repre-
sentation.” Specifically, we would usually use either
DNF or BDD representation to model variables of very
large domain size.

The constraint network representing a load instruc-
tion is a single subproblem solved by Genesys-Pro.
The generator solves one instruction at a time, and
updates the global data structures that represent in-
terinstruction constraints. Together, this series of in-
structions constitutes a test program.

Floating-point unit. FP-Gen is a focused tool de-
signed to bias and generate operand data for the IEEE
(Institute of Electrical and Electronics Engineers)
standard floating-point instructions.35 A bias (or con-
straint) on the data of an operand is a set of values
to which the operand data are constrained. Resolv-
ing constraints on input operands is relatively
straightforward, even though the requirement of uni-
formity among all the solutions is sometimes hard

to obtain. In contrast, resolution of constraints on
the data for both the intermediate result(s) and the
result of instructions adds a layer of complexity that
involves instruction semantics. The algorithms of FP-
Gen are based on a thorough case analysis,22 which
spans CSP stochastic methods, dedicated analytical
conversions, and linear programming.

Micro-architecture control flow. Piparazzi is de-
signed for the verification of the micro-processor
control. Modern micro-processors have several mi-
cro-architectural mechanisms that improve perfor-
mance, but increase the complexity of the design,
thereby increasing the risk of bugs. Examples of such
mechanisms include super-scalar, out-of-order, pipe-
lining, caching, and remapping of resources.36 Pipa-
razzi’s input language lets the user specify micro-ar-
chitectural events, for example two instructions are
executed simultaneously in a specific pipeline. The
CSP constructed and solved by Piparazzi represents
various micro-architectural aspects of the instruc-
tions and of the micro-architectural mechanisms of
the processor. The solution algorithm used by Pipa-
razzi is MAC-based, where multiple instructions are
solved as one constraint network.

Table 3 CSP model of a “load” instruction—constraints

Constraint Description

mem.addr � y.in � disp.in The memory address is the sum of the displacement and the value held
in register y.

x.out � mem.in The functionality of the instruction: the content of the memory is
loaded into Rx .

mem.in � mem.out The memory is not modified by the instruction.

x.addr � y.addr 3 (x.in � y.in � x.out � y.out) If Rx and Ry are the same register, they contain the same input and
output data.

x.addr � y.addr 3 y.in � y.out If Rx and Ry are not the same register, Ry is not modified by the
instruction.

mem.addr � A � B, where
A � [0x0 . . . 00000 to 0x0 . . . 01FFF]
and
B � [0x0 . . . 12000 to 0x0 . . . 2C000]

The memory address must be within a given physical address space.

mem.addr mod 4 � 0 The memory address must be aligned to a 4-byte boundary.

Initial_value(x.addr, x.in) Some of the registers may already be initialized from previous
instructions. Therefore, the combinations of register-address and
register-value are restricted by these initializations.

Initial_value(y.addr, y.in) Same as above.

Initial_value(mem.addr, mem.in) Same for memory.
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System level. X-Gen is targeted toward system level
verification. In this context, a system is a collection
of components that operate together—such as pro-
cessors, buses, memories, caches, bridges, and I/O de-
vices. A model of the verified system comprises three
aspects: (1) component types, such as memory, CPU,
or a certain bus-bridge; (2) a configuration file that
describes the instances of these component types
(e.g., CPU-0 and CPU-1) and the topology of the sys-
tem—logical and physical connections between com-
ponents; and (3) interactions, which describe the way
components operate together. For example, an in-
terrupt sent from an I/O device to a CPU is a type of
interaction. The CSP solved by X-Gen contains var-
iables and constraints that represent the above three
aspects. It is partitioned along two axes: every in-
teraction is generated separately and broken into two
constraint networks. An abstract network determines
the identity of the components participating in the
interaction, and a concrete network then determines
the actual attributes such as address and data.

Conclusions

In this paper we have shown how random test pro-
gram generation can be modeled as a CSP. We de-
scribed the common characteristics of the CSPs that
represent test programs, some of which are unique
to this domain. To address the challenges that arise
from these characteristics, we developed a set of so-
lution techniques that address all aspects of the prob-
lem, from modeling techniques via the solution al-
gorithms to data representation methods.

This set of techniques is the basis for several ran-
dom test program generation tools that the IBM Re-
search Laboratory in Haifa has developed and con-
tinues to develop. These tools range from dedicated
tools for specific units to general-purpose tools de-
signed to test processors and multi-processor sys-
tems. The CSP modeling and solution framework sim-
plifies the work of developers of new tools and allows
them to concentrate on the unique characteristics
and requirements of the tool.

We continue to look for new techniques and algo-
rithms to improve our CSP modeling and solution
framework for random test program generation and
provide better services to tool developers. The so-
lution engine is the main area in which we are look-
ing for methods to improve our current techniques.
Specifically, we are looking at ways to combine our
MAC-based search algorithm with other search tech-
niques, such as hill-climbing algorithms37 and

SAT-based solvers,16 that are used to solve local sub-
problems. We are also looking at ways to incorpo-
rate incremental techniques38 and techniques that
take advantage of knowledge gained in a solution of
one problem to solve similar problems.

Another possible direction to improve the search al-
gorithm is the use of constraint logic programming
(CLP) engines, such as CHIP,39 as search engines, ei-
ther for the whole CSP or for specific subproblems.
Some of the difficulties we foresee with this approach
are the ability of CLP engines to handle the large do-
mains that characterize random test program gen-
eration and the representation of complex con-
straints over them.

*Trademark or registered trademark of International Business
Machines Corporation.
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