
Developing XML Web
services with
WebSphere Studio
Application Developer

by C. Lau
A. Ryman

Web services have recently emerged as a
powerful technology for integrating
heterogeneous applications over the Internet.
The widespread adoption of Web services
promises to usher in an exciting new
generation of advanced distributed applications.
These will support a new and growing set of
specifications, such as Simple Object Access
Protocol (SOAP), Web Services Description
Language (WSDL), and Universal Description,
Discovery, and Integration (UDDI). Extensible
Markup Language (XML) and its associated
family of standards also play a central role in
Web services by providing a data interchange
format that is independent of both programming
languages and operating systems. The
application developer seeking to reap the
benefits of Web services is therefore faced
with a significant, and potentially steep, new
learning curve. Clearly, application development
tools that lower this barrier are crucial for the
rapid and widespread adoption of Web
services. This paper discusses the development
tasks associated with XML Web services and
describes a new suite of tools that improve
developer productivity, by reducing the
requirements for detailed knowledge of the
underlying specifications and standards, and
allow the developer to focus on the business
problem domain. This suite of XML and Web
services tools is part of IBM’s recently released
WebSphere® Studio Application Developer
product, which is based on the new Eclipse
open source tool integration platform.

Web services provide a distributed computing tech-
nology for integrating applications over the Inter-
net. Such a technology has the potential to dramat-
ically transform our information-based economy.
However, there have been many distributed comput-
ing technologies in the past, for example, Common
Object Request Broker Architecture** (CORBA**),
Microsoft DCOM**, and Java** Remote Method In-
vocation (RMI), yet none has become widespread on
the Internet. Although Web services technologies are
described in detail in the other papers of this issue
of the IBM Systems Journal, it is useful here to briefly
compare Web services with the other distributed
computing technologies so that we can understand
what they have in common and what has changed.
Application developers who are already familiar with
a previous distributed computing technology will be
able to immediately apply much of their knowledge
and experience to Web services. An overview of Web
services1 as well as in-depth technical information2

can be found on the Web.

All distributed computing technologies, including
Web services, provide a mechanism for a client pro-
gram, executing on a local host, to invoke a server
function that executes on a remote host and to re-
ceive the result of the remote execution. The style
used by the client program to invoke the server func-
tion depends on the distributed computing technol-
ogy. For example, the client program may call a re-

�Copyright 2002 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

LAU AND RYMAN 0018-8670/02/$5.00 © 2002 IBM IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002178

mote procedure, invoke a method on a remote
object, or put messages on and get messages from
a queue. These invocation styles are referred to as
remote procedure call (RPC), Remote Method In-
vocation (RMI), and message queuing.

The programming interface supported by the remote
server function is often specified using an interface
definition language (IDL). The IDL typically speci-
fies the operations provided by the remote server
function, their input and output parameters, and
their exceptions. Tools are provided to generate a
client “stub,” or proxy, and a server skeleton from
the IDL. Although the terms stub and proxy are both
used in practice, the term proxy is used in the fol-
lowing discussion. The client proxy gives the client
program a convenient way to invoke the remote
server function. The server skeleton provides a place
to include the implementation of the remote server
function. The proxy and skeleton hide the protocol
details from the local client program and the remote
server function implementation.

The local client program calls the client proxy
through its programming language interface. The cli-
ent proxy converts the programming language input
parameters into a byte stream that can be sent to
the remote server using some protocol and transport
mechanism. The process of converting programming
language parameters into a protocol-dependent byte
stream is referred to as “marshaling.” The remote
host routes the invocation to the correct server skel-
eton, which converts the incoming byte stream back
into programming language parameters. The pro-
cesses of converting the protocol-dependent byte
stream back into programming language parameters
is referred to as “unmarshaling.” Marshaling and un-
marshaling may also be referred to as “serialization”
and “deserialization.” The client program and server
skeleton may use different programming languages
and operating systems. The server skeleton passes
the input parameters to the function implementa-
tion for execution, receives the execution result, mar-
shals it into a response, and sends it back to the cli-
ent proxy. The client proxy unmarshals the response
and returns the result to the local client program.

If Web services were simply another distributed com-
puting technology, there would be little reason to
get excited. However, there are some fundamental
differences between Web services and its predeces-
sors that make the technology very powerful. The main
difference between Web services and the previous dis-
tributed computing technologies is that they are de-

signed for the extremely heterogeneous environment
of the Internet. The Internet is composed of a huge
number of highly diverse computers, ranging from
the simplest client devices to the most complex main-
frame servers. In addition, these computers are not
under the control of a single information technol-
ogy department that can impose uniform software
standards. Web services specifications are therefore
completely independent of programming language,
operating system, and hardware, and they enforce
very loose coupling between the client and the server.

To see why the programming language and operat-
ing system independence of Web services is a major
advance, consider the tight coupling present in
CORBA, Microsoft DCOM, and Java RMI. CORBA cou-
ples the client and server with an underlying object
model. In addition, the protocol used by CORBA, In-
ternet Inter-ORB** Protocol (IIOP**), was not ini-
tially specified tightly enough to guarantee interop-
eration between different vendors. More recent
versions of IIOP seek to achieve vendor interoper-
ability. DCOM couples the client and server through
the Microsoft Windows** operating system. At-
tempts to implement DCOM on other operating sys-
tems have not gained significant market acceptance.
Finally, Java RMI couples the client and server
through the Java programming language. In prac-
tice, successful use of Java RMI involves even tighter
coupling, because Java object serialization is very
sensitive to virtual machine levels and class versions.
CORBA, DCOM, and Java RMI are important distrib-
uted programming technologies and will not be re-
placed by Web services in situations where tight cou-
pling is both desirable and possible. However, in
situations that require loose coupling, Web services
will likely become the dominant technology.

Web services are designed for maximum interoper-
ability across the Internet. Extensible Markup Lan-
guage (XML)3 plays a key role as the main data in-
terchange format for Web services parameter
marshaling. In comparison with the highly optimized
binary formats used by other distributed computing
technologies, Web services may appear inefficient,
but those technologies entailed tight coupling be-
tween the client and server and would therefore
never become dominant on the Internet. In addition,
the continual improvements in network bandwidth,
processor speed, and compression techniques make
the more verbose nature of XML of less concern.

The use of XML in Web services is a major differ-
ence from other distributed computing technologies

IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002 LAU AND RYMAN 179

and has important application development conse-
quences. In the other technologies, the IDL makes
use of data structures that correspond closely with
the supported programming languages, often involv-
ing certain assumptions about an underlying object
model, and the data interchange format is a highly
optimized binary stream that tightly couples the cli-
ent and the server. In XML Web services, the data
types are specified using XML Schema (XSD)4 and
the data interchange is in XML format. Although the
Web services run-time environment can automati-
cally encode programming language data structures
as XML, this introduces coupling between the pro-
gramming language and the Web service interface.
Application developers will find it beneficial to de-
sign interfaces using XSD in order to give them
greater implementation flexibility. As application de-
velopers begin to think in terms of XML rather than
programming languages when defining Web services,
they will begin to need tools for authoring XSD and
Web Services Description Language (WSDL).5

As Web services are initially adopted, client proxies
and server skeletons will normally be implemented
in conventional programming languages, such as Java
and JavaScript**. Tools for mapping between XML
Schema and programming language data structures
will be used to hide the XML details from the pro-
grammer. However, as XML becomes more familiar
to programmers, its role may broaden to also include
processing. Examples of XML processing technology
include Extensible Stylesheet Language Transforma-
tions (XSLT),6 XML support in databases such as IBM
Database 2* (DB2*) Universal Database (UDB),7 and
XML Query8 language. These technologies allow the
programmer to specify processing natively in terms
of XML as opposed to converting between XML and
conventional programming languages. In many cases
it may be more productive for programmers to spec-
ify simple processing using an XML technology, and
to call out to conventional programming languages,
such as Java, for more complex processing. Tools for
editing and debugging XML processing technologies
will become important.

In the case of Web services, the role of the interface
definition language is played by WSDL, and although
WSDL can in theory be extended to describe arbitrary
transports and marshaling, the use of HyperText
Transmission Protocol (HTTP), Simple Object Ac-
cess Protocol (SOAP),9 and XML are likely to dom-
inate on the Internet. Web services can also be used
effectively for integrating applications within an en-
terprise that has control over the computing infra-

structure. Other transport mechanisms, such as mes-
sage queuing, may be used within the corporate
intranet. However, many enterprises have a heteroge-
neous computing infrastructure that has many char-
acteristics in common with the Internet. Corporate
mergers and acquisitions are another factor that in-
creases the diversity of the enterprise computing envi-
ronment and that makes the use of XML Web services
attractive. In fact, many enterprises may benefit from
implementing Web services behind their firewall be-
fore they expose them to partners and customers.

The SOAP run-time environment

Apache SOAP10 is a Java Open Source implemen-
tation of the SOAP specification that runs in Web-
Sphere*, Apache Tomcat,11 and other Java 2 Plat-
form, Enterprise Edition (J2EE**) -compliant
application servers. IBM SOAP adds security, admin-
istration, and tracing enhancements to Apache SOAP.
IBM SOAP is a fully supported component of Web-
Sphere 4.0 that provides a production-ready envi-
ronment for deploying Web services.

Due to the rapid evolution of Web services speci-
fications and implementations, developers can ex-
pect to see a steady stream of new versions of Apache
SOAP. Many developers will want to experiment with
the latest Apache SOAP versions before they become
part of the fully supported IBM SOAP product imple-
mentation. The Web services tools described here
therefore support deployment to both Apache SOAP
and IBM SOAP so that developers can track the latest
advances and be well positioned to quickly exploit
them as soon as they become part of the supported
production environment.

The Apache SOAP run-time environment includes
support for both Java clients and Java servers. A Java
client can access SOAP Web services implemented
in any programming language. Indeed, the power of
Web services is that the programming language used
to implement the service is both unknown and ir-
relevant to the client. The Apache SOAP run-time
environment has built-in support for implementing
Web services as Java classes or scripting language
programs and has an extension mechanism, called
the Pluggable Provider Interface, for implementing
other types of Web services. Providers for Enterprise
JavaBeans** (EJB**), database stored procedures,
and Microsoft COM objects are included with Apache
SOAP. IBM SOAP includes a provider for DB2 XML Ex-
tender, which is described later in more detail. Pro-
viders allow developers to deploy existing compo-

LAU AND RYMAN IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002180

nents as Web services, and to develop new Web
services using languages other than Java.

Java/XML type mapping. As previously discussed,
any distributed computing technology must provide
support for marshaling and unmarshaling data. In
the case of Apache SOAP, the run-time component
is implemented in Java code and the data interchange
format is XML, so rules for specifying the mapping
between Java and XML types must be provided as
part of the implementation of every Java client or
Web service. The SOAP specification includes a def-
inition of the SOAP encoding style, which further
guides the marshaling and unmarshaling process, but
other encoding styles can be used. The Apache SOAP
run-time environment allows the developer to spec-
ify how to map between Java and XML types for a
given encoding style. The developer can specify a se-
rializer to marshal the Java type to XML, a deseri-
alizer to unmarshal the XML type to Java, or both
for two-way mapping.

The rules for mapping between Java and XML types
are stored in a SOAP mapping registry object that is
used by either the Java client proxy or the Web ser-
vice. The SOAP mapping registry has predefined rules
for mapping between simple Java and XML types.
However, if the Web service interface involves com-
plex XML types, then the developer must specify how
they are mapped to corresponding Java types.

The simplest way to map XML types is to use the Java
type org.w3c.dom.Element, which represents a generic
XML element in the Document Object Model (DOM).12

This technique is referred to as literal XML encoding.
However, this approach requires that the developer un-
derstand the details of the XML type and the Java ap-
plication programming interface (API) for DOM. The
use of Element is error prone, because the developer
can create an invalid element, but for XML types that
are not too complex, this may be the best approach.

If the developer is deploying a Java class as a Web
service, and the Java class uses a Java bean in its in-
terface, then the bean can be mapped to XML using
the SOAP encoding style. The SOAP specification de-
fines how to represent programming language data
types as XML. The Apache SOAP run-time environ-
ment includes a bean serializer that implements SOAP
encoding for Java beans. The bean serializer can mar-
shal an instance of a Java bean into XML or unmar-
shal XML into an instance of a Java bean.

If the developer is proceeding from the WSDL def-
inition of a Web service and its interface includes a
complex XML type, then the XML type can be mapped
to a custom Java class that is generated from the XML
Schema type definition using tools provided in the
WebSphere Studio Application Developer suite. The
custom Java class includes methods for marshaling
and unmarshaling. The ability to generate a Java class
that corresponds to an XML Schema complex type
is useful for general application development and is
included as part of the XML Schema Editor tool,
which is described later in greater detail.

WebSphere Studio Application Developer

The following sections describe application devel-
opment tools for XML Web services that are included
as part of WebSphere Studio Application Developer,
a new integrated development environment that is
based in the Eclipse platform.13 Eclipse is a Java open
source development tool integration platform that
will provide a common environment for all future
IBM tools. Eclipse is designed to be easily extended
by other tool vendors and customers. An early ver-
sion of Eclipse, and the tools described here, was
released on alphaWorks* as the IBM XML and Web
Services Development Environment.14 In addition
to XML and Web services tools, WebSphere Studio
Application Developer includes a complete suite of
tools for Java programming, Web application devel-
opment, database access, EJB creation, debugging,
tracing, and performance monitoring.

WebSphere Studio Application Developer is a proj-
ect-oriented, team-based development environment
that allows the developer to launch editors and wiz-
ards against resources. A detailed description of
Eclipse and WebSphere Studio Application Devel-
oper is beyond the scope of this paper. Instead, a
few features of the environment are briefly described
here.

Figure 1 shows the workbench window, which is the
main window in the development environment. It
contains a set of perspectives. The developer can
switch between perspectives by clicking on an icon
along the left of the window or using the Perspec-
tive menu. Each perspective contains a set of views
and editors that are relevant to a particular task. The
screenshot shows the Web perspective, which is use-
ful for developing Web applications and Web
services. Other perspectives are defined for Java pro-
gramming, database development, server configu-
ration, and XML development. In this perspective,

IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002 LAU AND RYMAN 181

editors for two resources (TemperatureConverter.java
and TemperatureConverter.wsdl) and the Navigator,
Outline, and Tasks views are open. The Navigator
view displays the resources in all the development
projects. The Outline view displays the contents of
the currently active editor, which in this example, is
open on a Java source file. The Tasks view displays
problems and user-defined tasks. In this example,
the Task view displays an error message caused by
a missing semicolon in the open Java source file. The
environment has a user interface style that should
be familiar to many developers, but it is unique in
its extensibility. Developers can not only easily de-
fine new perspectives, but can also create new views
and editors that integrate seamlessly with the envi-
ronment.

Web services development tasks

Web services development adds several new tasks to
the application development process. Some of these
tasks should be familiar to those developers who have
prior experience with other distributed programming
technologies. It is useful to group the tasks accord-
ing to the following development life-cycle activities:

● Discover existing Web services
● Access existing Web services and compose them

into new applications and Web services
● Create new Web services by using existing com-

ponents or developing new components
● Deploy new Web services into an application server
● Test new and existing Web services
● Publish new Web services

Figure 1 The workbench window

LAU AND RYMAN IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002182

Discover. The discover task consists of locating the
Web services needed to build a new application or
Web service and importing their WSDL files into the
development project. As the number of available
Web services increases, programmers will have trou-
ble discovering them. This problem is addressed by
the Universal Description, Discovery, and Integra-
tion (UDDI) business registry,15 which indexes Web
services so they can be discovered quickly.

Developers can access UDDI by several means. UDDI
itself is exposed as a SOAP Web service, so develop-
ers can write custom applications that search UDDI
nodes. However, this is labor-intensive and requires
a detailed knowledge of the UDDI programming in-
terface. Each UDDI node also offers its own Web-
based user interface, but this user interface differs

from node to node, depending on the operator,16 so
a developer who needs to search nodes from several
operators would have to learn multiple user inter-
faces.

WebSphere Studio Application Developer includes
the UDDI Explorer, which provides a common user
interface to any compliant UDDI business registry.
The UDDI Explorer is seamlessly integrated into the
development environment and shares its common
look and feel. The UDDI Explorer lets the developer
perform powerful queries against UDDI business reg-
istries and allows the results to be filtered and viewed
in flexible ways. Figure 2 is a screenshot of the UDDI
Explorer. As queries are executed, the results are
added to the UDDI Navigator view and can act as the
starting point for further queries. Working in this

Figure 2 The UDDI Explorer

IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002 LAU AND RYMAN 183

way, the developer can navigate through the UDDI
hierarchy to locate Web services that satisfy the ap-
plication requirements. When the developer finds a
suitable Web service, its WSDL description can be eas-
ily imported into the development project where it
can be used in further development tasks. For ex-
ample, the developer can generate a sample appli-
cation that allows him or her to test the Web ser-
vice. The UDDI Explorer supports the recommended
best practices for using WSDL in UDDI business reg-
istries.17

Initially, UDDI registries were hosted only by IBM and
Microsoft, who developed the specification. Now
UDDI is beginning to be deployed by other organi-
zations. For example, developers can find many in-
teresting Web services in the UDDI registry main-
tained by XMethods.18

Access. The access task consists of developing cli-
ent code that invokes the Web service. The input to
this task is the WSDL file that describes the Web ser-
vice to be accessed. The client code may be used as
part of a new Web application or Web service. Af-
ter the client code has been developed, it can be in-
corporated into the new application or Web service
using standard programming tools such as editors,
compilers, and debuggers. WebSphere Studio Ap-
plication Developer supports Web service access
from Java and JavaScript clients.

JavaScript clients. A JavaScript Web service client
would normally run in a Web browser, although desk-
top JavaScript applications are also possible. Web-
Sphere Studio Application Developer includes a
JavaScript development environment that is inte-
grated with the Web application development tools.
The JavaScript development environment includes
an editor that supports syntax highlighting and code
completion, wizards for generating complex Java-
Script code snippets, and a debugger. Support for
JavaScript clients is important because of the wide
adoption of JavaScript by Web application develop-
ers. Many developers find JavaScript easier to use
than Java, and for simple applications, JavaScript
may be the best choice.

The simplest form of JavaScript client uses the
HTTP GET or POST Web service bindings to obtain
an XML response for processing in the Web browser.
This approach requires that the JavaScript client
parse and process the XML response, perhaps using
XSLT. Web browser-based XML processing has been

available for some time now, and this approach is
likely to be popular due to its simplicity.

A more sophisticated form of JavaScript client is
based on SOAP. Microsoft Internet Explorer 5, and
later versions, supports an HTML component, called
the WebService Behavior,19 which takes a WSDL file
as input and dynamically creates a JavaScript object
that acts as a SOAP client proxy for the Web service.
With this approach, the developer programs directly
in JavaScript, not XML.

Web browser access to Web services raises security
concerns similar to those raised by Java applets. Spe-
cifically, if the Web browser allowed JavaScript code
to access Web services located at any URL (uniform
resource locator), then a Web page could attempt
access to Web services located behind the firewall.
Therefore, Web browsers are likely to restrict access
by a Web page to those URLs that are located on the
host that served the Web page. This means that if
a Web page needs to compose Web services that are
located on different hosts, then those Web services
must be accessed indirectly by wrapping them with
another Web service that resides on the Web page
host and that redirects the requests. The wrapping
Web service is in effect a server proxy. Therefore,
Web browser access to Web services will not nec-
essarily reduce the traffic on the Web page host.
However, the benefit in creating server proxies is to
make Web services more accessible to the very large
community of developers who are skilled in client-
side JavaScript programming. The restrictions on
Web service access imposed by Web browsers can
be entirely avoided by performing server-side access.

Java clients. A Java Web service client would nor-
mally be a server-side component such as a servlet,
JavaServer Pages** (JSP**) Web page, Java bean,
or EJB bean, but it could also be an applet or desk-
top application. The easiest way to access a Web ser-
vice from a Java client is to use the Web Service Cli-
ent Wizard to generate a client proxy from the WSDL
file. The client proxy is a Java class that has a method
for each operation defined in the WSDL file. The sig-
nature of each method matches the message parts
for the operation. The client proxy uses the Apache
SOAP run-time component to marshal the Java
method arguments into XML and unmarshal the XML
response into the Java return value. The rules for
mapping between Java and XML are defined in a
SOAP mapping registry object for the client. The cli-
ent proxy may therefore also include custom Java
classes that are generated by the XML Schema tools.

LAU AND RYMAN IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002184

The generated Java client proxy accesses a generic
Call object that is part of the Apache SOAP run-time
component. The Call object takes the operation
name and a list of arguments as input parameters,
and can dynamically invoke the remote Web service
operation in a way that is analogous to the way that
ordinary Java methods can be invoked using reflec-
tion. Sophisticated Java programmers may find it
useful to access the Call object directly without the
use of a generated client proxy. Direct access to the
Call object allows highly dynamic applications where,
for example, the WSDL for the Web service is ob-
tained at run time.

The Web Service Client Wizard can also generate
and launch a sample JSP test client that lets the de-
veloper immediately test the Web service and pro-
vides a starting point for further development. The
test client will be discussed later in more detail.

Create. The create task involves creating a new Web
service. In general, a complete Web service imple-
mentation consists of a WSDL file that describes the
service, a deployment descriptor that specifies a com-
ponent that implements the service and other infor-
mation, a component that implements the operations
of the service, and associated code that performs type
mapping or other functions. Depending on the im-
plementation technology, some of these develop-
ment artifacts may not be required.

The Apache SOAP run-time environment supports
several styles of Web service implementation based
on traditional software components, such as Java
beans, EJB beans, database stored procedures, and
scripting language programs. Each of these imple-
mentation styles is handled by a provider class that
is part of an extensible framework. It is therefore
possible to create Web services based on new types
of components by defining an appropriate provider.
For example, WebSphere Studio Application Devel-
oper supports Web services based on DB2 XML Ex-
tender, which will be described later. The provider
type, and associated parameters such as the name
of the component that implements the service and
type mapping information, is defined in an Apache
SOAP deployment descriptor, which is an XML file
that normally uses the namespace prefix “ISD.” We
often refer to deployment descriptors as “ISD files”
and use “ISD” as the file extension.

In addition to SOAP-based Web services, it is pos-
sible to create Web services that use the HTTP GET
and POST bindings. These non-SOAP Web services

can be implemented by servlets, JSP Web pages, Com-
mon Gateway Interface (CGI) programs, or other
URL-addressable Web programming technologies.

The tasks involved in creating a Web service depend
on the starting point. The two main scenarios are
bottom-up and top-down. In the bottom-up scenario,
the developer first creates or reuses a component
that implements some business function, and then
transforms it into a Web service by creating its WSDL
file, deployment descriptor, and any other required
supporting code. The bottom-up approach will be
widely used in the initial phase of Web services adop-
tion, because it allows developers to reuse existing
components. In the top-down scenario, the devel-
oper first creates or is given the WSDL file for the
service, and then must create a component to im-
plement the operations. The top-down approach will
become more important as industry groups begin to
agree on standard WSDL interfaces to common bus-
iness functions. A meet-in-the-middle approach is
also possible. In this case the starting point consists
of both the WSDL file and the implementation com-
ponent, and the developer must create additional
support code that maps between the two.

WebSphere Studio Application Developer supports
the bottom-up approach for Java beans, EJB beans,
Structured Query Language (SQL), and URLs, and
the top-down approach for Java beans. Over time,
the tool coverage for the top-down, bottom-up, and
meet-in-the-middle approaches will expand to in-
clude more implementation technologies.

All major relational database vendors are incorpo-
rating XML capabilities into their products, and work
is underway to extend the SQL standard to directly
support XML. DB2 UDB includes the XML Extender,
which allows XML documents to be stored in columns
or composed and decomposed into tables as relation-
al data. The mapping from XML to relational data
is specified by an XML Document Access Definition
(DAD) file. WebSphere Studio Application Devel-
oper includes the Relational Database to XML Map-
per tool, which allows the developer to easily generate
DAD files. This tool is described later in more detail.

The support for XML in DB2 makes it a natural choice
for implementing Web services. WebSphere Studio
Application Developer supports the creation of Web
services implemented in DB2 XML Extender (DXX)
that are defined by DAD Extension (DADX) files. A
DADX file is an XML file that contains operations de-
fined by normal SQL statements and calls to the spe-

IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002 LAU AND RYMAN 185

cial stored procedures included in DB2 XML Extender.
IBM SOAP includes a provider for handling DADX files.
WebSphere Studio Application Developer includes
an SQL Builder tool that can generate DADX files.
Developers can edit the generated DADX using a
standard text editor or the XML Editor tool that is
included with WebSphere Studio Application De-
veloper. The SQL Builder and XML Editor tools are
described later in more detail.

Deploy. The deploy task consists of configuring an
application server to run the Web service and install-
ing the Web service on the application server. Web-
Sphere Studio Application Developer includes server
tools for setting up the application server. A version
of WebSphere is included with the development envi-
ronment and developers can also use Tomcat. The
Web Services Wizard automatically associates an in-
stance of an application server with the Web proj-
ect, installs the SOAP run-time component and all
required run-time libraries, starts the server, and de-
ploys the Web service to the application server.

The Apache SOAP run-time component manages de-
ployed Web services using a pluggable configuration

manager. The default configuration manager allows
Web services to be deployed and removed at run
time, and stores the list of deployed services in a se-
rialized Java object that is read when the server starts.
The Apache SOAP run-time component also has an
XML-based configuration manager; it stores the list
of deployed services as an XML file, which provides
more portability. Allowing services to be freely de-
ployed and removed at run time is convenient for
developers but may not be suitable for production.
The IBM SOAP run-time component includes a con-
figuration manager suitable for production use. The
IBM configuration manager also uses an XML file,
dds.xml, to store the list of deployed services, and
allows defined services to be suspended and resumed,
but new services cannot be added at run time. The
Web Services Wizard automatically creates dds.xml
for the IBM configuration manager.

Deploying DADX Web services requires a further de-
velopment step. The association between a DADX
Web service and the database it accesses is defined
by a Web services group. Each DADX service within
a group accesses the same database. The database
connection information and other properties com-

Table 1 Developing the Flights Web Service

Task Input Output Tool

Set up the Web application
Add the Flights Web service
group to the Web
application. This group
accesses the Airline
database.

web.xml web.xml,
group.properties

DADX
Group
Configuration
Wizard

Create the operation
Create the SQL statement
that lists the flights. This will
become the listFlights
operation of the Web
service.

Airline database
schema

listFlights.sqx SQL Query
Builder

Create the Web service
Create the DADX file that
contains the listFlights
operation.

listFlights.sqx Flights.dadx XML from
SQL Query
Wizard

Deploy the Web service
Deploy to the application
server and create the WSDL.

Flights.dadx Flights.isd,
Flights.wsdl

Web Service
Wizard

Test the Web service
Create the Java client proxy
and a JSP sample application
to test the Web service.

Flights.wsdl Flights.java,
TestClient.jsp

Web Service
Client Wizard

LAU AND RYMAN IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002186

mon to the group are specified in a standard Java
properties file, group.properties, which is placed in
the home directory for the group along with all the
DADX files in the group. The DADX provider is based
on the Web Services Object Runtime Framework
(WORF), an IBM extension to the Apache SOAP run-
time environment. WORF includes the DXX invoker
servlet, which instantiates a subclass of the standard
SOAP RPC router servlet. The DXX invoker servlet ex-
tends the standard RPC router servlet by adding
HTTP GET and POST bindings and automatically gen-
erating WSDL and a test page for the Web service.
An instance of the DXX invoker servlet must be added
to the Web application for each group of DADX Web
services.

The task of setting up a DADX group is simplified by
the DADX Group Configuration Wizard, which adds
an instance of the DXX invoker servlet, creates
the required directory structure, and writes the
group.properties file.

Test. The test task consists of invoking the opera-
tions of a Web service to validate or understand its
behavior. WebSphere Studio Application Developer
supports Web service testing in several ways. As men-
tioned previously, the Web Service Client Wizard
can generate a client proxy and a sample JSP-based
test client that accesses it. The sample test client is
intended to act as a starting point for further devel-
opment but can also be used for testing the Web ser-
vice. In addition to generating a sample test client
that uses the Java client proxy, WebSphere Studio
Application Developer includes the Universal Test
Client, which can dynamically test the proxy or any
other Java class without generating any code. Finally,
Web services deployed using the WORF extension to
the Apache SOAP run-time environment can dynam-
ically generate a test page that enables any poten-
tial user of the Web service to test it from the user’s
browser.

Although these test methods are useful for unit test
of the operations of a Web service, problems may
occur at the protocol or transport level. For this class
of problems, WebSphere Studio Application Devel-
oper includes a TCP/IP (Transmission Control
Protocol/Internet Protocol) monitor that can be used
to inspect HTTP requests and responses.

Publish. The publish task consists of registering a de-
scription of the Web service in a UDDI business reg-
istry so that it can be located by other application
developers. The UDDI Explorer lets the developer

update UDDI business registries in addition to search-
ing them. The WSDL files created by WebSphere Stu-
dio Application Developer follow the UDDI best prac-
tices guidelines and are therefore ready to publish.
The developer can easily publish a Web service by
selecting its WSDL file in the navigator view and ex-
porting it to UDDI. This action launches the UDDI
Explorer.

Updating a registry normally requires that the de-
veloper register with the node operator and obtain
a user identifier and password to be used when log-
ging in. Developers can use the UDDI Explorer to
update any UDDI business registry that they have ac-
cess to. Most node operators, including IBM, provide
a public test registry for experimentation. IBM also
provides a private UDDI registry that developers can
use for local testing.

Scenario 1: Developing the Flights Web
service

To illustrate the preceding steps, we now describe
a development scenario in which we create a simple

Figure 3 The DADX Group Configuration Wizard

IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002 LAU AND RYMAN 187

Web service. The Flights Web service lists flights for
an airline. Because it simply retrieves information,
it is natural to implement it using a database query.
If this Web service involved more complex business
logic, we could have implemented it using a Java
stored procedure, a Java class, or a session bean. Ta-
ble 1 lists the main tasks involved, the input and out-
put development artifacts, and the tool used to per-
form the task.

Set up the Web application. Let us assume that we
have created a database named Airline to hold the
flight information, and that we have created a Web
project for developing the Web service. Our first step
is to create a Web service group to hold the services
that access the database. We run the DADX Group
Configuration Wizard, as shown in Figure 3.

The wizard prompts us for the database connection
information and other parameters, which are stored
in the group.properties file in the directory created
for the group. The wizard then updates the Web ap-
plication deployment descriptor, web.xml, by adding
an instance of the DXX invoker servlet to the Web
service requests.

Create the operation. The Flights Web service will
contain a single operation, listFlights, that lists all the
flights that leave before a specified departure time.
In general, a Web service contains many operations
but we use a single operation here to simplify the
example. We use the SQL Query Builder to create the
SQL SELECT statement and save it to an SQL file,
listFlights.sqx. SQL INSERT, UPDATE, and DELETE
statements can also be created. Figure 4 shows the

Figure 4 The SQL Query Builder

LAU AND RYMAN IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002188

SQL Query Builder, which allows tables to be added
using a drag-and-drop style user interface.

Create the Web service. The XML from SQL Wizard
can generate a DADX file from a set of SQL state-
ments. Figure 5 shows the wizard prompting for op-
eration name, descriptions, and output file name,
which in the example is Flights.dadx.

Figure 6 shows the generated DADX file in the XML
Editor. The editor provides a tree-based design view
and a text-based source view. DADX files can be mod-
ified in the XML editor or any other text editor.

Deploy the Web service. After the DADX file has
been created, it must be deployed to the Web ap-
plication server. The Web Service Wizard handles all
deployment tasks. If the Web project is not currently
associated with a Web application server, the wiz-
ard associates the default server with the project. The
wizard installs the SOAP run-time component the first
time a Web service is deployed, configures an in-

Figure 5 The XML from SQL Query Wizard

Figure 6 The XML Editor

IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002 LAU AND RYMAN 189

stance of the SOAP RPC router servlet if necessary,
generates the SOAP deployment descriptor for the
service, and updates the deployed services config-
uration file. The wizard then starts the server, gen-
erates the WSDL file for the service, and adds it to
the Web application. Figure 7 shows the first page
of the wizard.

Test the Web service. The Web Service Client Wiz-
ard generates a Java client proxy from the WSDL for

the service, and a JSP sample application that uses
the proxy. Figure 8 shows the sample application that
was generated for the Flights service.

The sample application has a methods pane that lists
all the operations in the service and allows us to se-
lect an operation to test. We have selected the listFlights
operation here. The inputs pane of the application
prompts us for the input parameters of the operation.
Here we have entered 12:00 as the departure time. The
result pane shows the output of the operation.

XML development tools

XML plays two distinct roles in Web services devel-
opment. The first role is that of infrastructure, in
which XML is used for data interchange and descrip-
tion. For example, messages are encoded in XML us-
ing SOAP and described in XML using WSDL. In this
infrastructure role, XML can be completely hidden
from the developer. Web services can be developed
in standard programming languages, such as Java,
marshaling and unmarshaling can be handled by the
run-time component, and the WSDL statements can
be generated automatically and processed by tools.

As Web services technology matures and becomes
widely adopted, it is likely that XML will play a sec-
ond role, namely that of a programming medium.
In this programming role, developers will first be ex-
posed to XML when designing Web services inter-
faces in a top-down approach. Once developers be-
gin to define data in terms of XML, it will be natural
to also specify processing in terms of XML. Current
examples of XML programming approaches include
XSLT, XML Query, and DB2 XML Extender. To use these
new technologies, developers will require new tools.

WebSphere Studio Application Developer includes
an integrated suite of tools for many aspects of XML
development, such as:

● XML editing and validation
● XML Schema and document type definition (DTD)

editing and validation
● Extensible Stylesheet Language (XSL) transforma-

tion and tracing
● Generators for creating Java beans from a DTD or

XML Schema
● Utilities to generate XML Schema from DTD and

vice versa
● Utilities to generate XML from DTD or XML Schema

and vice versa

Figure 7 The Web Services Wizard

Figure 8 The sample application

LAU AND RYMAN IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002190

● Tools to integrate XML and relational data, such
as generating XML from SQL queries

● Utilities to generate XML schema from table def-
initions and vice versa

To illustrate how these tools can be used to create
a new breed of Web applications based on XML Web
services, we extend the scenario described earlier.

Scenario 2: Developing the Passenger List
Web service

In this example we create the Passenger List Web
service, which lists all the passengers that have tickets
for a flight. This service has an operation that re-
turns the passenger list for a specified flight. Here
we take a more top-down approach by first design-
ing the format of the output message as an XML
Schema. We then map this output schema back to

the database and express the mapping as a DAD file
that can be executed by the DB2 XML Extender. The
DB2 XML Extender allows us to handle XML docu-
ments that have complex hierarchical structures. We
then work on a user interface to display the output
as HyperText Markup Language (HTML) statements.
We create an XSL file that transforms the output
into HTML and test its behavior using a trace tool.
Table 2 summarizes the main tasks in this scenario
and lists the input and output development artifacts
and the tools used to create them.

Design the output message format. We begin by us-
ing the XML Schema Editor to create an XSD file that
describes the passenger list format. We want the
passenger list to include the number and departure
time of the flight and to list the name and frequent
flyer number for each passenger on the flight. Fig-

Table 2 Developing the Passenger List Web Service

Task Input Output Tool

Design the output message
format
Create an XML Schema to
describe the report format.
Convert the schema to a
DTD for use with the DB2
XML Extender.

passengerList.xsd,
passengerList.dtd

XML
Schema
Editor

Create the operation
Map the database tables to
the passenger list schema
and generate a DAD file
for the DB2 XML
Extender.

Airline database
schema,
passengerList.dtd

passengerList.rmx,
passengerList.dad

RDB to
XML
Mapper

Create the Web service
Create the DADX file that
contains the passengerList
operation.

passengerList.dad passengerList.dadx XML from
SQL Query
Wizard

Design the user interface
Create a sample HTML
instance document and
generate a DTD from it.
Create a stylesheet to
transform the passenger list
XML into HTML.

passengerList.xsd reporthtml.xml,
html.dtd,
Reportmap.xmx,
report.xsl

DTD Editor,
XML to
XML
Mapper

Test the user interface
Create a sample input
passenger list. Trace the
execution of the stylesheet
and generate the HTML.

report.xsl passenger.xml,
report.html

XSL Trace
Editor

IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002 LAU AND RYMAN 191

ure 9 shows the XML Schema Editor creating
passengerList.xsd.

The XML Schema Editor has a design view and a
source view. The design view presents a form-based
user interface that is synchronized with the outline
view. When a part of the schema is selected in the
outline view, a form for modifying it appears in the
design view. For example, in Figure 9 the Flight el-
ement is selected in the outline view and a form for
modifying the element is presented in the design
view. Parts of the schema can be added and deleted
in the outline view. The outline view and design view
eliminate the need for a knowledge of XSD syntax,
but developers who prefer to directly edit the file can
work with the source view.

In addition to the XSD Editor, WebSphere Studio
Application Developer also has the DTD Editor. We
refer to both XSD and DTD as schemas. WebSphere
Studio Application Developer has extensive support
for schemas, including tools for validating schemas,
converting between XSD and DTD, generating sche-
mas from sample XML instance documents, gener-
ating sample XML instance documents from schemas,
and generating Java classes and relational database
schemas from XML Schema. In addition, the XML Ed-
itor uses schemas to validate instance documents and
to provide editing assistance, such as code comple-
tion.

Create the operation. Now that we have defined the
schema for the output message, we can define the

Figure 9 The XML Schema Editor

LAU AND RYMAN IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002192

listPassenger operation that retrieves the informa-
tion from the database. Here we plan to use the
DB2 XML Extender run-time component to execute
the query and generate the XML result. We must
therefore define a DAD file for the retrieval oper-
ation. The RDB-to-XML Mapper tool, shown in Fig-
ure 10, helps us define the mapping from the data-
base to the XML result.

To define the mappings we select the column of the
database in the tables view and its corresponding
XML element or attribute in the XML view, and then
add the mapping to our definition. The complete def-
inition is stored in PassengerMap.rmx, which is an
abstract representation of the mapping. The map-
per generates a concrete mapping in a DAD file,
passengerList.dad, for the DB2 XML Extender.

The RDB-to-XML Mapper is based on a general-pur-
pose mapping framework. Mapping between differ-
ent data descriptions is a common application de-
velopment task. For example, the XML-to-XML
Mapper is also based on this framework. Other ex-
amples include mapping between programming lan-
guage data structures, for example, from COBOL to
Java, and from XML to Java.

Create the Web service. The DB2 XML Extender
provides stored procedures that can execute DAD
files. Here we want to create a Web service so, as
before, we run the XML-from-SQL Wizard to gen-
erate a DADX file, passengerList.dadx, but instead
of referencing SQL statements we reference the
passengerList.dad file. In general, a DADX file can
be built from a collection of many SQL statements

Figure 10 The RDB-to-XML Mapper

IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002 LAU AND RYMAN 193

and DAD files. The wizard generates both a retrieval
operation, listPassenger, and a storage operation, up-
datePassenger. The storage operation takes an XML
passenger list document as input and updates the da-
tabase tables. To complete the Web service, we man-
ually edit the DADX file to include a flight number
input parameter for the retrieval operation.

We then deploy the DADX file as before using the
Web Services Wizard, but instead of generating a
Java client proxy and JSP sample application to test
the new Web service, we use the WORF run-time com-
ponent to dynamically generate a test and documen-
tation page. Figure 11 shows the dynamically gen-
erated test page for the passengerList service.

As in the sample JSP test application, the dynamically
generated test page is also divided into three panes.
The methods pane lists the operations in the Web
service and lets us select one. The inputs pane is a
form for the input parameters of the selected op-
eration, and the results pane shows the XML result
of the operation.

Design the user interface. Although the output of
a Web service is normally consumed by an applica-
tion for further processing, in some cases it is useful
to format the output for presentation to users. In

this example, we want to present the passenger list
in a Web browser. We begin by manually creating
a sample output HTML file, reporthtml.xml, and use
the DTD Editor to generate a DTD, html.dtd, from
reporthtml.xml. Then we use the XML-to-XML Mapper
tool to define the mapping from the XML passenger
list schema, passengerList.xsd, to the HTML page,
reporthtml.xml. Figure 12 shows the XML-to-XML
Mapper.

Here we use the mapper to define the correspon-
dence between a source schema and a target sample
instance document. We can also use a schema as the
target of the mapping. The reason for using a sam-
ple document as the target, rather than a schema,
is that the full schema for HTML is very complex. It
is easier to create a sample of the desired HTML out-
put than to work with the complete HTML schema.
Note, however, that mapper requires that the sam-
ple HTML document be a valid XML document.

The user interface of this mapper is similar to that
of the RDB-to-XML Mapper because they are based
on the same mapper framework. The abstract map-
ping is stored in the Reportmap.xmx file. The map-
per can generate the XSTL file, report.xsl, from the
abstract mapping. The XSLT file can be applied to
the XML passenger list either on the server, for ex-
ample in a Java servlet, or in the client, using Java-
Script, if the browser supports XML parsing and XSLT.

Test the user interface. We complete the testing of
the user interface by running the XSL file against a
sample passenger list file using the XSL Trace Editor,
as shown in Figure 13.

We generate the sample input file, passenger.xml,
by running the Web service and saving the result.
To run the XSL Trace Editor, we select the sample
file, passenger.xml, and the XSLT file, report.xsl, in
the navigator view, then invoke the trace from the
context menu. The trace editor presents the input
XML, the input XSL, and the output HTML. We can
replay the transform using stepping controls in the
toolbar. As the transform is applied, the trace ed-
itor highlights each XSL statement and the XML in-
put element it matches, allowing us to understand
the transform and resolve any problems. We save
the output as report.html. At this point we are con-
fident that the XSLT file is performing as required.
To complete development, we must incorporate the
XSLT file into our application.

Figure 11 The Web service test page

LAU AND RYMAN IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002194

Conclusion

XML Web services provide a powerful new technol-
ogy for integrating heterogeneous applications over
the Internet. WebSphere 4.0 provides a fully sup-
ported production-ready deployment environment
for Web services based on the Apache SOAP run-time
environment. XML plays a central role by providing
a data interchange format that is independent of pro-
gramming languages, operating systems, and hard-
ware. As Web services become more widely adopted,
XML will also be used more frequently to specify pro-
cessing using technologies such as XSLT, DB2 XML Ex-
tender, and XML Query.

WebSphere Studio Application Development is
a new development environment that supports

the full life cycle for Web services development
with support for SOAP, WSDL, and UDDI, and
includes a powerful suite of XML tools. Using this
environment, developers can easily transform
existing components, such as Java beans, EJB
beans, and SQL statements, into Web services, and
can incorporate Web services into new applica-
tions.

This paper has described an initial set of Web ser-
vices and XML development tools. Armed with this
information, developers should be able to begin Web
services development using WebSphere Studio Ap-
plication Developer. Over time, developers can ex-
pect to see wider coverage of the development pro-
cess and better integration of the tool suite for this

Figure 12 The XML-to-XML Mapper

IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002 LAU AND RYMAN 195

exciting and rapidly maturing distributed program-
ming technology.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of the Object Management
Group, Microsoft Corporation, or Sun Microsystems, Inc.

Cited references and notes

1. A. Ryman, Understanding Web Services (December 2000), see
http://www7.software.ibm.com/vad.nsf/Data/Document4362.

3. Extensible Markup Language (XML) 1.0, Second Edition, W3C
Recommendation (October 6, 2000), see http://www.w3.org/
TR/REC-xml.

4. XML Schema, W3C Recommendation (May 2, 2001), Part 1:
Structures, see http://www.w3.org/TR/xmlschema-1/, Part 2:
Datatypes, see http://www.w3.org/TR/xmlschema-2/.

5. E. Christenson, F. Curbera, G. Meridith, and S. Weerawarana,
Web Services Description Language (WSDL) 1.1, W3C Note
(March 15, 2001), see http://www.w3.org/TR/wsdl.

6. XSL Transformations (XSLT) Version 1.0, W3C Recommen-
dation (November 16, 1999), see http://www.w3.org/TR/xslt.

7. DB2 XML Extender, see http://www.ibm.com/software/data/
db2/extenders/xmlext/.

8. XML Query, see http://www.w3.org/XML/Query.
9. D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Men-

delsohn, H. F. Nielsen, S. Thatte, and D. Winer, Simple Ob-
ject Access Protocol (SOAP) 1.1, W3C Note (May 8, 2000),
see http://www.w3.org/TR/SOAP/.

10. Apache SOAP, The Apache XML Project, see http://xml.
apache.org/soap/index.html.

11. Tomcat, The Apache Jakarta Project, see http://jakarta.
apache.org/tomcat/index.html.

12. Document Object Model (DOM) Level 2 Core Specification
Version 1.0, W3C Recommendation (November 13, 2000),
see http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-
20001113/.

13. Eclipse, see http://eclipse.org/.

Figure 13 The XSL Trace Editor

LAU AND RYMAN IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002196

2. Web Services Zone, IBM DeveloperWorksTM, see http://
www.ibm.com/developerworks/webservices/.

14. IBM XML and Web Services Development Environment, see
http://www.alphaworks.ibm.com/tech/WSDE.

15. Universal Description, Discovery, and Integration (UDDI),
see http://uddi.org/.

16. “Operator” means the organization that operates a UDDI
Business Registry node. For example, both IBM and Mi-
crosoft operate UDDI nodes.

17. F. Curbera, D. Ehnebuske, and D. Rogers, Using WSDL in
a UDDI Registry 1.05, UDDI Working Draft Best Practices
Document (June 25, 2001), see http://uddi.org/pubs/
wsdlbestpractices-V1.05-Open-20010625.pdf.

18. Web Services Listing, XMethods, see http://xmethods.com.
19. WebService Behavior, Microsoft, see http://msdn.microsoft.

com/library/default.asp?url�/workshop/author/webservice/
overview.asp.

Accepted for publication January 18, 2002.

Christina Lau IBM Canada, Toronto Laboratory, 8200 Warden
Avenue, Markham, Ontario L6G 1C7, Canada (electronic mail:
clau@ca.ibm.com). Ms. Lau is a Senior Technical Staff Member
at the IBM Toronto Laboratory and is the development man-
ager for the XML tools in WebSphere Studio Application De-
veloper. Prior to working on XML tools, she worked on Object-
Builder for the IBM Component Broker. Ms. Lau is a recognized
expert in distributed object development and is the author of Ob-
ject-Oriented Programming Using SOM and DSOM, Van Nostrand
Reinhold Publishing Company, New York (1994).

Arthur Ryman IBM Canada, Toronto Laboratory, 8200 Warden
Avenue, Markham, Ontario L6G 1C7, Canada (electronic mail:
ryman@ca.ibm.com). Dr. Ryman is a Senior Technical Staff Mem-
ber at the IBM Toronto Laboratory and is the architect for the
Web services tools in WebSphere Studio Application Developer.
Before his work on Web services, he was the architect for Vi-
sualAge� for Java, focusing on servlets, JavaServer Pages, and
the WebSphere Test Environment. Dr. Ryman is a member of
the IBM Academy of Technology and an adjunct professor of
computer science in the Faculty of Graduate Studies at York Uni-
versity in Toronto.

IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002 LAU AND RYMAN 197

