Instance-level
access control for
business-to-business
electronic commerce

The emergence of e-marketplace Web sites
that contain proprietary information from
multiple organizations requires the creation of
new access control schemes that provide
fine-grained access control while reducing
both administrative and run-time overhead. It
is also desirable to have clear, concise, and
easily configurable definitions of access
control policies that are aligned with business
processes, and to have these policies
enforced consistently throughout an e-
commerce system. In this paper, we describe
a policy-based access control scheme, and
its implementation, that allows access to
individual instances of resources to be
specified in a concise and computationally
efficient manner. We model business
relationships between users and business
objects and use implicit grouping of users
and resources. These concepts allow policies
to refer efficiently to aggregates of resources
and users and to document the intention of
an authorization policy. Our access control
scheme is implemented as an application-
level access control mechanism within IBM’s
WebSphere® Commerce Suite, Marketplace
Edition. We use this implementation to
provide examples and give performance data.
For future work, we discuss how our policy-
based, resource-level access control scheme
might be enhanced to augment language-
level access control schemes, such as the
Java™ 2 Platform, Enterprise Edition (J2EE™)
security model.

IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002

0018-8670/02/$5.00 © 2002 I1BM

The promise of electronic commerce is that it can
improve economic efficiency by increasing the pool
of potential buyers and sellers and by reducing
transaction costs. Electronic marketplaces, called
e-marketplaces, enable electronic commerce by serv-
ing as centralized hubs where buyers and sellers can
exchange information about products and services
and conduct business transactions. In order to en-
able this function, e-marketplaces must gather, store,
and distribute proprietary information from a mul-
titude of organizations. Access to e-marketplace
functions and information must be properly con-
trolled to ensure integrity of the process; this is es-
sential if an e-marketplace is to attract and retain
participants.

Typically, an e-marketplace defines a set of business
processes and services that it provides, signs up bus-
inesses, and gives them access to an appropriate sub-
set of these processes and services. The access con-
trol policies of the e-marketplace owner define
what actions these businesses can perform in the
e-marketplace. These businesses in turn grant access
to their employees, based on their own access con-
trol policies. In granting access, the e-marketplace
owner and the individual businesses need to consider
not only the business processes and the steps within
each process, but also the instances of business ob-
jects used in each step.

©Copyright 2002 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

GOODWIN, GOH, AND WU 303

Figure 1

Sample contract creation process. Nodes are process states, and transitions are process steps. For simplicity,

we have not shown all possible transitions and have not included buying against a contract.

ContractCreate ContractSubmit
O PENDING
SELLER O
(@] APPROVAL
o
ContractDisplay :
ContractModify ContractDisplay

ContractReject

To illustrate the requirements for authorization
within an e-marketplace, in this paper we use the
simplified process for recording a pricing contract
between two organizations available within IBM’s
WebSphere* Commerce Suite, Marketplace Edition
software (WCS MPE). Pricing contracts represent
agreements in which one business agrees to sell cer-
tain products to another business at agreed-upon
prices or discounts over a prescribed period of time.
A contract can include minimum and maximum
quantities of goods and often represents volume dis-
counts for goods to be purchased over a period of
time. Recording a contract allows users in the buy-
ing organization to see contract prices for items in
the catalog and allows them to place orders against
the contract, fulfilling the buyer’s obligation under
the contract. Pricing contracts result from negotia-
tions between the buying and the selling organiza-
tions. WCS MPE provides several mechanisms for ne-
gotiating pricing contracts, including request for
quote (RFQ) and reverse auction business processes.
Terms can also be negotiated through e-mail mes-
sages, faxes, and phone calls. Any of these processes
can lead to a contract that needs to be recorded for
use in the marketplace.

Figure 1 shows a simplified contract recording pro-
cess. The initiator of the contracting process first
drafts a contract, either by entering it directly or by
using the results of a negotiation process. The con-
tract is approved by the selling organization, and then
sent to the buying organization for approval. Once
both sides approve, the contract becomes active. The
contract is terminated automatically at the end of
the contract period.

304 GOODWIN, GOH, AND WU

ContractVerify

ContractVerify ContractTerminate

PENDING
BUYER

APPROVAL)
A ContractDisplay
: ContractReport
ContractDisplay
: ContractDownload
ContractDisplay ContractReport

To enable this process, the e-marketplace owner will
authorize certain businesses to initiate and partic-
ipate in the contracting process. These businesses
in turn authorize certain of their employees to ini-
tiate and participate in the contracting process (see
Figure 2). In granting this access, the e-marketplace
does not grant an organization the right to perform
contract actions on any contract, only those contracts
in which the organization is a participant. Further-
more, an organization might want to limit which con-
tracts an individual can modify. For example, some
organizations might limit a contract clerk to the con-
tracts that they initiated, while others allow their con-
tract clerks to modify any contract that the organi-
zation owns. Within an organization, policies might
vary by geography. For example, contract clerks lo-
cated at the business headquarters might be able to
modify any contract, whereas those located at the
branch offices are limited to the contracts they ini-
tiated. In addition to authorization policy, organi-
zations might also want to customize the business
process workflow. Although authorization is required
to enable a workflow, workflow and its interaction
with authorization is beyond the scope of this pa-
per. (See Bussler! for a discussion on workflow and
authorization.)

For purposes of this paper, we consider the follow-
ing sample access control policies:

 Contract clerks and contract administrators can
create contracts.

 Contract clerks can view only contracts they cre-
ated.

e Contract administrators can view any contract ini-
tiated by their organization.

IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002

Figure 2 Sample membership hierarchy with two organizations: Alpha Inc. and Beta Inc., five users, and eight sample
contracts showing owner, creator, and status. Other details are omitted.

MEMBER HIERARCHY

CONTRACT INSTANCES

OWNER CREATOR STATUS
ABE ALPHA
JOB = CONTRACT ADMINISTRATOR C1 ALPHA AA (ABE ALPHA) DRAFT
BETTY ALPHA C2 ALPHA BA DRAFT
AUFLAINE, JOB = GONTRACT CLERK
C3 ALPHA BA ACTIVE
GARL ALPHA
JOB = CONTRACT CLERK C4 ALPHA AA ACTIVE
C5 BETA AB(ALICE BETA) DRAFT
ALICE BETA
JOB = CONTRACT ADMINISTRATOR C6 BETA AB DRAFT
BETA INC.
BOB BETA c7 BETA AB ACTIVE
JOB = CONTRACT CLERK
c8 BETA BB ACTIVE

* Contract clerks can modify only contracts they cre-
ated that are in the draft state.

e Contract administrators can modify any contract
their organization created that is in the draft state.

Design objectives

We have tried to create an authorization design with
the following characteristics:

Expressive. The authorization language must be ex-
pressive enough to be able to handle a wide variety
of business policies used by the participants in the
e-marketplace.

Comprehensible. The authorization language should
express the authorization policy in terms of the bus-
iness processes, and business objects they operate
on, and make sense to a business analyst in order to
minimize the technical knowledge required to ad-
minister the system.

Compact. E-marketplaces can involve thousands of
organizations, hundreds of thousands of products,
and millions of transactions. The size of the autho-
rization policy should be relative to the number of
business processes and types of business objects,
rather than the number of instances of each object
in the system.

Efficient. Transaction volume on a successful mar-

ketplace, and the need for quick response times, re-
quires that authorization checks place only a min-

IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002

imum overhead on each transaction. If authorization
checks cannot be done efficiently, then externalized
schemes must be replaced with hard-coded applica-
tion logic.

In some cases, these aims conflict. For example, a
language that is sufficiently expressive, such as first-
order predicate logic, might not be sufficiently com-
prehensible to a business analyst and might not have
an efficient run-time implementation, or it might al-
low policies that have no efficient run-time imple-
mentation.

In the remainder of this paper, we review related
work in the evolution of authorization schemes. We
identify some limitations of previous approaches and
outline our approach. We then describe authoriza-
tion policy implementation in WCS MPE and use this
implementation to demonstrate some performance
results. We conclude with some comments on future
work and the evolution of authorization for Java**-
based applications.

Background and related work

A good review of prior work on security policies and
models can be found in Summers.? When multiuser
operating systems were first developed in the 1970s,
early access control models were created to deal with
potential conflicts between users. The access matrix
model? is a simple way to represent explicitly the op-
erations that a user is authorized to perform on a
resource object. As shown in Figure 3, each row of

GOODWIN, GOH, AND WU 305

Figure 3 An access matrix maps subjects to objects,
granting permissions. Permissions can also be
represented as directed arcs from subject to
object, labeled with the permission.

OBJECTS

ol

SUBJECTS

read/
« [

permission
(] O
s o

the access matrix corresponds to a subject (user, or
process running on behalf of a user) and each col-
umn corresponds to an object. Each cell of the ma-
trix is filled with a list of the permissions that the
subject has over the object. The permissions are in
terms of operating system primitives, such as read,
write, and modify. Each column in the matrix rep-
resents the access control list for the object of that
column. The access matrix model is widely used, flex-
ible, and easy to understand. For our example, Fig-
ure 4 shows the required permissions, where each
permission arrow corresponds to an entry in the ac-
cess matrix. One problem with the access matrix is
its explicit enumeration of rights for each subject-
object pair, which creates a heavy maintenance bur-
den. This model is also not capable of expressing the
intent of the assignment. For example, a policy to
allow every subject access to read an object would
imply that any new subject added should have read
access. However, a column in which everyone cur-
rently has read permission cannot be assumed to
mean that the object is readable for a new subject.
A related problem is how to assign permissions for
a new object.

Protection of objects can also be represented by a
directed graph, as in Figure 3. In this figure, vertex
s represents the subject, vertex o represents the ob-
ject, and the labeled directed edge from s to o rep-
resents the set of permissions that subject s has over
object 0. The permissions in the set must be mem-
bers of a fixed set of permissions. In the take-grant
model, this set of permissions can include “take” and

306 GOODWIN, GOH, AND WU

“grant” permissions, which enable transfer of per-
missions by one user to another. The number of per-
mission decisions is of complexity O(Js| X |o|), where
|s| is the number of subjects and |o| is the number
of objects. This corresponds to the number of pos-
sible labeled arcs in Figure 4.

Recently, role-based access control (RBAC)* has
gained acceptance for management of computing re-
sources because it reduces the administrative bur-
den as compared with access control lists and other
early forms of access control. In RBAC, a role is a
named job function within an organization that de-
scribes the authority and responsibility conferred on
auser. RBAC requires access rights to be assigned to
roles, rather than individual users, and users obtain
rights by virtue of being assigned appropriate roles,
as illustrated in Figure 5. A role is traditionally de-
fined in the access control literature as an associa-
tion between a group of users and a group of per-
missions. (For example, see Barkley and Cincotta.’)
RBAC can also be extended to include role hierar-
chies and constraints between roles. Using a role hi-
erarchy, the Contract Administrator role would be
superior to the Contract Clerk role and would in-
herit all the privileges of the Contract Clerk role.
Using role constraints, it is possible to prevent an
employee who is a Contract Clerk but not a Con-
tract Approver from approving contracts that the em-
ployee created.*

RBAC eases the administration of access controls be-
cause the roles defined for an organization tend to
be relatively static entities, whereas the users who
occupy those roles change frequently. Similarly, the
set of permissions associated with a role are expected
to be stable, whereas resources and access to those
resources may be dynamic. RBAC also allows sepa-
ration of the personnel function of assigning subjects
to roles from the business process administration
function of defining which privileges a role has. The
complexity of permission decisions is O(Js| X |r|) +
O(|r] X |o]), which can be significantly less than for
an access matrix, if the number of roles is much
smaller than the number of users. Further reductions
in complexity can be achieved by grouping objects
by their type. Figure 6 shows an RBAC scheme where
roles are granted permissions on types of objects
rather than individual objects. Because each object
implicitly maps to the correct type, the complexity
of permission decisions is reduced to O(|s| X |r|) +
O(Jr| < |¢]).° However, as we can see from Figure
7, there are difficulties in applying this approach to our
example. A different role is required for each user,

IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002

Figure 4 The intended permissions for our example. We can represent all the intended permissions using an access matrix.

MEMBER HIERARCHY

CONTRACT INSTANCES

—~———

“~—— }
= ~
D =
Crdndulall) PN G

-~

~.~~~~
=

Figure 5 Role-based access control maps users to roles and roles to permissions on objects.

so using roles would increase the administrative bur-
den in this case.

Implicit mapping of roles to privileges on objects is
extended in the work on role templates, where priv-
ileges are granted to a role for all objects of a given
type that satisfy an expression.® For example, we
could define the role AlphaContractAdministrator =
(select, contract, (contract.seller = “Alpha”)), where
“select” is the action (SQL [Structured Query Language]
select), “contract” is the type, and the remainder is the
restricted-privilege expression that the contract must
satisty in order for users with the AlphaContractAd-

IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002

ministrator role to read the contract. Role templates
extend this to allow parameterized definitions such as
ContractAdministrator({organization)) = (select, con-
tract, (contract.seller = (organization))). This template
could then be used to assign to a contract administrator
from Alpha the role Contract Administrator(“Alpha”).
Using this scheme, we would create two templates for con-
tract administrators, the one already given and one for
ContractAdministratorModify({organization)) = (mod-
ify, contract, ((contract.seller = (organization)) and
(contract.status = “draft”))) to allow modification
of the organization’s contracts in the draft state.
There would be one instance of each template for

GOODWIN, GOH, AND WU 307

Figure 6 To ease administration overhead, permissions can be assigned by object type, rather than by object.

Figure 7 Contract administrator and contract clerk roles are insufficient, because different subjects with the same role should
have different permissions. In this case, we need one role for each user.

MEMBER HIERARCHY

each organization. For contract clerks, we would
need another two templates, with both the organi-
zation and the user as parameters:

* ContractClerk({organization),(user)) = (select,
contract, ((contract.seller = (organization)) and
(contract.creator = (user))))

¢ ContractClerkModify({organization),{user)) = (up-
date, contract, ((contract.seller = (organization))

308 GOODWIN, GOH, AND WU

CONTRACT INSTANCES

and (contract.creator = (user)) and (contract.sta-
tus = “draft”)))

We would need to create one instance of each of
the contract administrator templates per organiza-
tion and one of each of the contract clerk templates
per contract clerk. We would then assign each user
to the correct pair of role template instances. The

IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002

number of role instances grows with the number of
organizations and the number of contract clerks.

The organization modeling and management (OMM)
authorization scheme further extends implicit map-
ping by using expressions to define virtual relation-
ships between objects.” Using virtual relationships,
wecoulddefine AdministratorForContract = ((owner.
jobFunction = ContractAdministrator) and (owner.
organization = contract.seller)) where owner is the
range of the relationship and contract is the domain.
We could then grant the Contract Read privilege to
anyone satisfying this virtual relationship with the
contract in question. At run time, the existence of
a virtual relationship is checked using the informa-
tion in the OMM data store. We could also define:
AdministratorForModifiableContract = ((owner.
jobFunction = ContractAdministrator) and (owner-.
organization = contract.seller) and (contract.status =
“draft”)) and grant users with this relationship per-
mission to modify the contract. However, in the OMM
system, virtual relationships are used to control ac-
cess to process steps, and not to objects. As a result,
we would need only the one relationship for con-
tract administrators. Likewise, a single relationship
could be used for contract clerks.

An early application of RBAC to the Web is described
by Barkley et al.®* The RBAC/Web system provides
the benefits of RBAC in a package easily integrated
with common Web servers, supplementing the Web
server’s own authentication function with role-based
authorization. However, it does not offer the level
of fine-grained access control described in this pa-

per.

Na and Cheon® describe an RBAC design in which
roles can be temporarily delegated from one user to
another. Granting delegation can be predicated on
an exception condition, such as an emergency. Lin
and Brown'® describe extending Intel’s Common
Data Security Architecture to enable user-defined
trust policy enforcement. A key feature is the ability
to define customizable policies in the form of logic
rules that further restrict the actions of users. The
RBAC system presented in this paper is platform-in-
dependent and uses relatively simple policies that
can likewise be easily configured in a graphical user
interface.

A highly adaptable model by which RBAC can be used
to administer RBAC is described by Sandhu et al."
This model extends RBAC by adding the concepts of
administrative roles and administrative permissions,

IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002

which are dedicated to the management of roles. It
is shown that the model can represent and formal-
ize complex management and delegation rules that
an organization may have in place. However, the re-
quirements that have driven the design of the
WCS MPE access control system did not justify add-
ing this degree of complexity solely to manage the
granting and revocation of roles.

As we show in the next section, our design builds
upon and extends the previous work just described.
Although it exploits the reduction in administrative
burden made possible by RBAC and its recent deriv-
atives, the design is strongly driven by both the func-
tional and performance requirements of the custom-
ers of this commercial product.

Design

In this section, we outline our design and implemen-
tation for application-level authorization in WCS MPE.
Our primary goal was to enhance role-based access
control to meet the challenges of business-to-busi-
ness electronic commerce applications. A significant
shortcoming of RBAC is the inability to distinguish
which instances of a resource an individual role
holder can access. As stated earlier, although con-
tract clerks can execute commands to modify con-
tracts in the draft state, they may only be allowed to
modify contracts they created. Frequently RBAC sys-
tems address this issue by hard-coding this part of
the authorization policy as part of the business logic.
Our aim is to externalize all authorization decisions,
using a set of authorization policies, while still main-
taining the performance of hard-coded authoriza-
tion policies. In the rest of this section, we describe
the concepts we use to implement our authorization
policies.

Implicit grouping. A limitation of RBAC is that as-
signment of subjects to roles is the only method for
aggregating subjects to assign permissions. While
roles are typically equated with job function, and the
permissions needed to carry out a particular job in a
given business may be consistent across all users hold-
ing the same position, it may not be the case across
organizations or between countries. For example, if
contract administrators for Alpha Inc. and Beta Inc.
require different permissions, we need to create two
roles. If we created the AlphaContractAdmin and
BetaContractAdmin roles, their names would imply
the purpose of those roles, but the system would not
enforce their intended use. Furthermore, if Alpha
Inc. is a multinational company, accounting and

GOODWIN, GOH, AND WU 309

legal practices may require that contract adminis-
trators in different countries be given different per-
missions. We may need to create the AlphaUSCon-
tractAdmin, the AlphaCanadaContractAdmin, and

In addition to grouping by type,
we allow objects to be grouped
by other attributes, such as
their state.

so on. Again, the role names would imply which sub-
jects an administrator should assign to those roles,
but the system would not have captured our inten-
tions.

To address the problem of efficient subject aggre-
gation, we use implicit grouping of subjects and use
these groups to map subjects to permissions on
groups of objects. An implicit group is defined by a
set of constraints and any subject satisfying the con-
straints is a member of the group. For example, we
would define AlphaUSContractAdmin = [(organiza-
tion = “Alpha Inc.”) and (country = “US”) and
(job = “ContractAdministrator”)]. Note that the
constraints refer only to attributes of the subject (or-
ganization, country, and job) and constants, such as
“US.” This restriction allows group membership for
the subject to be determined efficiently from the at-
tributes of the subject and the definition of the group.
We also allow explicit assignment of users to groups.
This is useful for defining groups such as “Trusted
Partners” when there is no implicit definition of
“trusted.”

The use of implicit groups for specifying authoriza-
tion policies eases administration overhead in two
ways. First, if a contract administrator moves from
one country to another, then updating the user pro-
file automatically moves the user to the correct
group, without requiring an administrator to inter-
vene and know whether a user’s country is signifi-
cant for assignment of permissions. Second, if cir-
cumstances change and permissions become
dependent on another attribute, such as language,
then defining new groups and assigning them per-
missions is sufficient. The alternative with RBAC is
to define new roles and then reassign all people with
the old roles the correct new ones.

310 GOODWIN, GOH, AND WU

Implicit grouping also applies to objects. Assigning
permissions by type implicitly groups objects by their
type (Figure 6). Because types in an object-oriented
system can be hierarchical, an object can have mul-
tiple types and be a member of multiple type groups.
In addition to grouping by type, we allow objects to
be grouped by other attributes, such as their state.
To implement our contract example, we would de-
fine modifiable contracts as contracts with state =
“draft.”

Implicit grouping is identical to role templates® when
the role templates are used solely for grouping of
subjects. However, when the concept of role tem-
plates is used to restrict the range of objects over
which the role has permissions, it can suffer from the
need to proliferate instances of the templates, as de-
scribed earlier. The use of relationships allows con-
trol over object instances based on specific attributes
without the need to instantiate all relevant combi-
nations of roles with object attributes.

Relationships. An object-oriented design of business
objects would maintain meaningful relationships or
associations between objects and between objects
and users. For our contract example, a reasonable
design would represent the one-to-many creator re-
lationship between users and contracts, the one-to-
many ownership relation between organizations and
contracts, and the many-to-many assignment be-
tween users and jobs. The implementation of such
a design would necessarily include methods that
could be used to determine if a relationship held be-
tween a given object and a given user. For example,
a getCreator() or an isCreator({user)) method on
a contract object could be used to determine if a user
was the creator of a contract. Because these meth-
ods would be implemented as part of the applica-
tion, we would expect that they would be imple-
mented to run efficiently.

It is also important to note that the set of relation-
ships maintained for each type of object can be dif-
ferent. For example, a request for quote (RFQ) ob-
ject that is targeted at a specific list of people would
have to maintain this list and the “recipient” rela-
tionship would be defined for RFQs, but not for con-
tracts. Also, if there were no need to record the cre-
ator of the RFQ, then there would be no creator
relationship defined for RFQs.

In our design, we try to take advantage of the re-
lationships already present in the business object

IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002

Figure 8 Policies assign permissions to groups of users to perform an action on a group of resources, if a given relationship
exists. Group definitions implicitly map users and objects to groups. Using relationships improves the specificity of

rules, while maintaining intention and efficiency.

OBJECTS
RESOURCE
GROUP
USER
SUBJECTS GROUP
USER
GROUP
s1 ug1
s2 ugt ug1

member

model, and the associated method implementations.
We want to exploit relationships that are already
maintained for purposes other than authorization.
Figure 8 shows the graphical representation of the
RBAC model, extended to take advantage of these
relationships. By making the creator relationship on
a contract available for specifying authorization pol-
icies, we do not place any additional burden on the
application in terms of the information it must store,
but we do increase the expressiveness of the autho-
rization language. Using the creator relationship, we
can determine if a contract clerk can access a given
contract. To implement such a policy at run time,
we only require that an instance of an object pro-
vides an interface that we can use to determine if a
user fulfills a particular relationship.

Ownership. We could also group resources by their
owner and use owner-based resource groups to grant
access. Instead, we choose to treat ownership as a
fundamental characteristic of every object and take
advantage of the membership hierarchy to scope pol-
icies. For each resource that can be controlled, we
require an owner, which can either be a user or an
organization. Ownership is used to determine which
access control policies apply to a given object. The
policies defined for the owner of an object determine

IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002

o1l 02
rg1 rg1

RESOURCE GROUP
rg1

write

permission

member

relation

who can access it. Ownership is also transitive. Or-
ganizations own their employee’s entries and as a
result indirectly own the business objects that their
employees own. Similarly, the marketplace owns the
organization entries and indirectly owns all the bus-
iness objects in the marketplace. Authorization pol-
icies defined at any level in the hierarchy therefore
apply to all objects owned by the entity for which
the policy is defined and all objects owned by its de-
scendants in the hierarchy. In this way, market-wide
policies are defined at the root of the hierarchy and
apply to all objects in the marketplace.

To simplify administration and improve run-time ef-
ficiency, we allow policies that grant permission but
not policies that revoke permissions. By default, no
one is allowed to do anything. Only if a policy grants
permission is an action allowed. Having only poli-
cies that grant permission eliminates the need for
conflict resolution, because no policy can logically
contradict another. Comprehensibility of policies is
also improved because the effect of a policy cannot
be changed by the addition or removal of another
policy. This also improves run-time efficiency; as soon
as a policy is found that grants permission, no other
policies need be considered.

GOODWIN, GOH, AND WU 311

Policies are themselves first-class objects in our system,
and access to policies is controlled through autho-
rization policies.'* So, while the policies for an or-
ganization define who can access the organizations’
resources, the organization administrator cannot
change these policies, unless there is a policy that
allows this. For most organizations in an e-market-
place, we do not include such a policy. The real ad-
vantage of having policies scoped by organization is
that it allows the e-marketplace to load different sets
of policies for each type of organization and to cus-
tomize these policies for an individual organization
where needed. More sophisticated and trusted or-
ganization administrators can be granted access to
modify policies for their organizations, but the site
administrator can limit the scope of the policies they
could change and thereby limit damage they could
do to resources owned by their own organization.

Explicitly callable. Finally, we make the authoriza-
tion code directly callable from the application. In
many operating systems and language-based autho-
rization systems, calls to perform an action automat-
ically invoke the authorization code. While this is
desirable to prevent unauthorized access, it is not
sufficient. It should be possible to determine whether
something would be allowed without actually hav-
ing to try to perform it. This functionality is partic-
ularly useful for creating user interfaces in which the
user is shown only the menu items, buttons, and hy-
perlinks that he or she is permitted to use. By call-
ing the authorization code to determine if authori-
zation would be granted, the user interface can
selectively enable and disable functionality. If the au-
thorization policies are changed, the user interface
automatically adapts to provide the correct function-
ality to each user, eliminating the need to recode the
user interface.

Policies. In our design, authorization policies are
represented as a four-tuple:

[user group, actions, resource group, relationship]

The first and third policy elements must be the names
of existing user group and resource group objects,
respectively. The actions must correspond to one or
more predefined actions, although this element can
also take a wild-card value that matches all actions.
The relationship must be valid for the resource
group. A set of relationships is defined for each re-
source type. The relationship in a policy should
match a relationship defined for some objects in the
resource group; for example, if a resource group in-

312 GOODWIN, GOH, AND WU

cludes contracts, then a policy could include a “Cre-
ator” relationship, because contracts have creators.
The relationship is optional, and a policy without a
relationship means that the policy does not require
auser to have a specific relationship with the object.

The policy can be interpreted as granting access to
anyone in the user group to perform the given ac-
tions on any resource in the resource group, provided
he or she has the given relationship with that object.
The policy only applies to objects owned by the owner
of the policy.

Role assignment. In RBAC, a system administrator
is responsible for assignment of roles to users in or-
der to grant access. The set of roles that can be as-
signed is the set defined for the system. For an e-
marketplace that involves large numbers of
organizations and users, we want to distribute user
management to administrators within each organi-
zation. However, we do not want the organization
administrators to be able to assign any role. Instead,
we limit them to assigning only the roles that their
organization has been assigned, and to assigning
these roles only to members of their own organiza-
tion. In this way, the site administrators assign roles
to an organization, and the administrators within
each organization can then assign these roles to se-
lected individuals in the organization. Of course, role
assignment authorization itself is controlled through
authorization policies. To maintain integrity, when
a site administrator revokes a role from an organi-
zation, it must also be revoked from all the users in
the organization.

Authorization in WebSphere Commerce
Suite, Marketplace Edition

WebSphere Commerce Suite, Marketplace Edition
(Wcs MPE) is IBM’s middleware for constructing busi-
ness-to-business electronic marketplace Web sites.
It is an outgrowth of the WebSphere Commerce
Suite, 4.1 (WCS) software product that is designed
for implementing retail e-commerce Web sites. In
implementing WCS MPE, we needed to enhance the
access control design of WCS to support the more
complex policies that are characteristic of business-
to-business e-marketplaces, where there are multi-
ple sellers and transactions involve more than just
a shopping cart and a credit card. The implemen-
tation of the MPE version of WCS also coincided with
the transition from C++ to the Java language, which
afforded us some freedom in implementing a new
access control scheme. However, existing function-

IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002

Figure 9 Sample HTTP (HyperText Transfer Protocol) request flow. Each request is associated with a session, and each
session can be associated with a user via an authorization step. The Policy Manager is invoked to check user
authorization for the command (step 4) and to check authorization for the business object (step 7).

HTTP REQUEST EXAMPLE: CREATE A CONTRACT COMMAND

1. HANDLE HTTP
REQUEST
INTERACTION CONTROLLER
2. CREATE
COMMAND
3. TARGET THE 6. EXECUTE
COMMAND COMMAND
COMMAND FACTORY COMMAND TARGET COMMAND
4. COMMAND- 8. ACCESS 7. INSTANCE-LEVEL
LEVEL ACCESS GRANTED ACCESS CONTROL
CONTROL R
GRANTED

5. ACCESS DENIED

POLICY MANAGER

8. ACCESS DENIED

ality for order and payment processing, written in
C++ and reused for the MPE edition, continues to
use the rudimentary C++ access control inherited
from WCS.

WCS MPE is implemented using WebSphere Appli-
cation Server 3.02, an e-business Java-based appli-
cation deployment environment. Within this envi-
ronment, we use the San Francisco Command
framework to implement business processes. This
framework consists of interaction controllers (ICs)
that manage interaction with HyperText Transfer
Protocol (HTTP) -based requests and commands that
implement steps in a business process."> Within a
transaction, multiple commands can be chained and
commands can invoke other commands to imple-
ment substeps in a process.

Figure 9 shows a typical interaction when the MPE
server handles an HTTP request. The interaction con-
troller receives the request and calls the command
factory to select an implementation of the appropri-
ate command. The command is then given the pa-
rameters from the request and invoked via a com-
mand target. The use of the command factory allows
the functioning of the e-marketplace to be custom-
ized by having the e-marketplace administrator con-
figure the command factory to select the appropri-
ate command implementations. The use of a

IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002

command target allows command processing to be
moved between servers for load balancing to improve
performance. The command target performs the first
authorization check to see if the user has authori-
zation to perform the execution action on the re-
quested command. This check corresponds to a
system-level check that determines if the user has
permission to execute the command at all. Since the
commands are owned by the marketplace, only mar-
ketplace-level policies are checked. In this way, the
system-wide policies control access to the business
functions. Referring to the policies in Table 1, we
can determine that for contract commands, only the
last two policies could apply, because these are the
only two with resource groups that include command
objects. If the user has the ContractClerk or the Con-
tractAdministrator role, then one of these policies
would grant access.

Within each command, the required business objects
are loaded from the database, or in the case of user
profiles, from the LDAP (Lightweight Directory Ac-
cess Protocol) server. The parameters passed to the
command indicate which instance(s) of each busi-
ness object the command should operate on. The
resource-level authorization check is performed
within each command. For contract commands, the
check would determine if the user could perform the
given action (command) on the given contract. Be-

GOODWIN, GOH, AND WU 313

Table 1 Contract-related policies. For implicit groups, we include the group definition with its first use. Organization-level
policies are loaded at organization-creation time for each organization. The (organization) variables are replaced by

the organization identifier.

User Group Action Resource Group Relationship
Organization ContractAdministrator := contractRead Contract :=
Resource (job = (objectType =
Policies Contract/Administrator) contract)
and (organization =
(organization))
ContractAdministrator contractModify ModifiableContract :=
(objectType =
contract) and (status =
draft)
Market-wide ContractClerk := contractRead Contract Creator
Resource (job = ContractClerk)
Policies
ContractClerk contractModify ModifiableContract Creator
Market-wide ContractClerk execute ContractCommand :=
Command (objectType =
Policies ContractReadCmd)
or (objectType =
ContractModifyCmd)
ContractAdministrator execute ContractCommand

cause contracts are owned by the organization, we
first check the organization policies. The first two
policies in Table 1 allow contract administrators to
access all contracts owned by their organizations. Or-
ganization policies are typically used to grant a user
with an administrative job access to an entire class
of objects owned by an organization. In such cases,
there is no requirement for a direct relationship be-
tween the user and the object. For contract clerks,
who require a direct relationship to the contracts they
can access, we use a market-level policy that includes
the creator relationship. Here we are taking advan-
tage of the fact that the system does not allow a clerk
to create a contract for any organization but his or
her own. If we wanted to enforce a policy that clerks
could access only a contract that they had created
and that was owned by their organization, we could
make this an organization-level policy.

Policy manager. Authorization is performed by the
PolicyManager instance, which manages authoriza-
tion policies and carries out authorization checks
when invoked. The PolicyManager class is instan-
tiated as a singleton and provides an isAllowed(User,
Action, Object) method for determining if a user is
allowed to perform a given action on a given object.
When invoked, the isAllowed method first looks up
the object’s owner and retrieves the owner’s autho-

314 GOODWIN, GOH, AND WU

rization policies, embodied in policy objects. For each
policy, the PolicyManager instance invokes the pol-
icy’sisAllowed(User, Action, Object) method to de-
termine if the policy grants access. The implemen-
tation of the policy object checks to see if the
conditions of its four-tuple policy are satisfied. It
checks to see if the user is a member of the user
group, if the object is a member of the resource
group, if the actions match, and for a policy that spec-
ifies a relationship, if the user fulfills the relation-
ship with the object. If none of the owner’s policies
grants access, then the policies of the owner’s par-
ent are retrieved and tested. This process is repeated
until the root of the membership tree is reached. If
no policy grants access, then the PolicyManager in-
stance returns false. (This description of the algo-
rithm, while conceptually correct, does not reflect
the actual implementation, which takes advantage
of numerous optimizations to achieve the required
performance.)

To check to see if an access is authorized, the Poli-
cyManager instance needs to determine the owner
of the resource and may need to determine if a user
has a particular relationship with the resource. To
support the authorization check, we require that bus-
iness objects implement the Protectable interface.
This interface serves as a marker to indicate that au-

IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002

thorization is needed for the given resource and pro-
vides a getOwner() = owner method to determine
the owner and a fulfills(User, relationship) = Bool-
ean method used to determine if a relationship ex-
ists. The efficiency with which authorization can be
checked is critical to the overall performance of the
system. To provide efficient checking, policies are
cached in a nested hash table that is keyed on the
action, then on the owner. This arrangement allows
the PolicyManager instance to quickly select the set
of policies that refer to the given action for a par-
ticular owner, and ignore all others. Within the pol-
icy object, the checking of the conditions of the pol-
icy are ordered so as to perform the most efficient,
most restrictive checks first to quickly eliminate pol-
icies that do not apply. These and similar optimiza-
tions helped to provide a two order-of-magnitude
speedup over our initial naive implementation.

WCS MPE was released with a sample e-marketplace
for buying and selling shipbuilding materials. This
sample comes with a default set of authorization pol-
icies that encode reasonable behavior for a default
set of roles. Figure 10 shows a breakdown of the pol-
icies by level and type. In all, there are 154 different
policies at the marketplace level, 33 of which are for
assigning permission to execute commands. The re-
maining 121 are resource-level access policies that
make use of relationships. In these policies, there is
a fair bit of repetition when a role holder with a re-
lationship is granted access to execute multiple ac-
tions. In future versions, we intend to support group-
ing of actions. This would allow us to reduce the
number of resource-level policies by a factor between
3 and 5.

Performance results

To measure the overhead that our authorization
scheme adds to transaction processing, we performed
a series of tests, both with and without authoriza-
tion checks. The tests without authorization checks
were performed using a modified version of the Poli-
cyManager that does not load policies and has an
isAllowed method that always returns “true.”

To achieve good steady-state performance, the sys-
tem caches policies and group membership informa-
tion for logged-on users. Policies are loaded only
once, when the system starts. In Table 2, we see that
policy loading adds about 0.6 seconds overhead for
this small example with three organizations. Since
by default each organization has one policy, the to-
tal number of policies grows linearly with the num-

IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002

Figure 10 Breakdown of policies by level and type. One
organization policy is included in the default
set, because these policies were for small
organizations for which a single administrator

might perform all administrative functions.

Market Level |

Policies: 154
Command Policies: 33
Resource Policies: 121
User Groups: 16
Jobs: 8
Resource Groups: 34
Resource Types: 265
Qrganization Level |
Policies: 1 per organization

Resource Policies: 1 per organization
User Groups: 1
Resource Groups: 1

ber of organizations. The overhead per policy is less
than time/(lorg_policies| X |orgs| + |market
policies|) = 0.6 seconds/(1 X 3 + 154) = 4 millisec-
onds, and we have successfully deployed systems with
30 000 organizations. From Table 3, we also see that
the caching of group memberships for the logged-on
user adds about 8 percent overhead to the logon pro-
cess. This overhead is due primarily to testing to see
whether a user is a member of an implicitly defined
user group. With the current implementation of im-
plicit user grouping, even if the user and the group
definition are in memory, a call must still be made
to the LDAP server to determine group membership.
We intend to remove this bottleneck in future ver-
sions and perform membership tests in memory.

Future work

Our immediate plans are to enhance our authenti-
cation scheme for inclusion in the base infrastruc-
ture of the forthcoming release of WebSphere Com-
merce Business Edition. This version will be based
on the Enterprise JavaBeans™* technology and is
written completely in the Java language. We also rec-
ognize that adding features such as role hierarchies
and constraints between roles and enriching the lan-
guage for using relationships would improve the use-
fulness of our implementation.*

In future work, we hope to more closely integrate
with the Java 2 authorization model and augment
it with appropriate portions of our policy-based au-
thorization scheme. The Java 2 Platform, Enterprise

GOODWIN, GOH, AND WU 315

Table 2 Comparison of the steady-state overhead for performing authorization checks. Each command was run 1000 times,
both with and without authorization checks. The times are mean response times from the point of view of a Web

browser.
Command With Without Authorization
Authorization Authorization Overhead
Mean(s) Mean(s) (%)
UserDisplay 0.242 0.240 0.8
GroupDisplay 0.166 0.165 0.6
Table 3 Comparison of initialization times with and without authorization
Command With Without Authorization
Authorization Authorization Overhead
Mean(s) Mean(s) (%)
System refresh 0.87 0.24 72
User login 0.75 0.69 8

Edition (J2EE**) incorporates a role-based security
model into the Java language.'* I2EE separates the
design of the security model of an application from
the deployment in an operational environment. Us-
ing JI2EE, the application developer defines the roles
that are relevant to the application, as well as the
permissions granted to each role. The definition of
the security requirements are externalized in a doc-
ument called a deployment descriptor. At deploy-
ment time, the deployer maps the security roles in
the deployment descriptor to the user groups defined
in the operational J2EE environment. J2EE access con-
trol is presently based only on the type of data being
accessed. It is predicted that J2EE will address in-
stance-level access control in future versions. "

Conclusions

In this paper, we have described an application-level
authorization scheme that uses implicit grouping and
exploits relationships between users and resources
to compactly express access control policies. Success-
ful deployment of the implementation in WebSphere
Commerce Suite, Marketplace Edition 4.1 has dem-
onstrated the expressiveness of the authorization lan-
guage, and our performance results indicate that it
imposes minimal run-time overhead. The external-
ization of the authorization policies, and the adap-
tive user interface that enables only those functions
actually available to the user, has resulted in a sys-
tem that is easier to configure and customize, and
therefore less costly to deploy.

316 GOODWIN, GOH, AND WU

Acknowledgments

We wish to thank the entire WCS MPE development
team and especially Dan Eaton for his help in gath-
ering performance data.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.

Cited references and note

1. C.Bussler, “Policy Resolution in Workflow Management Sys-
tems,” Digital Technical Journal 6, No. 4 (Fall 1994).

2. R. C. Summers, Secure Computing, McGraw-Hill, New York
(1997).

3. B. W. Lampson, “Protection,” Proceedings, Sth Annual Prince-
ton Conference on Information Sciences and Systems, Prince-
ton, NJ (March 25-26, 1971), pp. 437-443. Reprinted in Op-
erating Systems Review 8, No. 1, 18-24 (January 1974).

4. R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. You-
man, “Role-Based Access Control Models,” IEEE Computer
29, No. 2, 38—47 (February 1996).

5. J. Barkley and A. Cincotta, “Managing Role/Permission Re-
lationships Using Object Access Types,” Proceedings, 3rd
ACM Workshop on Role-Based Access Control, Fairfax, VA
(October 22-23, 1998), available at http://hissa.ncsl.nist.gov/
rbac/rgperms/rgperms.htm.

6. L. Giuri and P. Iglio, “Role Templates for Content-Based
Access Control,” Proceedings, 2nd ACM Workshop on Role-
Based Access Control, Fairfax, VA (October 28-29, 1999).

7. E. C. Cheng, “An Object-Oriented Organizational Model to
Support Dynamic Role-Based Access Control in Electronic
Commerce,” Decision Support Systems 29, 357-369 (2000).

8. J. F. Barkley, A. V. Cincotta, D. F. Ferraiolo, S. Favrilla, and
D. R. Kuhn, “Role-Based Access Control for the World Wide
Web,” Proceedings, 20th National Information Systems Secur-

IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002

ity Conference, Baltimore, MD (October 1997); can be down-
loaded from http://hissa.ncsl.nist.gov/rbac/rbacweb/paper.ps.

9. S.NaandS. Cheon, “Role Delegation in Role-Based Access
Control,” Proceedings, 5th ACM Workshop on Role-Based Ac-
cess Control, Berlin, Germany (July 26-28, 2000), pp. 39—
44.

10. A. Lin and R. Brown, “The Application of Security Policy
to Role-Based Access Control and the Common Data Se-
curity Architecture,” Computer Communications 23, 1584 —
1593 (2000).

11. R. S. Sandhu, V. Bhamidipati, and Q. Munawer, “The
ARBACY97 Model for Role-Based Administration of Roles,”
ACM Transactions on Information System Security 2, No. 1,
105-135 (February 1999).

12. This approach also does not require special treatment of ad-
ministrative roles and the associated implementation machin-
ery. See Reference 11 for an RBAC model that includes sep-
arate administrative roles.

13. B. S. Rubin, A. R. Christ, and K. A. Bohrer, “Java and the
IBM San Francisco Project,” IBM Systems Journal 37, No. 3,
365-371 (1998).

14. S.Bodoft, D. Green, E. Jendrock, M. Pawlan, and B. Stearns,
The J2EE Tutorial, can be downloaded from http://
java.sun.com/j2ee/tutorial/download.html/.

15. B.Shannon,Java 2 Platform, Enterprise Edition, Specification,
v1.3, Proposed Final Draft 3 (March 30, 2001); available at
http://java.sun.com/j2ee/j2ee-1_3-pfd3-spec.pdf.

Accepted for publication January 22, 2002.

Richard Goodwin IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York 10598
(electronic mail: rgoodwin@us.ibm.com). Dr. Goodwin received
Ph.D. and M.S. degrees in computer science from Carnegie Mel-
lon University in 1994 and 1996, respectively. He also holds a
B.A.Sc. degree from the University of Waterloo, Ontario, Can-
ada. Dr. Goodwin is currently manager of the intelligent e-mar-
ketplace research group at the Watson Research Center. For the
past four years his work has focused on infrastructure for elec-
tronic commerce, including authentication and authorization. His
research interests also include intelligent agents for planning,
scheduling, and decision support.

SweeFen Goh IBM Research Division, Thomas J. Watson Re-
search Center, P.O. Box 218, Yorktown Heights, New York 10598
(electronic mail: sweefen@us.ibm.com). Ms. Goh is a software en-
gineer working in the e-commerce department at the Watson Re-
search Center. She received her B.S. and M.S. degrees in com-
puter science, with a minor in mathematics, from Kent State
University, Ohio. Her current research interests are in the areas
of mobile commerce and distributed authorization.

Frederick Y. Wu IBM Research Division, Thomas J. Watson Re-
search Center, P.O. Box 218, Yorktown Heights, New York 10598
(electronic mail: fywu@us.ibm.com). Dr. Wu received the S.B. and
Ph.D. degrees from MIT in 1973 and 1976, respectively. He is
aresearch staff member in the Intelligent e-Marketplaces depart-
ment at the Watson Research Center. For the past four years he
hasbeen active in the design and development of electronic com-
merce systems and technology components. Dr. Wu’s recent expe-
rience includes the architecture and implementation of several
large-scale marketplaces for IBM clients. His research interests
are in the areas of access control systems and decision support
tools for e-commerce participants.

IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002

GOODWIN, GOH, AND WU 317

