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IBM ProbE (for probabilistic estimation) is an
extensible, embeddable, and scalable
modeling engine, particularly well-suited for
implementing segmentation-based modeling
techniques, wherein data records are
partitioned into segments and separate
predictive models are developed for each
segment. We describe the ProbE framework
and discuss two key business solutions that
have been built using ProbE: the IBM
Underwriting Profitability Analysis for
insurance risk management, and the IBM
Advanced Targeted Marketing for Single
Events for direct mail database marketing.

IBM ProbE (for probabilistic estimation) is a customi-
zable data mining engine that is being developed to
enhance the IBM predictive modeling products and
services. Viewed from the broadest perspective,
ProbE might best be described as an extensible, em-
beddable, and scalable segmentation-based model-
ing engine. Although virtually any predictive mod-
eling technique can be implemented within ProbE’s
software environment, ProbE’s application program-
ming interfaces (APIs) are particularly well-suited for
implementing segmentation-based modeling tech-
niques, wherein sets of data records are partitioned
into segments and separate predictive models are de-
veloped for each segment.

This style of modeling is popular among data ana-
lysts and applied statisticians, and it is usually ap-
proached as a sequential process in which data are
first segmented (using, for example, unsupervised
clustering algorithms), and predictive models are

then developed for those segments. The drawback
of this sequential approach is that it ignores the
strong influence that segmentation exerts on the pre-
dictive accuracies of the models within each segment.
Good segmentations tend to be obtained only
through trial and error by varying the segmentation
criteria.

ProbE is able to perform segmentation and predic-
tive modeling within each segment simultaneously,
thereby optimizing the segmentation so as to maximize
overall predictive accuracy and thus to produce better
models. Currently, ProbE includes a top-down tree-
based algorithm for constructing segmentations, as
well as a collection of other algorithms for construct-
ing segment models. The latter includes stepwise lin-
ear regression and stepwise naive Bayes algorithms for
general-purpose modeling, and a joint Poisson/log-
normal algorithm for insurance risk modeling.

IBM ATM-SE (Advanced Targeted Marketing for Sin-
gle Events) is an application built on top of ProbE
for mining high-dimensional customer interaction
and promotion history data in order to construct cus-
tomer profitability and response likelihood models
for the retail industry.1 An evaluation of ATM-SE was
recently conducted with Fingerhut Inc., a leading
U.S. direct-mail retailer and a sophisticated user of
predictive analytics in their targeted marketing ef-
forts. The segmentation-based response models pro-
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duced by ProbE either equaled or slightly outper-
formed Fingerhut’s proprietary models, in a completely
automated mode. The outcome of this evaluation is
significant because numerous vendors and consult-
ants have attempted to beat Fingerhut’s in-house
modeling capability in the past, but previously none
had succeeded. Moreover, ProbE achieved this re-
sult in a fully automated mode of operation with no
manual intervention. Although further development
and testing is still needed, early indications are that
ProbE will be able to consistently produce high-qual-
ity models for this application on a fully automated ba-
sis without requiring costly manual adjustments of the
models or the mining parameters by data mining ex-
perts, a necessary step in making data mining attract-
ive to medium-sized businesses.

A key feature of ProbE is that it can be readily ex-
tended so as to construct a wide range of predictive
models within a segment. For example, in the
IBM UPA (Underwriting Profitability Analysis) appli-
cation,2 a joint Poisson/log-normal statistical model
is used to simultaneously model both the frequency
with which insurance claims are filed, and the
amounts (i.e., severities) of those claims for each seg-
ment. Using this class of segment models, the seg-
ments identified by ProbE would thus correspond
to distinct risk groups whose loss characteristics (i.e.,
claim frequency and severity) are estimated in ac-
cordance with standard actuarial practices.

A second example is found in the ATM-SE applica-
tion for predicting customer response to promotional
mailings. To predict the expected revenues that
would be generated by a customer targeted in such
mailings, segment models were constructed using
least-squares linear regression with forward stepwise
feature selection to select the variables that appear
in the regression equations. Using this class of seg-
ment models, ProbE would construct piecewise-lin-
ear models in which the segments correspond to re-
gions of the response surface that are approximately
linear and the boundaries between segments corre-
spond to nonlinearities detected in that surface.

To predict the probability of a customer responding
to a promotional mailing, segment models were con-
structed using naive Bayes methods with forward
stepwise feature selection to select the variables that
appear in the conditional probability equations. Us-
ing this class of segment models, ProbE would con-
struct piecewise naive Bayes models in which the seg-
ments correspond to regions of the response surface
in which the naive Bayes independence assumptions

are locally valid and the boundaries between seg-
ments correspond to interactions among features de-
tected in the response surface that violate the naive
Bayes assumptions.

In addition to being extensible with respect to seg-
ment models, ProbE also permits extensions to be
made to its segmentation algorithms. This degree of
extensibility was achieved through careful design of
ProbE’s APIs. In particular, a single API is used to
implement all predictive modeling algorithms, in-
cluding segmentation algorithms. This model API is
general enough to permit a very wide range of pre-
dictive modeling techniques to be implemented
within ProbE. No matter what kind of predictive
models are used within each segment, the same seg-
mentation algorithms are used in ProbE to optimize
the predictive accuracies of the resulting ensemble
of models independent of their internal details.

ProbE is also designed to be an embedded system
that can be incorporated into industry-specific ap-
plication environments. For example, ProbE does
not have a graphical user interface (GUI) of its own;
instead, one would have to be supplied by the host
application if so desired, as is done in the UPA and
ATM-SE solutions. The interface to ProbE has been
kept as simple as possible. Host applications provide
ProbE with specifications of data mining tasks to be
performed, and ProbE returns the results of those
tasks upon completion. At present, communication
is conducted through specification and results files;
however, future extensions to ProbE will permit full
integration with relational database systems, with
task specifications and mining results communicated
through database tables.

Another consideration in the design of ProbE is scal-
ability. ProbE is designed to work with very large,
out-of-core data sets. Work is also underway to de-
velop a data-partition parallelized version of ProbE
that would allow large data sets to be partitioned
across multiple processors, with each processor ac-
cessing data only in the partition assigned to it and
with only statistical summary information being ex-
changed among processors. Because this approach
would minimize the amount of communication
among processors, it is anticipated that it will achieve
near-linear improvements in execution speed (i.e.,
increasing the number of processors by a factor of
n decreases the execution time by a factor of n).

In the next section, we describe the tree-based seg-
mentation strategy utilized in ProbE. In the follow-
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ing two sections we elaborate in detail on two core
predictive modeling algorithms in ProbE: linear re-
gression trees and naive Bayes trees. This pair of al-
gorithms has been used successfully in building so-
lutions for targeted marketing and financial credit

risk scoring. We then describe a third predictive mod-
eling algorithm in ProbE; a joint Poisson log-nor-
mal model that was developed specifically for an in-
surance risk modeling application. The last section
contains our concluding comments.

Tree-based segmentation

The tree-based segmentation algorithm that is in-
corporated into ProbE can be used in conjunction
with a wide range of multivariate statistical models
as the leaf models. Beginning with a single root node,
an overall tree-based model is generated by recur-
sively applying a model expansion procedure to the
leaf nodes of the current tree. This model expansion
step involves two distinct and complementary mech-
anisms. The first mechanism is a node split that is
comparable to those traditionally used to build trees,
and involves a univariate binary split of an existing
leaf node into two descendant leaves. The second
mechanism is a leaf-model extension that involves
adding a single new feature to a multivariate statis-
tical model that appears in a leaf node of the cur-
rent tree. Examples of such multivariate leaf mod-
els include linear regression models and naive Bayes
models.

An important aspect of the above approach is that
node splits and leaf-model extensions are placed on
the same footing in the model expansion process.
For each leaf node, ProbE explores a set of possible
node splits on each input feature, as well as possible
leaf-model extensions for each input feature. The
node split or leaf-model extension that produces the
greatest model improvement at a leaf is then selected
and incorporated into the tree. The model expan-
sion process is then recursively applied until termi-
nated either by a user-specified “stopping condition”
or by an internal cross-validation heuristic.

Another important aspect of the above approach is
that feature selection is performed within each po-
tential new leaf model as it is being constructed dur-
ing both node splitting and leaf-model extension. The
features that can be selected are restricted to those
that appear in the leaf-model extensions performed
along the path from the root node to the potential
new leaf node being constructed. Thus, leaf-model
extensions specify the subset of features that are al-
lowed to appear in a leaf model, while leaf-model
feature selection determines which of these features
are actually used. A best-first wrapper-based ap-
proach3 is used for leaf-model feature selection. Un-
like ProbE, previous methods that use multivariate
statistical models in the leaves of trees (e.g., Ref-
erences 4, 5) do not perform feature selection on
leaf models, or they do not use multivariate leaf mod-
els to identify good splits, or both.

For scalability reasons, ProbE is designed to handle
massive out-of-core training data sets. The I/O cost
of each data scan is therefore an important perfor-
mance consideration when implementing learning
algorithms within ProbE.

To minimize I/O costs in the case of tree-based seg-
mentation, the algorithm implemented in ProbE
does not employ sorting when constructing binary
splits on numerical features. Instead, binary node
splits for all features are constructed by first gener-
ating multiway splits on each feature. In the case of
categorical features, the individual categories define
the multiway splits. In the case of numerical features,
the values of the features are binned into subinter-
vals and the resulting subintervals define the mul-
tiway splits. Once leaf models have been constructed
for a multiway split, the best possible binary split on
the corresponding feature is determined using a bot-
tom-up merging procedure analogous to that em-
ployed in CHAID.6 Specifically, two segments of a
multiway split are merged so that the resulting seg-
mentation produces the minimum increase in the re-
sulting model evaluation score. This merging pro-
cedure is applied iteratively until only two segments
remain. These two segments then represent the best
binary split for the corresponding feature.

To further decrease I/O costs, the node-splitting pro-
cedure used in ProbE also imposes two important
requirements on the implementations of the segment
model objects constructed at the leaf nodes. First,
as the training data are scanned, each relevant seg-
ment model object must be able to update its inter-

For scalability reasons,
ProbE is designed to handle

massive out-of-core training
data sets.
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nal data structures to extract relevant “sufficient sta-
tistics” in a storage and computationally efficient
manner.

Second, it should be possible to combine the suffi-
cient statistics of two or more model objects that cor-
respond to different data segments in such a way that
the sufficient statistics of the resulting segment model
object can be obtained without having to rescan the
training data. That is, the result should be the same
as if the resulting model object were trained using
the union of the original training data for the data
segments that are being merged. This requirement
enables the entire binary bottom-up merging pro-
cedure described above to be performed without hav-
ing to rescan the training data.

The ProbE framework is valuable because these two
conditions can be satisfied within the framework for
a large class of statistical models, although in some
cases it raises interesting computational research is-
sues.

Linear regression trees

The combination of the above tree-based segmen-
tation algorithm with stepwise linear regression mod-
eling at the leaves yields an overall algorithm that
we refer to as linear regression trees (LRT). The seg-
ment models in this case employ a Gaussian prob-
ability model

�y�X, t� � N �a0��
j

J

aj�t� Xj, ��t� 2� (1)

in each segment t, with the regression parameters
computed using the well-known normal equations
method (Reference 7 page 224, Reference 8 page
49). This method satisfies the two requirements of
the tree-based segmentation algorithm discussed
above because the sufficient statistics (in this case,
means and covariances) can be obtained from a sin-
gle pass over the training data. Furthermore, the suf-
ficient statistics from two or more segment model
objects can be combined to compute the regression
parameters for the model of the resulting combined
segment.

Our implementation of the normal equations
method incorporates feature selection in a way that
regularizes the computations and provides stable es-
timates of the nonzero regression coefficients. The

feature selection algorithm is based on the use of
holdout data. Specifically, each relevant data record
that is scanned is randomly designated to be either
a training record (used to determine the order in
which features are introduced in the regression mod-
el), or a holdout record (used to determine the op-
timum subset size in this ordered set of features).
Each linear regression model object has separate
data structures for storing and updating the means
and covariances of the relevant training and hold-
out data records.

After the sufficient statistics are obtained from a
training data scan, a forward stepwise feature selec-
tion procedure is used with the training covariance
matrix. Subsequently, the optimal number of features
is determined from this ordering using the holdout
means and covariances. Finally, the means and co-
variances for the training and holdout data are com-
bined in order to obtain final estimates for the re-
gression parameters with the selected features.

During bottom-up merging, the means and covari-
ances of the training and holdout data for pairs of
linear regression model objects are separately
merged, and feature selection and parameter esti-
mation is performed in the resulting model object,
as described above.

The details of each of the above steps are discussed
in the following subsections.

On-line updating and merging of mean and covari-
ance estimates. Let � � {x, y} denote the training
data record, where x denotes the J explanatory fea-
tures and y is the response. Typically, only the con-
tinuous explanatory features are included for the seg-
ment models, although categorical features may be
incorporated by explicitly encoding them in the in-
put data using dummy indicator variables in the usual
way.

For a given set of data (training or holdout), let
{�i} i�1

M denote the previously scanned records. The
mean vector �M and covariance matrix SM are then
given by

�M �
1
M �

i�1

M

�i, SM � �
i�1

M

��i � �M���i � �M� T

(2)

For analytic convenience, the constant normalizing
factor for the covariance matrix is omitted.
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When a new record �M�1 is scanned, the following
updates can be used to incrementally update the val-
ues of �M and SM as follows:

�M�1 �
M�M � �M�1

M � 1 ,

SM�1 � SM �
�M � 1�

M
��M�1 � �M�1�

��M�1 � �M�1�
T (3)

As noted earlier, each new record is randomly as-
signed to update either the training data means and
covariances (�, S), or the holdout data means and
covariances (�̃, S̃).

Now consider two models, with M and N records,
respectively, in a given subset of data (training or
holdout) at the end of a data scan. For the merged
model with M � N records, we have

�M�N �
M�M � N�N

M � N
,

SM�N � SM � SN �
N�M � N�

M
��M�N � �N�

��M�N � �N� T (4)

The means and covariances of the training and hold-
out sets are separately merged to produce the cor-
responding statistics for the merged model. The sym-
metric covariance matrices are stored in a packed
format to save storage, and the rank-one updates in
Equations 3 and 4 are implemented using standard
routines in the BLAS library.7

Feature selection and linear regression. At the end
of a training scan, a sequence of regression models
is constructed by introducing explanatory features
one at a time in a forward stepwise fashion in order
to create a sequence of regression equations. Each
explanatory feature is selected so as to maximally
reduce the variance of the resulting regression model
as measured on the training set. Excluded from con-
sideration are those explanatory features that are
highly collinear with respect to the explanatory fea-
tures that have already been introduced earlier in
the sequence. Such explanatory features are excluded
in order to avoid numerical instability in the calcu-
lation of regression coefficients.

Collinearity is detected by examining the model vari-
ance obtained when a regression equation is con-
structed that uses the explanatory features already
introduced to predict the next candidate explanatory
feature to be introduced. The ratio of the residual
variance of the resulting regression model, divided

by the original variance of the candidate explana-
tory feature, is calculated and compared to a thresh-
old. If the ratio falls below the threshold, then that
candidate explanatory feature is declared to be col-
linear and is omitted from further consideration. A
threshold of 0.001 has been found to work well in
practice, which corresponds to a situation in which
the explanatory features already selected account for
at least 99.9 percent of the variance observed in a
candidate explanatory feature.

Once a sequence of explanatory features has been
selected using the training set, a best subset of ex-
planatory features is identified using the holdout set.
Specifically, the best subset of explanatory features
is the one whose corresponding regression model
maximizes the likelihood of the response field as
measured on the holdout set.

After selecting a best subset of explanatory features,
the mean and covariance matrices of the training and
holdout sets are merged using Equation 4 and the
resulting merged matrices are used to re-estimate
the coefficients and variances of the regression mod-
els that were constructed.

Many well-known methods can be used to implement
the above calculations (e.g., Reference 8). In par-
ticular, a method based on Cholesky factorization
can be used to simultaneously solve for the coeffi-
cients of the regression equations and to identify the
best explanatory feature to be added next in the se-
quence of regression equations that are produced.9

Naive Bayes trees

The combination of the tree-based segmentation al-
gorithm described above with stepwise logistic re-

Each relevant data record that is
scanned is randomly designated

to be either a training record,
or a holdout record.
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gression modeling at the leaves yields an overall al-
gorithm that we refer to as naive Bayes trees (NBT).
In contrast to LRT, the implementation of NBT with
logistic regression segment models is more proble-
matic because the usual logistic regression algorithms
require several data scans to fit even a single model,
and there is no efficient way to use holdout data for
feature selection. Furthermore, there is no set of suf-
ficient statistics that allows two or more individual
logistic regression model objects to be combined in
the bottom-up merging step in ProbE.

These difficulties are addressed by employing the na-
ive Bayes assumption, which leads to a simplified lo-
gistic model in which interaction effects are omitted
(see Reference 10, pages 92–93). Using this assump-
tion, the parameters of the resulting logistic model
can be estimated in a single pass over the training
data. In addition, certain heuristics can be employed
for feature selection purposes and for estimating de-
gree-of-fit scores during bottom-up merging.

Naive Bayes model. In the case of naive Bayes mod-
els, the response variable y is assumed to be cate-
gorical. The conditional probability that the value
of the response is category k given that explanatory
features x fall into segment t can be expressed using
Bayes’ rule as

�k�x, t� �
P�X � x� y � k, t��k�t�

¥k��1
K P�X � x� y � k�, t��k��t�

(5)

where �k(t) is the prior probability that the value
of the response is category k. Naive Bayes models
assume that the covariates {Xj} j�1

J in X are condi-
tionally independent given the response y:

P�X � x� y � k, t� � � j�1
J P�Xj � xj� y � k, t� (6)

This naive Bayes assumption greatly simplifies Equa-
tion 5 to the point that the relevant conditional prob-
abilities can be estimated from a set of sufficient sta-
tistics obtained from a single training data scan.

Numerical covariates can be used in Equation 6 by
employing parametric or nonparametric models for
the relevant univariate conditional distributions and
fitting them to the training data,11 or as we have done,
by discretizing and binning numerical features to ob-
tain a corresponding derived categorical variable.12

It should be noted that even simple uniform discreti-
zations can be very effective for naive Bayes mod-

eling13 although we tend to prefer equiprobable (i.e.,
maximum entropy) binning.

If the covariate Xj takes on Mj values denoted 1,
2, . . . Mj , respectively, then the estimate Pjmk(t) for
P(Xj � m� y � k, t) in Equation 6 is given by

Pjmk�t� �
Njmk�t� � �jmk

Nk�t� � ¥m�
Mj �jm�k

(7)

where Njmk(t) is the number of data records in seg-
ment t in which the explanatory feature Xj has the
value m when the response y has the value k, and
where Nk(t) � ¥m�1

Mj Njmk(t). The � jmk are smooth-
ing parameters that are introduced to avoid prob-
ability estimates that are equal to zero. In particu-
lar, the parameter values � jmk � 1 correspond to
Laplace smoothing. Note that the frequency counts
Njmk(t) in Equation 7 are sufficient statistics for es-
timating Pjmk(t), and can be accumulated in a single
pass over the data.

The observed negative log-likelihood of this model,
which is used as the degree-of-fit score, is given by

LTR�t�

���
k�1

K Nk�t�
N�t� �log �k�t���

j�1

J �
m�1

Mj Njmk�t�
Nk�t�

log Pjmk�t��
A

�
1

N�t� �
i�1

N�t�

log � �
k��1

K

�	 j�1
J Pjxj,ik��t�
�k��t�� (8)

B

where x j,i denotes the value of Xj for the ith training
data point. The exact evaluation of L TR(t) requires
an additional training data scan because the suffi-
cient statistics and the estimates of �k(t) and Pjmk(t)
allow only the term denoted by A in Equation 8 to
be evaluated exactly. In addition, when merging the
sufficient statistics from two or more probability
model objects, again only the A term can be exactly
evaluated for the resulting combined model object.
In all cases, the evaluation of the term denoted by
B in Equation 8 requires a separate pass over the
training data, with the contribution of each data point
being evaluated and summed.
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Natarajan and Pednault14 describe a Monte Carlo
heuristic to approximate the troublesome term B in
Equation 8, which in conjunction with a BIC
(Bayesian Information Criterion) penalized likeli-
hood approach15 can be used to obtain the best fea-
ture set for a given naive Bayes model using just two
training data scans. Furthermore, along with some
further heuristics, the binary merging step in ProbE
can also be performed with just three training data
scans, as discussed below.

Feature selection and computational heuristics. The
forward-selection algorithm for introducing features
in the naive Bayes model is similar to the one con-
sidered by Langley and Sage16 but with a different
feature selection criterion based on the maximum
induced decrease in the observed negative log-like-
lihood of the training data. For each naive Bayes seg-
ment model, feature selection is implemented by per-
forming a first data scan to collect the frequency
counts in Equation 7. With these statistics and the
Monte Carlo heuristic referred to earlier, estimates
for L TR can be obtained for ordering the covariate
explanatory features via forward stepwise selection.
Finally, a second data scan is used to evaluate L TR

exactly for all J feature subsets of size 1, 2, . . . , J
according to the ordering of the features determined
after the first data scan. The minimum value of the
observed negative log-likelihood plus a BIC-penalty
term15 is then used to identify the best subset of fea-
tures from this sequence. As shown in Reference 14,
this approach leads to models that are comparable
in predictive accuracy to those obtained using more
computationally intensive algorithms, and it is quite
practical in a ProbE implementation.

During bottom-up merging, the Monte Carlo heu-
ristic is used to perform binary split construction us-
ing at most three training data scans. In the first
phase, the frequency counts for each multiway split
are collected in a single training data scan. The
Monte Carlo estimate for L TR is then obtained with-
out feature selection. Next, the binary merging steps
are carried out by merging the frequency counts from
pairs of naive Bayes model objects, and then using
the Monte Carlo heuristic at each step to estimate
the negative log-likelihood degree-of-fit scores that
are used to merge segment models until the best bi-
nary split has been identified for each feature. In the
second phase, a training data scan is used to provide
an exact evaluation of the degree-of-fit score (Equa-
tion 8) for each candidate binary split. From this ex-
act evaluation, the best binary split among all fea-

tures can be identified. Finally, in the third phase,
this best binary split is introduced into the tree, and
the naive Bayes models in the resulting segments are
retrained using feature selection as described in the
previous paragraph.

In contrast to the model expansion step in LRT where
only one data scan may suffice, each model expan-
sion step in NBT requires at least three data scans,
despite the use of the Monte Carlo heuristic.

Predictive modeling for insurance risk
management

A third class of models that has been implemented
for use in the leaves of the tree are joint Poisson/log-
normal models. This model class was developed for
use in property and casualty (P&C) insurance risk
modeling.

The P&C insurance business deals with the insuring
of tangible assets, such as cars, boats, and homes.
The insuring company evaluates the risk of the as-
set being insured, taking into account characteris-
tics of the asset as well as the owner of the asset.
Based on the level of risk, the company charges a
certain fixed, regular premium to the insured. Ac-
tuarial analysis of policy and claims data plays a ma-
jor role in the analysis, identification, and pricing of
P&C risks.

Actuarial science is based on the construction and
analysis of statistical models that describe the pro-
cess by which claims are filed by policyholders (see,
for example, Reference 17). Different types of in-
surance often require the use of different statistical
models, the choice of statistical model being dictated
by the fundamental nature of the claims process.

For property and casualty insurance, the claims pro-
cess consists of claims being filed by policyholders
at varying points in time and for varying amounts.
In the normal course of events, wherein claims are
not the result of natural disasters or other widespread
catastrophes, loss events that result in claims (i.e.,
accidents, fire, theft, etc.) tend to be randomly dis-
tributed in time with no significant pattern to the oc-
currence of those events from the point of view of
insurable risk (see Figure 1). Policyholders can also
file multiple claims for the same type of loss over
the life of a policy.

Claim filings such as these can be modeled as a Pois-
son random process,17 which is the appropriate math-
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ematical model for events that are randomly distrib-
uted over time with the ability for events to reoccur
(i.e., renew).

In addition to modeling the distribution of claims
over time, actuaries must also model the amounts
of those claims. In actuarial science, claim amounts
for property and casualty insurance are modeled as
probability distributions. Two kinds of distributions
are usually considered: those for the amounts of in-
dividual claims, and those for the aggregate amounts
of groups of claims. In principle, aggregate loss dis-
tributions can be derived mathematically from the
distributions of the individual losses that make up
the sum. However, only in a few special cases can
closed-form solutions be obtained for these math-
ematical equations. In most cases, approximations
must be employed. Fortunately, actuaries typically
consider large groups of claims when analyzing ag-
gregate loss. The central limit theorem can there-
fore be invoked and aggregate losses can be rea-
sonably approximated by normal (i.e., Gaussian)
distributions.

On empirical examination of large volumes of au-
tomobile claims data, claim amounts were found to
have highly skewed distributions. Most claims were
small in value relative to the maximum amounts cov-
ered by the policies, but a significant proportion of
large claims were also present. When the claim
amounts were logarithmically transformed, the skew-
ness virtually disappeared and the resulting distri-
butions were found to be highly Gaussian in shape.
These properties are the defining characteristics of
log-normal distributions, an example of which is il-
lustrated in Figure 2.

For Poisson random processes, the time between
claim events follows an exponential distribution.
Moreover, no matter at what point one starts ob-
serving the process, the time to the next claim event
has the same exponential distribution as the time be-
tween claim events. From these properties and the
additivity properties of Poisson random processes,
it can be shown that the probability density for the
time T (i.e., the total earned exposure) until the (k �
l ) th claim filing (where k is the number of settled
claims and l is the number of open claims) is given
by

f�T�k � l � � � k�le ��T (9)

The maximum likelihood estimate used by ProbE
for the frequency parameter � is thus the same one

that is typically used by actuaries for estimating fre-
quency:

�̂ �
k � l

T
�

Total Number of Claims
Total Earned Exposure (10)

In the case of claim amounts, the joint probability
density function for the severities s1, . . . , sk of k set-
tled claims is given by:

f�s1, . . . , sk� �
1

� i�1
k �2� �log si

� exp ��
¥ i�1

k �log �si� � �log�
2

2� log
2 � (11)

where exp( x) stands for e to the power x.

The estimates of the mean log severity �log and the
variance of the log severity �log

2 are likewise the ones
typically used for log-normal distributions:

�̂log �
1
k �

i�1

k

log �si� (12)

and

�̂ log
2 �

1
k � 1 �

i�1

k

�log �si� � �̂log�
2 (13)

Equations 12 and 13 are used during training to es-
timate the parameters of the severity distribution for
individual claims. These estimators presume that the
individual severity distributions are log-normal. The
usual unbiased estimators for the mean and variance
of severity are used after data mining has been com-
pleted to estimate the parameters of the aggregate
severity distribution:

Figure 1 Accident occurrences over time

Reprinted with permission from C. Apte, E. Grossman, 
E. P. D. Pednault, B. Rosen, F. Tipu, and B. White, “Probabilistic 
Estimation Based Data Mining for Discovery Insurance Risks,” 
IEEE Intelligent Systems 14, No. 6, 49–58 (© 1999 IEEE).
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�̂ �
1
k �

i�1

k

si (14)

�̂ 2 �
1

k � 1 �
i�1

k

�si � �̂� 2 (15)

Only fully settled claims are considered when apply-
ing Equations 12–15. The severity fields of unsettled
claims are often used to record reserve amounts; that
is, the money that insurers hold aside to cover pend-
ing claims. Reserve amounts are not actual losses
and therefore are not used to develop models for
predicting actual losses.

As mentioned earlier, negative log-likelihoods are
calculated for each database record in a risk group
based on Equations 9 and 11. The nonconstant terms
in the negative log-likelihoods are then summed and
used as the criterion for selecting splitting factors in
the top-down identification of risk groups. The con-
stant terms do not contribute to the selection of split-
ting factors and, hence, are omitted to reduce the
amount of computation.

With constant terms removed, the negative log-like-
lihood score for the ith database record is:

	i �

�ti for nonclaim records

�ti � log ��log

� � for open claim records

�ti � log ��log

� � �
�log�si� � �log�

2

2� log
2

for settled claim records

(16)

where t i is the earned exposure for the ith record.
Note that the Poisson portion of the model contrib-
utes an amount �t i � log(1/�) to the score of each
claim record and an amount �t i to the score of each
nonclaim record. The sum of these values equals the
negative logarithm of Equation 9. The log-normal
portion of the model contributes nothing to the
scores of nonclaim records, and an amount
log(�log) � (log(s i) � � log)2/(2�log

2 ) to the score of
each settled claim record. The sum of these values
equals the negative logarithm of Equation 11 with
constant terms (i.e., ¥ i�1

k log(�2� s i)) removed. In
the case of open claim records, an expected-value
estimate of the log-normal score is constructed based
on the scores of the settled claim records. After drop-
ping constant terms from this expected value esti-

Figure 2 The probability distribution for (A) size of claim, and (B) log transform of size of claim
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Reprinted with permission from C. Apte, E. Grossman, E. P. D. Pednault, B. Rosen, F. Tipu, and B. White, “Probabilistic Estimation Based Data Mining 
for Discovery Insurance Risks,” IEEE Intelligent Systems 14, No. 6, 49–58 (© 1999 IEEE).
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mate, open claim records contribute an amount
log(�log) to the log-normal portions of their scores.

If the database records for a risk group contain k
settled claims and l open claims, then the sum of the
above scores is given by:

	 � � ��
i�1

N

ti� � �k � l � log ��log

� �
� � 1

2� log
2 � �

i�1

k

�log�si� � �log�
2 (17)

In the above equation, N is the total number of da-
tabase records for the risk group, the first k of which
are assumed for convenience to be settled claim rec-
ords. Equation 17 is then summed over all risk groups
to yield the overall score of the risk model.

Note that the total numbers of open and settled
claims, and the mean and variance of the log sever-
ity constitute the sufficient statistics of the above joint
Poisson/log-normal model, and that negative log-
likelihood degree-of-fit scores can be calculated from
these sufficient statistics. Moreover, the sufficient sta-
tistics from two data segments can be easily merged,
as required for ProbE’s bottom-up merging process.

From the point of view of machine learning, the im-
portant thing to note about Equation 17 is that in-
surance-specific quantities such as earned exposure
and claim status enter into both the equations for
estimating model parameters and the equations for
selecting splitting factors. Earned exposure effec-
tively plays the role of a weighting factor, while claim
status plays the role of a correction factor that ad-
justs for missing data in one of the two data fields
to be predicted (i.e., the settled claim amount given
that a claim was filed).

Equation 17 essentially replaces the entropy calcu-
lations used in many standard tree-based modeling
algorithms. It should be noted that entropy is, in fact,
a special case of negative log-likelihood. Its calcu-
lation need not be restricted to categorical or Gaus-
sian (least-squares) distributions. The development
of the joint Poisson/log-normal model presented
above illustrates the general methodology one can
employ to customize the splitting criteria of tree-
based modeling algorithms to take into account data
characteristics that are peculiar to specific applica-
tions.

The joint Poisson/log-normal probability model for
modeling insurance risk provides the basis of the UPA
solution.2,18 This solution was benchmarked in part-
nership with Farmers Group, a large P&C insurer,
and was found to perform very competitively. As with
ATM-SE, the key advantage offered by UPA over tra-
ditional actuarial approaches is the high degree of
automation in producing robust predictive models
from large volumes of insurance data. UPA is typ-
ically run on millions of policyholder data records,
each with several hundred attributes.

Conclusion

Machine learning and predictive modeling-based so-
lutions have been shown to be highly effective in solv-
ing many important business and industrial problems.
However, until these techniques are made highly au-
tomated, scalable, and reliable, their use will remain
limited, gated by the requirement to have trained
analysts available to develop predictive models us-
ing the techniques.

The ProbE project represents a long-term effort in
IBM Research to create highly automated, scalable,
and reliable predictive modeling technology. With
sufficient automation and reliability built into the
overall framework, business solutions that utilize
ProbE can be made available to a wider community
of business application and solution developers.

With this goal in mind, a central theme of our on-
going research is to integrate the ProbE methodol-
ogy into database middleware. Through integration,
many of the strengths of database technology can
be exploited, including the important feature of scal-
ability via data-partitioned parallelism. We antici-
pate that to make data analytics ultimately wide-
spread in their use, it is first necessary to make them
widely available to the vast community of database
application developers and users.

Cited references

1. C. Apte, E. Bibelnieks, R. Natarajan, E. P. D. Pednault,
F. Tipu, D. Campbell, and B. Nelson, “Segmentation-Based
Modeling for Advanced Targeted Marketing,” Proceedings
of the Seventh ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (SIGKDD), August
2001, ACM, New York (2001), pp. 408–413.

2. C. Apte, E. Grossman, E. P. D. Pednault, B. Rosen, F. Tipu,
and B. White, “Probabilistic Estimation-Based Data Mining
for Discovering Insurance Risks,” IEEE Intelligent Systems
14, No. 6 (November/December 1999), pp. 49–58.

3. R. Kohavi and G. H. John, “The Wrapper Approach,” Fea-

IBM SYSTEMS JOURNAL, VOL 41, NO 3, 2002 APTE ET AL. 447



ture Selection for Knowledge Discovery and Data Mining, Klu-
wer Academic Publishers, New York (1998), pp. 33–50.

4. J. R. Quinlan, “Learning with Continuous Classes,” Proceed-
ings of the 5th Australian Joint Conference on Artificial Intel-
ligence, World Scientific Press, Singapore (1992), pp. 343–
348.

5. R. Kohavi, “Scaling Up the Accuracy of Naive Bayes Clas-
sifiers: A Decision-Tree Hybrid,” Proceedings of the 2nd In-
ternational Conference on Knowledge Discovery and Data Min-
ing, AAAI Press, Menlo Park, CA (1996), pp. 202–207.

6. G. V. Kass, “An Exploratory Technique for Investigating
Large Quantities of Categorical Data,” Applied Statistics 29,
No. 2, 119–127 (1980).

7. G. H. Golub and C. F. Van Loan, Matrix Computations, Sec-
ond Edition, Johns Hopkins University Press, Baltimore, MD
(1989).

8. A. Björck, Numerical Methods for Least Squares Problems,
SIAM, Philadelphia, PA (1996).

9. R. Natarajan and E. P. D. Pednault, “Segmented Regression
Estimators for Massive Data Sets,” Proceedings of the 2nd
SIAM International Conference on Data Mining, SIAM, Phil-
adelphia, PA (2002).

10. A. Agresti, Categorical Data Analysis, John Wiley & Sons, Inc.,
New York (1990).

11. G. John and P. Langley, “Estimating Continuous Distribu-
tions in Bayesian Classifiers,” Proceedings of the Eleventh An-
nual Conference on Uncertainty in Artificial Intelligence, Mor-
gan Kaufmann Publishers, San Francisco, CA (1995), pp. 338–
345.

12. R. Kohavi and M. Sahimi, “Error-Based and Entropy-Based
Discretization of Continuous Features,” Proceedings of the
Second International Conference on Knowledge Discovery and
Data Mining, AAAI Press, Menlo Park, CA (1996), pp. 114–
119.

13. C. N. Hsu, J. J. Kuang, and T. T. Wong, “Why Discretization
Works for Naive Bayesian Classifiers,” Proceedings of the Sev-
enteenth International Conference on Machine Learning, Mor-
gan Kaufmann Publishers, San Francisco, CA (2000), pp. 399–
406.

14. R. Natarajan and E. P. D. Pednault, “Using Simulated Pseudo
Data to Speed Up Statistical Predictive Modeling,” Proceed-
ings of the First SIAM International Conference on Data Min-
ing, SIAM, Philadelphia, PA (2001).

15. G. Schwarz, “Estimating the Dimension of a Model,” Annals
of Statistics 6, 461–464 (1978).

16. P. Langley and S. Sage, “Induction of Selective Bayesian Clas-
sifiers,” Proceedings of the Tenth Conference on Uncertainty
in Artificial Intelligence, Morgan Kaufmann Publishers, San
Francisco, CA (1994), pp. 399–406.

17. S. A. Klugman, H. H. Panjer, and G. E. Wilmot, Loss Mod-
els: From Data to Decisions, John Wiley & Sons, Inc., New
York (1998).

18. E. P. D. Pednault and C. Apte, “Probabilistic Estimation in
Data Mining,” Data Mining for Scientific and Engineering Ap-
plications, Kluwer Academic Publishing, New York (2001).

Accepted for publication March 24, 2002.

Chidanand V. Apte IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York 10598
(electronic mail: apte@us.ibm.com). Dr. Apte manages the Data
Abstraction Research group at the IBM T. J. Watson Research
Center. He received his Ph.D. degree in computer science from
Rutgers University in 1984. His research interests include knowl-

edge discovery and data mining, applied machine learning and
statistical modeling, and business intelligence automation.

Ramesh Natarajan IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York 10598
(electronic mail: nramesh@us.ibm.com). Dr. Natarajan is a re-
search staff member in the Data Abstraction Research group at
the IBM T. J. Watson Research Center. He received his Ph.D.
degree in chemical engineering from the University of Texas at
Austin in 1984. He is currently working on statistical data mining
applications, modeling algorithms for massive data sets, and da-
tabase analytic extenders.

Edwin P. D. Pednault IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York 10598
(electronic mail: pednault@us.ibm.com). Dr. Pednault is a research
staff member in the Data Abstraction Research group at the IBM
T. J. Watson Research Center. He received his Ph.D. degree in
1987 at Stanford University, working with Robert C. Moore at
SRI International on the mathematical foundations of automatic
planning. His current research interests include data mining, sta-
tistical learning theory, and reinforcement learning.

Fateh Tipu IBM Research Division, Thomas J. Watson Research
Center, P.O. Box 218, Yorktown Heights, New York 10598 (elec-
tronic mail: fateh@watson.ibm.com). Mr. Tipu is an advisory soft-
ware engineer in the Data Abstraction Research group at the IBM
T. J. Watson Research Center. He received his M.S. degree in
electrical engineering from the University of Wisconsin-Madi-
son in 1991. His technical interests include software development,
data mining, and computer-aided design (CAD) tools for logic
design.

APTE ET AL. IBM SYSTEMS JOURNAL, VOL 41, NO 3, 2002448


