228 HONDO, NAGARATNAM, AND NADALIN

Securing Web services

The Web service security challenge is to
understand and assess the risk involved in
securing a Web-based service today, based
on our existing security technology, and at
the same time track emerging standards and
understand how they will be used to offset the
risk in new Web services. Any security model
must illustrate how data can flow through an
application and network topology to meet the
requirements defined by the business without
exposing the data to undue risk. In this paper
we propose a mechanism for the client to
provide authentication data, based on the
service definition, and for the service provider
to retrieve those data. We also show how
XML Digital Signatures and encryption can be
exploited to achieve a level of trust.

Two terms have emerged for describing loosely coupled
services delivered over the Internet. These interchangeable
terms set the stage for a major evolution of application
and integration styles. The year 2000 is rapidly becoming
the year in which software services emerged as a viable
means of flexibly delivering resources to businesses and
consumers over the Web . . . Two terms, “e-services” and
“Web services,” are recognized as describing the phenom-
enon of delivering software as services in the Internet world.

—Gartner Research Note'!

To fully support a service model as described by the
Gartner Research Note, there will also need to be
a model for security, reliable messaging, quality of
service, and management for the Web services stack.
The Web service security challenge is to understand
and assess the risk involved in securing a Web-based
service today, based on our existing security tech-
nology, and at the same time track emerging stan-
dards and understand how they will be used to off-

0018-8670/02/$5.00 © 2002 I1BM

by M. Hondo
N. Nagaratham
A. Nadalin

set the risk in new Web services. Any security model
must illustrate how data can flow through an appli-
cation and network topology to meet the require-
ments defined by the business without exposing the
data to undue risk. A Web service security model
must support protocol-independent declarative se-
curity policies that Web service providers can en-
force, and descriptive security policies attached to
the service definitions that clients can use in order
to securely access the service.

Is a Web services security layer really required? The
industry already has a set of existing and widely ac-
cepted transport-layer security mechanisms for mes-
sage-based architectures, such as SSL (secure sock-
ets layer) and IPSec (Internet Protocol Security); why
add another? To answer these questions we exam-
ine various components that constitute Web services
and also explore some possible approaches to secur-
ing Web services.

Web services

The Web service paradigm includes a programming
model for application integration that does not dis-
criminate between applications deployed inside and
outside the enterprise. Integration and development
of Web services can be done in an incremental man-
ner, using existing languages and platforms and
adopting existing legacy applications. However, to

©Copyright 2002 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002

achieve a common program-to-program communi-
cation model, it must be built on Web service stan-
dards and communicated over standard protocols.

IBM’s Web services? are intended to complement
Java®™* 2 Platform, Enterprise Edition (J2EE**) and
other standards and allow for a full range of tightly
coupled distributed and nondistributed applications.
Web services provide a method to deploy and pro-
vide access to business functions over the Web, and
J2EE and other traditional programming standards
are technologies for implementing the provider in-
stance of the Web service.

One of the anticipated benefits of Web services is
that direct application-to-application communication
can replace the human end-user interaction in the
current data entry Web applications. Web service
standards have been defined to allow enterprise com-
panies to rapidly define simple business-to-business
interfaces and exchange messages. Additional re-
quirements for a Web services infrastructure include
support for service context, conversations and activ-
ities, intermediaries, portal integration, and work-
flow and service flow management.

XML. Extensible Markup Language (XML)® began
as an extensible data format to address the limita-
tions of HTML (HyperText Markup Language), but
has become a standard for communication between
applications. With XML, an application defines
markup tags to represent the different elements of
data in a text file so that the data can be read and
processed by any application that uses XML.

Using XML, it is possible for business persons to de-
fine policies and express them as XML documents.
These documents can have sections that are en-
crypted and the documents themselves can be dig-
itally signed, distributed, and then interpreted by the
security mechanisms that configure the local soft-
ware. This allows various implementations to map
from the XML description to a local platform-spe-
cific policy enforcement mechanism without requir-
ing changes to the infrastructure.*

SOAP. Simple Object Access Protocol (SOAP)’ is a
simple, lightweight, and extendable XML-based mech-
anism for exchanging structured data between net-
work applications on top of widely used Internet stan-
dards such as XML and HTTP (HyperText Transfer
Protocol). SOAP consists of three parts: an envelope
that defines a framework for describing the contents
of a message, a set of encoding rules for expressing

IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002

instances of application-defined data types, and a
convention for representing remote procedure calls
(RPC) and responses. SOAP can be used in combina-
tion with a variety of network protocols such as HTTP,
RMI/IIOP** (Remote Method Invocation/Internet In-
ter-ORB** [Object Request Broker] Protocol), SMTP
(Simple Mail Transfer Protocol), FTP (File Transfer
Protocol), or MQ (Message Queuing).

SOAP can potentially be used in combination with a
variety of other protocols; however, the only bind-
ings we discuss here are SOAP in combination with
HTTP and HTTP Extension Framework.® The usage
of a particular protocol does not change the funda-
mentals of the security model but may change the
particular implementation.

The SOAP envelope is defined in XML and enables
a large variety of meta-information to be added to
the message, such as transaction identifiers, message
routing information, and message security. The en-
velope consists of two parts: header and body. The
header is a generic mechanism for adding features
to a SOAP message. All immediate child elements of
the SOAP header element are called header entries.
The body is a container for application data intended
for the ultimate recipient of the message. Thus, SOAP
can be considered as another layer, between the
transport layer (e.g., HTTP) and the application layer
(e.g., business data), that is a convenient place for
conveying message meta-information.

WSDL. Web Services Description Language (WSDL)’
is essentially an XML IDL (interface definition lan-
guage) that provides a way to describe the function
and interface of a service. It is a format for describ-
ing network services as a set of endpoints operating
on messages containing either document-oriented
or procedure-oriented information. The operations
and messages are described abstractly, and then
bound to a concrete network protocol and message
format to define an endpoint. Related concrete end-
points are combined into abstract endpoints (ser-
vices). WSDL is extensible to allow description of end-
points and their messages regardless of what message
formats or network protocols are used to commu-
nicate; however, the only currently described bind-
ings are for SOAP 1.1, HTTP GET/POST, and MIME
(Multipurpose Internet Mail Extensions).

The WSDL service information can be extracted from
a uDDI (Universal Description, Discovery, and In-
tegration®) business service entry, or may be obtained
from other service repository sources.

HONDO, NAGARATNAM, AND NADALIN 229

Regardless of the source, both run-time and devel-
opment tools can use WSDL to determine run-time
bindings to a service. This information can be used
to build the logic to access the service either directly
from the client or through generated code stubs.

WSDL has the potential to be extended’ to include
the definition of the context needed by the business
execution environment, including security. Without
these extensions, users will make assumptions about
security in the run-time environment of a Web ser-
vice. Defining these security assertions in XML will
allow us to have a common interpretation of secur-
ity attributes in different implementations. It will also
facilitate searching.

Secure Web services

There are fundamental business reasons underlying
the existence of various security mechanisms. The
authentication of the entity asserting an identity when
requesting a service allows businesses to offer dif-
ferent classes of service to different customers. The
business reason for data integrity is to ensure that each
party in a transaction can have confidence in the bus-
iness transaction. There is also a business and legal
need to have an audit trail and some evidence of non-
repudiation to address liability issues. And more and
more businesses are becoming aware of the internal
threats to their applications by employees or others
inside the firewall. Some business transactions re-
quire that confidentiality be provided on a service in-
vocation or its data (such as credit card numbers).
Also businesses on the Internet need to protect them-
selves from denial-of-service attacks. This is the envi-
ronment in which we need to provide a security ser-
vice model.

Moving forward from prototypes of Web services will
require an open security service model, based on
standards, that can serve a heterogeneous “trust do-
main.” This security model should support interfaces
for security services that:

1. Use XML data formats as the common represen-
tation of various security assertions

2. Accept policy information expressed in XML to
configure services (extending WSDL)

3. Use XML messaging as the secure mechanism for
exchanging the XML security assertions and also
for servicing Web service requests

Security technologies. To evolve from existing ap-
plications will initially involve wrapping legacy code

230 HONDO, NAGARATNAM, AND NADALIN

with Web services. Some of the security constraints
and trust models of existing applications will need
to be carried forward and expressed within the early
versions of Web services. To accomplish this we will

Some of the security constraints
of existing applications will need
to be carried forward in early
versions of Web services.

need to incorporate the work begun, in the various
Web services toolkits, on security technology from
basic authentication to XML digital signature support.

As these security technologies themselves become
services, and workflow becomes the primary appli-
cation paradigm for dynamic application integration,
security services will evolve into core elements of a
secure application workflow.

A variety of security technologies are being adopted
as standards. Following is a brief overview of these
standards and how they can be used.

XML Digital Signatures ' is a standard for securely ver-
ifying the origins of messages. The XML signature
specification allows XML documents to be signed in
a standard way, with a variety of different digital sig-
nature algorithms. Digital signatures can be used for
validation of messages and for nonrepudiation.

Security Assertion Markup Language is the first in-
dustry standard for secure e-commerce transactions
using XML. SAML is being developed to provide a
common language for sharing security services be-
tween companies engaged in business-to-business
and business-to-consumer transactions. SAML allows
companies to securely exchange authentication, au-
thorization, and profile information between their
customers, partners, or suppliers regardless of their
security systems or e-commerce platforms. As a re-
sult SAML promotes the interoperability between dis-
parate security systems, providing the framework for
secure e-business transactions across company
boundaries.

XML Encryption ' will allow encryption of digital con-
tent, such as Graphical Interchange Format (GIF)

IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002

images, Scalable Vector Graphics (SVG) images, or
XML fragments. XML Encryption allows the parts of
an XML document to be encrypted while leaving
other parts open, encryption of the XML itself, or the
superencryption of data (i.e., encrypting an XML doc-
ument when some elements have already been en-

crypted).

As part of the Java Community Process (JCP), there
are two Java specification requests (JSRs) that are
currently in progress; JSR105 XML Digital Signature '
and JSR106 XML Digital Encryption.'* When com-
plete, these two JSRs will define the standards in Java
for each technology, thus standardizing the interfaces
in each vendor’s Web services toolkit.

Application patterns

Patterns are available for evolving to Web services
from existing Web server applications. One is the
browser-to server-pattern. This pattern wraps an ex-
isting application as a service, using a SOAP message
as the service invocation. The Web server provides
a run-time execution container that defines its own
security model, with policy information derived from
a deployment descriptor configured by the deployer
of the Web server application. This pattern typically
includes a mechanism for associating the identity of
the invoking entity (the browser client) with the ex-
ecuting application instance, and allows the appli-
cation to continue to function as it did before. With
J2EE, an identity is provided as part of authentica-
tion, and the container associates that identity to the
security context. This pattern uses an implicit trust
model in the sense that the client and the server rely
on the middleware configuration to ensure that the
identity is established within a security context pro-
vided by J2EE itself. An advantage of this model is
that the run-time code maintains the identity map-
ping, and name assertion life-time constraints and
mechanisms for maintaining a valid token can be pro-
vided by the middleware. One of the disadvantages
is that the model for “delegating” an identity requires
that the delegated application-level identity is the
same as the invocation identity of the intermediary
(and hence the security context). This creates a cou-
pling between middleware and the application-level
delegation logic (i.e., run-as element in J2EE) and the
requirement for the security context to support cas-
caded delegation, auditing, and nonrepudiation.

Another pattern involves rewriting the application

with a modular design to create smaller tasks that
can be combined in different ways to perform more

IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002

complicated transactions. Each component is able
to externalize its output into a message that the next
component can use as input. This pattern uses SOAP
messages to trigger each event. The messaging agents
and message queues can be built into the run-time
server below the application level. Sometimes the
messaging agents become the “security-aware” part
of the run-time code and control the flow of infor-
mation along its path through components based on
security attributes in the header of the message.
Sometimes the security attributes get added into the
message structure itself, as is the case with digital
signatures. The trust model for this type of messag-
ing relies on the specification of an explicit trust
model along the lines of SAML. In the SAML-type
name assertion, the trust will be explicit " in the sense
that the client and the server rely on coupling the
identity information explicitly with the message,
rather than on the underlying security context. Of
course, this requires that the service handler be able
to establish the identity of the caller based on the
SAML-type name assertions and on trusting the entity
that created these assertion tokens. Thus in a SAML
trust model, an authentication/authorization author-
ity has to be known and to digitally sign the assertions at
the time of the authentication/authorization event. A
certificate associated with the signature can be used
to identify the trusted authority and validate the sig-
nature, and a time stamp is included to indicate the
assertion validity period. An advantage of this type
of trust model is that the message can pass through
multiple intermediaries. Authorization and delega-
tion decisions can be made in a standard way by the
intermediaries without modifying the name asser-
tion of the originator of the message request. If im-
plemented in an “envelope,” it is also possible to
build audit trails capable of asserting evidence of
nonrepudiation, since each intermediary could wrap
a message with its own name assertion. A disadvan-
tage of this model is that the last component has to
do some additional processing to make sure that the
originator name assertion is valid from both a trust
and a time standpoint.

Both these patterns implement security in the run-
time code and both rely on a mapping of an external
form of an identity into a run-time interpretation of
that identity and into a set of rules about the iden-
tity and its capabilities. The difference has to do with
where the mapping is done and whether the infor-
mation is in an externalized form that can be middle-
ware-independent and persistent.

HONDO, NAGARATNAM, AND NADALIN 231

Figure 1 Usage scenario

TRAVEL AGENCY SERVICES AIRLINE SERVICES

http://hostname/agencyServices
POST /TravelService HTTP/1.1

<SOAP-ENV:Body>
<m:makeReservation xmIns:m="some-URI">
<flight>ABC 1234</flight> ...
</m:makeReservation>

</SOAP-ENV:Body> WEB SERVER
WEB
l:l > SERVICE
ENGINE

TRAVEL
SERVICE

<SOAP-ENV:Body>
<m:reservationResponse xmins:m="Some-URI">
<confirmNo>ABCXYZ123</confirmNo>
</m:reservationResponse>
</SOAP-ENV:Body>

<

A usage scenario

Consider a very simple scenario: a travel agency sys-
tem contacts an airline reservation system in order
to complete a travel transaction request (see Figure
1). The two applications, Web services for a travel
agency and an airline, use XML to exchange travel
itinerary information and payment details, using a
well-understood industry standard specification. The
specification requires that applications mark reser-
vations with the <makeReservation> tag.

The travel agency’s application is designed to accept
a reservation request with a <makeReservation>
tag from a customer. Based on the airline details re-
quested, the application will contact the airline’s res-
ervation service. The airline’s application is designed
to perform a transaction under which a reservation
for the passenger is made and charged to the credit
card system. Note that the airline can even contact
the credit card company’s charging service in order
to perform that operation.

232 HONDO, NAGARATNAM, AND NADALIN

POST /AirlineService HTTP/1.1

<SOAP-ENV:Body>
<m:booking xmIns:m="some-URI">
<flight>1234</flight>...
</m:booking>
</SOAP-ENV:Body>

WEB
SERVICE
ENGINE

<SOAP-ENV:Body> AIRLINE
<m:bookingResponse xmins: SERVICE
m="Some-URI">
<recordLocator>ABCXYZ123
</recordLocator>
</m:bookingResponse>
</SOAP-ENV:Body>

A user searches for the best possible travel deal
and decides to purchase the ticket from our travel
agency. The user submits a request to access the
agency’s reservation Web service by specifying the
itinerary and credit card details in a SOAP message
marked with a <makeReservation> tag. The
agency application requests a reservation to be
made to the airline reservation system by sending
a booking request, providing the agency’s details
and the passenger details. When the airline sys-
tem receives the booking request, the application
queries the database for the availability of seats
for that particular itinerary. Using XML, the air-
line application returns a response after making the
reservation in its back-end system. The response
marks the details with record locator number as
<recordLocator>ABCXYZ123</recordLocator>.
When the travel agency receives the message from air-
line, the application scans it for the <recordLocator>
tag, and upon finding it passes the data into its system
to issue a ticket to the end user.

IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002

The Web service that provides reservation service
in a service network can be combined with other ser-
vices, such as a service to obtain weather informa-
tion for the travel destination and a credit service
to charge the end user for the travel expense. This
way the travel agency can automatically issue tickets
and schedule ticket delivery with shipping compa-
nies through their Web services.

This example describes a simple Web service where
two or more functions cooperate through the Web,
and the nature of their cooperation adapts to pa-
rameters provided by a particular request. As we see,
Web services provide a framework for loosely cou-
pled (dynamic) application integration.

Web service provider security

In the previous example we described how loosely
coupled applications can be combined to provide a
Web service-based e-business solution. Users can in-
voke Web services using one of the supported pro-
tocols. For example, users can submit SOAP requests
over HTTP to be processed by the Web service en-
gine. When Web services are used to provide busi-
ness-related data, those data need to be secured.

The Web application server that hosts the Web ser-
vice engines can support various protocols. Some-
times, due to the bundling of security with protocols,
tasks need to be categorized for performance as ei-
ther protocol-specific or as protocol-neutral secur-
ity tasks. A transport protocol-specific handler per-
forms security tasks such as SAML authentication or
identity assertions when the authentication informa-
tion is passed as part of the transport protocol,
whereas a transport protocol-neutral authorization
handler can perform authorization based on this au-
thentication information regardless of the transport.
Once the user is authenticated, the Web service se-
curity provider should determine if the invoking user
has the authority to invoke the service. This autho-
rization decision is based on the authorization pol-
icy associated with the Web service.

Authentication

In order to secure access to a Web service, the user
requesting the service needs to be identified through
underlying authentication mechanisms (see Figure

2).

Authenticating the user. An identity needs to be as-
sociated with a request in order to enforce autho-

IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002

rization policies. A Web service security configura-
tion should specify authentication policies that define
how the user credential (or authentication data) is
to be retrieved as well as how it is to be verified. In
the J2EE security model, the log-in configuration pol-
icy specifies how user information is to be retrieved
(e.g., HTTP Basic) and the operational environment-
specific policies will dictate how it gets authenticated
(e.g., Kerberos authentication mechanism). In the

A user may be authenticated
by the Web service engine,
or before the Web service engine
is given the request.

Web service security model, the log-in configuration
should not only address authentication of immedi-
ate clients (clients submitting the request directly to
the service), but also address indirect clients (an end
client’s identity may be part of the request, which
can traverse through many intermediaries). This in-
formation is necessary for both the client (to submit
the credential information in a format understood
by the server) and the server (to retrieve the creden-
tial information from the transport layer or the mes-
sage itself).

The WSDL definition of the service will include se-
curity constraints on how the credential information
is expected to be provided (or retrieved). For exam-
ple, in the case of an HTTP-bound service, data are
expected to be supplied through HTTP Basic authen-
tication. In the case of a service that can be accessed
through an intermediary, the WSDL definition should
indicate that the credential information is expected
as part of the message itself. For example, it could
say that the authentication information is expected
in the “SOAP-SEC: SecurityToken” header. ' Based
on these two possibilities, we could state that authenti-
cation data are supplied using either a transport-spe-
cific mechanism (e.g., HTTP Basic), or transport-neu-
tral mechanism (e.g., SOAP-SEC) header but not both.

Depending on the network topology, a user may be
authenticated by the Web service engine or before
the Web service engine is given the request. For ex-
ample, when a user submits a request to the servlet
that dispatches the Web service request, the user

HONDO, NAGARATNAM, AND NADALIN 233

Figure 2 Web service authentication

PR

I PROXY SECURITY SERVER '

RPC ROUTER 1
SERVLET REQUEST 1
P 1

1
AUTHENTICATION CHALLENGE 4

_— O=
E AGENCY SERVICES PROTECTED USING
J2EE DEPLOYMENT DESCRIPTOR

1
1
1
1
1
1
=/ 1
I:I o L WEB SERVER !
« T 1
1
USERID, PASSWORD > . _ .
Bob, foo ' http://hostname/agencyServices [Bob]]
1 1
1 1
I PROCESSING ONLY WEB SERVER 1
1 HTTP REQUEST PLUG-IN 1
WEB CONTAINER 1 :
L}

1 i J2EE RESOURCES :
J SERVICE .

. SERVLET
1 1
- NN BN BN BN BN BN BN BN BN BN BN BN BN BN BN B BN BN BN B B A o o o o o A

SOAP ENGINE service: TravelService USER
SOAP-SEC:

SecurityToken Bob

()= SUCCESSFULLY

AUTHENTICATED?

HTTP SECURITY > SOAP ENGINE SECURITY
HANDLER HANDLER/PROVIDER

getUserPrincipal: Bob

DECRYPT FIELDS,

NO YES

REJECT—SEND

might be challenged by a front-end reverse proxy
server, using the HTTP 401 challenge mechanism, so
that the user can submit his or her credentials (user
identifier and password).

In order to handle the authentication data that get
passed around through different means, a Web ser-
vice engine will use transport-specific handlers as well
as transport-neutral handlers. For example, in a J2EE
environment where HTTP is the transport protocol
used, the HTTP-specific handler (i.e., servlet) can in-
voke the getUserPrincipal API (application program-
ming interface) to retrieve the identity of the user.
If the user is not already authenticated as far as the
underlying system is concerned, the handler should
authenticate the user based on the credentials sent

234 HONDO, NAGARATNAM, AND NADALIN

SECURITY FAULT

VERIFY SIGNATURE, ETC.

TO
Q= AIRLINE

oz SERVICE

WEB SERVICE- <«
SPECIFIC SECURITY - : g
HANDLER e >

over the transport (e.g., user identifier and password
in the HTTP header). This transport-dependent ap-
proach to perform authentication will allow the au-
thorization and downstream processing of the call
to be transport-neutral. If identity information is
present in the message itself, the security handler
will retrieve those data and validate the information.

Asserting the user identity. Once authenticated, the
identity of the user must be securely associated with
the context of execution to be used in the down-
stream requests. To do so, the authentication han-
dler asserts the identity of the user within the request.
For example, a special header, containing the as-
serted identity of the user, digitally signed by the se-
curity service, can be attached to the request. The

IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002

Figure 3 Authorization scenario

PRINCIPAL

L 'S .
S
.
.
ROLE: WEB SERVICE g A
CUSTOMER TRAVEL SERVICE .

Y

Iy .

» 1
CHECKACCESS x) MAKE RESERVATION]
1
¢ BOB CAN REQUEST MAKE RESERVATION : x
n
X BOB CANNOT REQUEST ISSUE INVOICE " I
= I

. I}

.)
. REQUIRES 't
ROLE:
SUPERVISOR .
ROLE: o?® ¢
.
CUSTOMER R

user name could be replaced by the Kerberos cre-
dential of the user. By establishing the user identity
within the execution context, the Web service run-
time component (e.g., J2EE container) can perform
authorization based on the user identity.

For example, a J2EE application server can challenge
user “Bob” when he tries to access a Web service.
When the Web service is invoked, the HTTP security
handler will call the getUserPrincipal routine to val-
idate “Bob.” In the case of a SOAP binding, the au-
thentication handler may insert a “SOAP-SEC: Se-
curityToken Bob” header asserting that the calling
principal is “Bob.”

Authorization enforcement

Based on the authorization policies specified for the
services, the J2EE container will enforce the autho-
rization policies. For example, user Bob would be
allowed to access our travel agency service only if he
is authorized to do so.

In order for the Web service provider to enforce se-
curity constraints on Web services, the security pol-

IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002

icies must be declaratively conveyed to the run-time
authorization policy endpoint to ensure portability
of the service from one Web application server to
another. One approach is for the service provider in-
frastructure to take care of defining the security pol-
icies. Then the Web service developers need not know
how to programmatically enforce all possible autho-
rization policies for the different servers in which the
service may be deployed.

In order to maintain a level of abstraction of pol-
icies during service installation and to give the abil-
ity to specify application security policies during Web
service development, Web service security policies
should be expressed in terms of roles. As in J2EE, a
security role is a semantic grouping of permissions
that a given type of user must have in order to suc-
cessfully use the Web.

As shown in Figure 3, a user who is a registered cus-
tomer to our travel agency is granted the permission
to make travel reservations using a travel service.

In order for an authorization check to succeed, the
user invoking the service must have at least one of

HONDO, NAGARATNAM, AND NADALIN 235

Table 1 Principal role-mapping example

Subjects Roles
Clerk Customer Supervisor
AdminGroup X
CustomerGroup X
GoldCustomers
ManagerGroup X
Bob X

the roles required to access the service. The mech-
anisms by which users and user groups are granted
application roles are specific to the operational envi-
ronment.

As shown in Figure 3 and Table 1, the makeReser-
vation method on the travel agency Web service re-
quires the role “Customer.” For example, if user Bob
makes a request, his identity is associated with the
context of execution. The security run-time compo-
nent will make the authorization decision based on
the identity of the caller invoking the service. The
ability to specify authorization policy declaratively
helps decouple the application security policy from
organizational security policies, while still effectively
enforcing overall security requirements.

Trust. The IETF (Internet Engineering Security Task
Force) security glossary!’ contains several definitions
of trust. One of them asserts: “Generally, an entity
can be said to ‘trust’ a second entity when it (the first
entity) makes the assumption that the second entity
will behave exactly as the first entity expects. This
trust may apply only for some specific function.”

Trust is emerging as one of the central issues of all
communications in the Internet age. How do we eval-
uate and find that which is trustworthy and discard
that which is not? Trust in itself is a very fuzzy con-
cept. There are ways in which we implicitly trust, such
as trusting friends to help if your car breaks down,
or explicitly trust, such as contracting for work to be
done on your house. The evolution of XML-based
vocabularies for e-commerce raises the question of
how the trust in these new documents will be defined
and enforced.

XML Digital Signatures offer an interesting frame-
work for working with this question. Individuals cre-
ate signatures that can be applied to “any digital con-
tent (data object).” Digital signatures can provide

236 HONDO, NAGARATNAM, AND NADALIN

integrity, signature assurance, and in some cases ev-
idence of nonrepudiation of Web data. This is es-
pecially important for documents that represent
commitments, such as contracts, price lists, and man-
ifests. The work on XML Digital Signatures addresses
the digital signing of documents (any Web resource
addressable by a uniform resource indicator [URI])
using XML syntax. This capability is critical for a va-
riety of electronic commerce applications, including
tools for payment.

The W3C XML DSIG specification ' addresses the sign-
ing of parts of an XML document as well as the en-
tire document. When combined with SOAP (as rec-
ommended to the W3C by 1BM and Microsoft)'®
XML DSIG can be used by the sender of the message
to generate a signature over the body of the SOAP
message. The receiver is able to parse the signature
element in the SOAP header and either extract the
certificate needed to verify the signature from the
message itself, or find a reference to a key'® that was
used to sign the body of the SOAP message.

Establishing trust. When a Web service delegates
part of its work to another service, it may establish
a broad mutual trust relationship, or it might need
to establish trust on every request submitted. In any
kind of trust relationship, there can be different lev-
els of granularity at which a request (or response)
needs to have trust asserted. In a paper-based work-
flow, it may be sufficient to seal and sign the letter
envelope that contains many documents. Similarly,
in a Web services-based workflow, it may be suffi-
cient to sign the SOAP header to assert that the doc-
uments attached to the SOAP body can be trusted and
are not tampered with.

Web services can use the XML digital signature ca-
pability in different ways to achieve different levels
of trust. In our previous example, the travel agency
and the airline establish a broad mutual trust rela-
tionship and agree to digitally sign requests and re-
sponses. The SOAP engine used by the travel agency
signs the request and sends it across the HTTPS (HTTP
over SSL) connection. The request may contain sev-
eral documents. Figure 4 illustrates an example of
how XML DSIG is used to sign a request to issue tick-
ets.

If the two entities involved in this trust relationship
were concerned about internal security, additional
trust, including the signing of individual documents
or fields and not just the envelope, may be required.
The two entities may also require that all requests

IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002

Figure 4 Travel service example

<SOAP-ENV:Envelope xmins:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Header>
<SOAP-SEC:Signature

xmls:SOAP-SEC="http://schemas.xmlsoap.org/soap/security/2000-12">
<ds:Signature xmlIns:ds="http://www.w3.0rg/2000/09/xmldsig#">

<ds:Reference URI="#BODY"../>

<ds:Signature>
<SOAP-SEC:Signature>
<SOAP-ENV:Header>

<SOAP-ENV:Body xmIns:SOAP-SEC="http://schemas.xmlIsoap.org/soap/security/2000-12"

SOAP-SEC:id="Body">
<m:lssueTickets xmIns:m="some-URI">
<m:company>Travel-R-Us</m:company>

<m:ticketholder>Joe Someone</m:ticketholder>

<m:customerCC>Visa</m:customerCC>
<m:CC#>111-222-3333</m:CC#>

</m:lssueTickets
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

contain encrypted data elements,'? such as credit

card number, as well as signed elements. In this ap-
proach, even if the individual documents are ex-
tracted from the envelope and used later in a dif-
ferent context (e.g., stored for later reference), the
documents contain persistent security attributes,
which can be verified at any time. In a paper-based
workflow, this would be the equivalent of requiring
that individual letters in an envelope be signed.

Figure 5 illustrates how XML DSIG could be used by
the airline to sign each “IssueTicket” content of the
response it sends to the travel agency. In this sce-
nario, the XML element, not the SOAP message or
body, is the object of the signature. In addition to
these signed data, the two companies would prob-
ably need to use the HTTPS protocol to provide a se-
cure authenticated communication channel over
which these signed XML elements can be exchanged.

A further evolution of a simple travel workflow sce-
nario would be possible if the travel industry defines

IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002

standard XML elements (like signed Ticket elements)
and a distributed workflow to replace current point-
to-point implementations as in this example. "

Trusted third parties. If there are only two parties
engaged in an exchange, a trust relationship can be
established between them. However, as Web services
enable the discovery of and dynamic binding to new
partners, a third-party trust relationship may be
needed. Two entities involved in a contract may not
know each other but may each trust a common third
party. In such cases, they may want the third party
to be the one to sign and verify that the other party
is trustworthy. In a paper-based workflow, a neutral
third party or notary may be needed as a witness to
a transaction. Similarly, in a Web services environ-
ment, a third party may be required to assert the va-
lidity of a request, or a response, or even the cre-
dentials of the requestor or the target.

In the previous example above, both the travel agency
and the airline might agree to use public key cer-

HONDO, NAGARATNAM, AND NADALIN 237

Figure 5 Data signing example

<Signature Id="Travel-R-Us01" xmIns="http://www.w3.0rg/2000/09/xmldsig#">

<SignedInfo>

<CanonicalizationMethod Algorithm="http://www.w3.org/TR/2000/CR-xml-c14n-20001026"/>
<SignatureMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#dsa-shal"/>

<Reference URI="#IssueTicket" />
<Transforms>

<Transform Algorithm="http://www.w3.0rg/TR/2000/CR-xml-c14n-20001026"/>

</Transforms>

<DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal"/>
<DigestValue>YWJjZGxma3NgamRIZmZnaGlvcztkbGZramFzZGw7Cg==</DigestValue>

</Reference>
</Signedinfo>

<SignatureValue>YWJjZGxma3NgamZmZnaGlvcztkbGZramFzZGw7Cg==</SigntureValue>

<KeylInfo>
<KeyValue>
<DSAKeyValue>

<P>..</P><Q>...</Q><G>...</G><Y>...</Y>

</DSAKeyValue>
</KeyValue>
</Keylnfo>

</Signature>

<IssueTicket>
<PassengerName>...</>
<ShippingAddress>...</>
<BillingInfo>...</>

</IssueTicket>

tificates and key pairs generated by a trusted third
party, a “travel better business bureau.” In this pat-
tern, each party checks that the other is a legitimate
member of this trust domain by contacting the third
party, which could perform an on-line validation®
of the certificates for certified travel businesses as
a value-added Web service. Once the travel agent
gets the okay from the travel better business bureau,
it accepts the signed requests of the airline.

Auditing and nonrepudiation

An audit capability can capture a tamper-resistant
record of security-related events in order to evalu-
ate the effectiveness of security policies and mech-
anisms. This paper does not discuss requirements for
auditing security-relevant events in Web services, or
APIs for Web service containers to generate audit rec-
ords. A future version of the Web services security
specification may include such requirements.

238 HONDO, NAGARATNAM, AND NADALIN

Nonrepudiation as a legal term implies providing le-
gal evidence that a user performed some action, such
that the user cannot reasonably deny having done
so. In some cases, it is claimed that XML Digital Sig-
natures can be used to provide signed evidence of
the XML messages exchanged between the services.
But an end-to-end solution to nonrepudiation is a
difficult problem and involves trust issues. Therefore,
this paper does not propose a solution for non-
repudiation, which should be addressed in the
future.

Summary

A Web service security model should address secur-
ity issues involved in a request from an end client
to a target service, including the intermediary ser-
vices that route the service requests. This paper pro-
poses a mechanism for the client to provide authen-
tication data based on the service definition and, at

IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002

the same time, for the service provider to retrieve
those data.

Because of the necessity for and complexity in es-
tablished trust in the Web services model, this pa-
per also proposes how XML Digital Signatures and
encryption can be exploited to achieve a level of trust.
We show that as part of its evolution, the Web ser-
vices requirements for application development can
be seen as an opportunity to introduce a method of
coupling security technologies (authentication, au-
thorization, digital signatures, etc.) with business
trust issues (public key infrastructure policy, role-
based access control, firewalls, etc.) and workflow
into the creation of core Web security services con-
figured through policies expressed in XML.

As the base Web service technology evolves, more
complex scenarios need to be considered and han-
dled in the future.

Future

Aswe begin to secure Web services, we can also eval-
uate service offerings through the perspective of risk
assessment. No Web service is impenetrable to at-
tack. Every offering of a service implies risk, whether
on the Internet or on an intranet, because there is
always a risk when a service interface is externally
exposed. The question is: what is the scope of the
exposure, how can the exposure be offset by the po-
tential value of the service, and who is responsible
for the enforcement of any countermeasures
used to prevent the service interface from being
exploited?

The ability to supply a complete Web service envi-
ronment, in which risk assessment and policy en-
forcement are an integral component, will depend
on several initiatives continuing to evolve as de facto
standards. First, the workflow needs an integrated
security model as part of its processing model. Sec-
ond, analysis is needed to determine whether XML
schemas can be used to formalize security models
through the definition of security types. Third, Web
Services Description Language, Web Services Flow
Language,” or Web Services Endpoint Language
need to be extended to contain security attributes
and policy information related to Web services. In
particular, the specification of PKI policies will be im-
portant for interoperability in the more dynamic Web
services involving late binding. Finally, the emerg-
ing W3C activities to define the processing rules and

IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002

key management services for XML applications must
be well integrated with the other Web services spec-
ifications.

Appendix A: Glossary

access To access is to interact with a system entity in order to
manipulate, use, gain knowledge of, or obtain a representation
of, some (or all) of a system entity’s resources.

access control Access control protects resources against unau-
thorized access; it is a process by which use of resources is reg-
ulated according to a security policy and is permitted by only au-
thorized system entities according to that policy.

assertion An assertion is data, produced by a SAML authority,
constituting a declaration of identity, or attribute information,
or authorizations.

asserting party Formally, an asserting party is the administrative
domain hosting SAML authorities that are issuing assertions. In-
formally, it is an instance of an assertion-issuing SAML author-

ity.

attribute An attribute is a distinct characteristic of an object. An
object’s attributes are said to describe the object. Objects’ at-
tributes are often specified in terms of their physical traits, such
as size, shape, weight, and color, etc. for real-world objects. Ob-
jects in cyberspace might have attributes describing size, type of
encoding, network address, etc. Which of the object’s attributes
are salient is decided by the observer.

attribute assertion An attribute assertion declares that the spec-
ified subject has the specified attribute(s). Attributes may be spec-
ified by means of a URI (uniform resource indicator) or through
an extension schema that defines structured attributes.

authorization assertion An authorization assertion declares that
a subject has been granted specific permission to access one or
more resources.

credential A credential is information that is transferred to es-
tablish a claimed principal identity.

decision assertion A decision assertion reports the result of the
specified authorization request.

group A group names a collection of principals to which permis-
sions may be granted.

permission Permission refers to a set of activities (a set of one
or more operations on some set of one or more resources) that
is the target of an authorization decision.

principal A principal is a system entity; its identity can be au-
thenticated.

principal identity A principal identity is a way to represent a prin-
cipal’s identity, typically an identifier.

relying party A system entity that is making a decision contin-

gent upon information or advice from another system entity is
a relying party; e.g., a system entity that is relying upon various

HONDO, NAGARATNAM, AND NADALIN

239

SAML assertions about some other party(ies), made by yet other
party(ies).

role A role is a set of permissions that may be granted to a prin-
cipal.

security assertion A security assertion is typically scrutinized in
the context of a security policy.

Security Assertion Markup Language (SAML) SAML is a spec-
ification describing a set of security assertions that are encoded
using XML, the request/response protocols used to obtain the
security assertions, and the bindings of these protocols to various
transfer protocols (e.g., SOAP, BEEP [Blocks Extensible Ex-
change Protocol], HTTP, etc.).

security domain A security domain is an environment or context
that is defined by security policies, security models, and security
architecture, including a set of resources and set of system en-
tities that are authorized to access the resources. An adminis-
trative domain may contain one or more security domains. The
traits defining a given security domain typically evolve over time.

security policy A security policy is a set of rules and practices that
specify or regulate how a system or organization provides secur-
ity services to protect resources. Security policies are components
of security architectures. Significant portions of security policies
are implemented via security services, using security policy ex-
pressions.

security service A security service is a processing or communi-
cation service that is provided by a system to give a specific kind
of protection to resources, which may reside with the system or
with other systems, e.g., an authentication service or a PKI-based
document attribution and authentication service. Security services
include authentication, authorization, and accounting (AAA) ser-
vices. Security services typically implement portions of security
policies, and are implemented via security mechanisms.

**Trademark or registered trademark of Sun Microsystems, Inc.
or the Object Management Group.

Cited references and notes

1. D. Plummer and D. Smith, Web Services and Software E-Ser-
vices: What's in a Name? Application Integration and Middle-
ware Strategies Research Note COM-12-0101, Gartner
Group (October 30, 2000).

2. Web services architecture; see http://www-106.ibm.com/
developerworks/webservices/library/w-ovr/.

3. W3C Recommendation, Extensible Markup Language
(XML) 1.0 (Second Edition); see http:/www.w3.org/TR/
2000/REC-xml-20001006.html

4. SAML (Security Assertion Markup Language) is an emerg-
ing standard, from the OASIS organization, that provides the
definition of XML tokens, such as name assertions that can
be used to map identities between administrative domains.

5. D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Men-
delsohn, H. F. Nielsen, S. Thatte, and D. Winer, Simple Ob-
ject Access Protocol (SOAP) 1.1, W3C Note (May 8, 2000);
available at http://www.w3.org/TR/SOAP/.

6. See http://www.w3.org/Protocols/HTTP/ietf-http-ext/.

7. E. Christensen, F. Curbera, G. Merideth, and S. Weer-
awarana, Web Services Description Language (WSDL) 1.1,
'W3C Note (March 15,2001); see http:/www.w3.org/TR wsdlL.html

240 HONDO, NAGARATNAM, AND NADALIN

8. See http://www.uddi.org/ and http://www.uddi.org/fags.html
#who.

9. R. Cover, Web Services Flow Language (WSFL); see http://xml.
coverpages.org/wsfl.html.

10. W3C XML Digital Signatures, see http://www.w3.org/
Signature and http://www.w3.0org/TR/2000/CR-xmldsig-core-
20001031/.

11. Security Assertion Markup Language; see http://www.oasis-
open.org/committees/security/docs/draft-sstc-use-strawman-
03.html.

12. W3C XML Encryption Syntax and Processing, see http:
/www.w3c.org/Encryption/2001/03/12-proposal.html.

13. XML Digital Signature APIs, see http://www.jcp.org/jsr/
detail/105.jsp.

14. XML Digital Encryption APIs, see http://www.jcp.org/jsr/
detail/106.jsp.

15. Itis expected that the trust model will be specified in SAML.

16. A.Brown, B. Fox, S. Hada, B. LaMacchia, and H. Maruyama,
SOAP Security Extensions: Digital Signature, W3C Note (Feb-
ruary 6, 2001); see http://www.w3.org/TR/SOAP-dsig/.

17. See http://www.ietf.org/rfc/rfc2828.txt.

18. XKMS is an emerging W3C specification for key manage-
ment services. It can be used in combination with the keyref
element in the keyinfo block of the XML digital signature
to retrieve keys and certificates. See http://www.verisign.com.

19. The ebXML organization (see http://www.ebxml.org) worked
with “vertical” industries, such as travel, to attempt to spec-
ify such core components, as well as issuing specifications to
sign XML messages as indicated in this example.

20. The IETF PKIX working group has defined a specification
for Online Certificate Status Protocol; see http://www.ietf.
org/internet-drafts/draft-ietf-pkix-ocspv2-02.txt.

21. F. Leymann, Web Services Flow Language guide, available
at http://www-4.ibm.com/software/solutions/webservices/pdf/
WSFL.pdf.

Accepted for publication December 7, 2001.

Maryann Hondo IBM Software Group, One Charles Park,
Cambridge, Massachusetts 02142 (electronic mail: mhondo @us.ibm.
com). Ms. Hondo joined Lotus Development Corporation in 1996
and is currently the Web services security standards lead in soft-
ware strategy for the IBM Software Group. In this role she has
chaired the ebXML security team, participated in the develop-
ment of the UDDI specifications, and is a member of the Oasis
SAML working group. Previous IBM roles include security ar-
chitect for emerging technology, manager of the IBM/Iris Jonah
team (IETF PKIX reference implementation), and security ar-
chitect for Lotus e-Suite. Her background outside IBM includes
working for Hewlett-Packard Co., Digital Corporation, and Bell
Labs.

Nataraj Nagaratnam IBM Application & Integration Middleware
Division, 3039 Cornwallis Road, Raleigh, North Carolina 27709-
2195 (electronic mail: natarajn@us.ibm.com). Dr. Nagaratnam is
the lead security architect for the IBM WebSphere ~ product. He
received his Ph.D. degree from Syracuse University; his thesis
addresses secure delegation in distributed object environments.
He has authored and edited books on Java networking and Java-
Beans™ and has published his research work in numerous jour-
nals and conference proceedings.

Anthony Nadalin IBM Software Group, 9442 Capitol of
Texas Highway North, Austin, Texas 78759 (electronic mail:

IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002

drsecure@us.ibm.com). Mr. Nadalin is the lead architect for the
IBM Java security project. As senior architect, he is responsible
for infrastructure design and development across IBM. He serves
as IBM’s primary security liaison to Sun Microsystems’ JavaSoft
division for Java security design and development collaboration.

IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002 HONDO, NAGARATNAM, AND NADALIN 241

