
Web services
management
approaches

by J. A. Farrell
H. Kreger

Web services are important to business-to-
business and business-to-consumer
application deployment and are poised to be
a critical aspect of the Web architecture of a
business. Their reliable operation is required
for the smooth and profitable operation of the
business, mandating that Web services be
well managed. This management includes
controlling the life cycle of the service and
collecting information about existence,
availability, and health. All these activities can
be accomplished in a manner specific to no
particular vendor so that a number of
management applications, such as those from
Tivoli, can manage Web services in the
context of the business applications of which
they are components, as well as in relation to
the other resources in the enterprise.

Web services1 are rapidly emerging as important
building blocks for business integration. They are
finding important applications in business-to-busi-
ness, business-to-consumer, and enterprise applica-
tion integration solutions. As such, Web services
form a critical aspect of e-business architecture and,
in that role, their reliable execution must be assured.
Reliability must be a first-rank consideration for or-
ganizations deploying such solutions. The manage-
ment of computer systems and applications is a dis-
cipline that is well developed and extensive.2–4 It has
evolved in recent years to encompass Web-based ap-
plications. The management of Web services con-
tinues this evolution.

Our purpose is to show how Web services develop-
ers can incorporate manageability into their appli-

cations, leveraging the existing application manage-
ment discipline and the Web services environment.
We first give a brief survey of the parts of applica-
tion management that are relevant to our discussion.
Then we show how Web services fit into the man-
agement environment and what unique issues
emerge, allowing us to present a set of principles and
patterns for the management of Web services and
give examples of how these principles and patterns
can be applied. Finally, we show how Web services
management is supported by the IBM Web Services
Toolkit.

Overview of application management

Application management encompasses the control
and monitoring of an application throughout its life
cycle. It spans a range of activities from installation
and configuration to collecting metrics and tuning
to ensure responsive execution. The architecture of
most management approaches fits a manager-agent
model. In this model the application, or managed
service, is any computer program engaged in solv-
ing a problem or implementing a process. These pro-
grams can run on servers, clients, and even mobile
or embedded devices. The manager-agent model is
important to our discussion, so we describe it by
breaking it down into its components.

�Copyright 2002 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

FARRELL AND KREGER 0018-8670/02/$5.00 © 2002 IBM IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002212

The managed application has a set of responsibil-
ities, including exposing appropriate data for use by
a management system, responding to requests from
the management agent, recognizing internal errors,
and posting events to the management system. The
application communicates with or contains a man-
agement agent or subagent.

The role of an agent is to communicate with the man-
agement system and the application. The agent usu-
ally runs in the same host or process as the appli-
cation it is managing. It is responsible for sending
events to the management system, relaying data and
command requests from the management system to
the application, gathering responses, and returning
them to the requester.

The management system is the overall framework
for application management. It is responsible for pro-
viding the infrastructure and user interface to man-
age applications. It communicates with management
agents that support a given management protocol,
such as Simple Network Management Protocol
(SNMP)5,6 or Java** Management Extensions
(JMX**).7 It can be a sophisticated enterprise man-
ager, such as the Tivoli Management Environment,
or a resource manager, such as a database manage-
ment system. Or it may be more application-specific,
like the WebSphere* administration application.

Application life cycle. Application management pro-
vides fundamental support for the life cycle of a pro-
gram or solution. This life cycle can be summarized
in the following steps:

1. Install or deploy
2. Start or make available
3. Execute
4. Update installed or deployed application
5. Stop or make unavailable
6. Uninstall or undeploy

Our focus is on steps 2, 3, and 5, since they encom-
pass the application design considerations. Installa-
tion and deployment as well as subsequent applica-
tion maintenance depend on the type of environment
that hosts the Web service, such as a Web applica-
tion server. They typically do not impose significant
new requirements on the managed application.

In contrast, to start and stop an application and to
monitor and control its execution require the man-
agement system to interact directly with the appli-
cation or its execution environment. The application

developer must supply commands and application
programming interfaces (APIs) for operations that
are invoked by the management system, including
a means to start and stop the application. The de-
veloper must also define, maintain, and expose con-
figuration and metric information through logs,
events, commands, or APIs for the management sys-
tem to monitor or understand. During the execution
phase, the following information and services should
be provided by the application and gathered and ref-
erenced by the management system.

Identification—Identification includes the static in-
formation that uniquely describes a manageable ser-
vice. This information can include its instance name,
the product name, product version, installation date,
descriptive text, configuration file names, port, and
uniform resource locator (URL).

Availability—The availability of a service refers to
its being accessible through the network, system, and
application infrastructure. Availability also indicates
whether the service is able to do its work in a valid,
responsive way.

Metrics—Metrics are usually numeric information,
provided by a manageable service, that can be used
to indicate or calculate the health and performance
of the service. Metrics are often polled and, once col-
lected, are graphed and subjected to threshold anal-
ysis.

Operations—Operations can be management-ori-
ented (start or make available, stop or make unavail-
able, obtain statistics), or they can be very service-
specific and part of the business context. For
example, DataBaseBackup� would be an operation
for a database application. Operations may or may
not change the current behavior of the application.
But if they do, the change is rarely persistent over
subsequent invocations of the application. An op-
eration may turn certain trace points “on” during
execution, but it will be reset to “off” when the ap-
plication is started again.

Configuration—Configuration information includes
parameters that control how an application operates.
A configuration can be static (not changeable while
the service is available) or dynamic (configuration
can change while the service is available without ser-
vice disruption). Configuration changes affect the
current behavior of the service, and the changes are
persistent over invocations of the service. A config-

IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002 FARRELL AND KREGER 213

uration may exist for how the Web service interacts
with its clients, or for its business logic.

Events—Events are messages from the Web service
to a management system. They can flag a failure con-
dition or warn of an impending application outage.
They can also signal a life-cycle, status, configura-
tion, or metric change. Reactions include running a
recovery or tuning policy, notifying operators, log-
ging, or filtering. Events may also indicate that the
application is healthy; these are usually called “heart-
beats.” In this case, when the events are not received
when expected, the management system should re-
act.

Instrumentation options. The management data and
capabilities listed above can be provided by exter-
nal, execution environment, and internal manage-
ability instrumentation. External instrumentation in-
cludes definition files describing the application and
its management requirements, log files, and utilities.
Definition files are used by the management system
to guide its support of the managed service. Log files
are monitored and analyzed by management systems
and tools to detect and diagnose failures and trends.
Utilities can provide support for the configuration
and operation and are used to interact with the ap-
plication directly from command lines or scripts. Ex-
ternal instrumentation of an application does not di-
rectly affect the development of the application.
These files and utilities can be shipped with the ap-
plication, created during the install and update
phases of the life cycle, or provided by a manage-
ment application. The execution environment of the
application, like an application server, can provide
management information and operations on behalf
of and without the involvement of the application.

This information would include some execution sta-
tistics (i.e., number of invocations), start and stop
operations, current availability status, life-cycle
events, and events when the application is no longer
executing within the run time. However, applications
typically need to be internally instrumented to pro-
vide detailed metrics, configuration, status, and
events related to the specific processing they per-
form.

Internal instrumentation is usually provided from
within the application itself. The application will pub-
lish events, status, configuration, and metric data spe-
cific to its business logic. Generally the application
does this by creating and advertising a management
object conforming to some management interface
standard or to the requirement of a particular man-
agement system.

An example applicable to Java Web application serv-
ers is a JMX Management Bean (MBean). An MBean
is an object that is accessible via standard JMX in-
terfaces and provides a developer with the ability to
expose application-specific management interfaces.
MBeans run in an MBeanServer in the local appli-
cation environment (the Java virtual machine or
server running the application). The MBeanServer
provides adapters to specific application managers
and administration facilities and thus forms a bridge
between the application and management system,
as shown in Figure 1.

Overview of Web services

Web services represent an evolution of the Web to
allow applications to interact over the Internet in an
open and flexible way. Important in this approach

MANAGEMENT
APPLICATION

APPLICATION SERVER

APPLICATION

JMX MBeanServer

APPLICATION
SERVER
MBean

APPLICATION
MBean

ADAPTER

Figure 1 An MBeanServer as a bridge between the application and management system

FARRELL AND KREGER IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002214

is independence of the interactions from the plat-
form, programming language, middleware, and im-
plementation of the applications involved. Web ser-
vices are self-contained, modular applications that
are described, found, and called via a set of standards
based on Extensible Markup Language (XML). These
standards are being formalized chiefly by the World
Wide Web Consortium (W3C).

The interface of a Web service is described in an XML
format called the Web Services Description Lan-
guage (WSDL).8 A WSDL file contains descriptions
of one or more interfaces and binding information
for one or more services. A service is actually a col-
lection of ports. A port is the combination of a port-
Type, which describes the interface of the port, and
a binding, which describes the mechanics of invok-
ing the port.

Figure 2 illustrates how these service descriptions
can be published to a service registry where they can
be discovered by potential Web service clients. The
Universal Description, Discovery, and Integration
(UDDI)9 project, UDDI.org, is defining such a Web
services registry. Once a service has been discovered,
and a binding established based on information in
the registry, the interaction between the calling ap-
plication and the Web service can begin. This inter-

action is the most important aspect of Web services
for our discussion.

The invocation of a service involves sending an XML
message to the service and receiving an XML mes-
sage in return. These XML interactions are governed
by another open standard called the Simple Object
Access Protocol (SOAP).10 SOAP defines a message
header that describes the message and indicates
which operation in the interface of the service is be-
ing invoked. The header is an envelope that contains
an XML message body in which the parameters are
passed. SOAP supports both a remote procedure call
and a general XML document passing paradigm. SOAP
messages must be carried on a communications layer,
which most often is the HyperText Transport Pro-
tocol (HTTP).

More extensive descriptions of Web services archi-
tecture, standards, and technology can be found at
the IBM Web services development Web site.11,12

Many Web services are wrappers for existing appli-
cations so that these applications can be accessible
on the Internet or an intranet. As such, many are
very simple and can be generated automatically by
tools. This condition implies a requirement that the
addition of management to a Web service must not

INVOKE

Figure 2 Web services conceptual architecture

FIND

SOAP
RUN TIME

REGISTER

IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002 FARRELL AND KREGER 215

introduce complexity or undue developer work that
would cause this simplicity to be lost.

Web services provide for a very dynamic, flexible,
and reconfigurable execution environment. It is im-
portant that the management approach also support
these attributes, that the general management ar-
chitecture be correspondingly adapted, and that the
application roles fit the Web services model. In the
following sections, we describe how to address these
requirements in both the management infrastructure
and the Web service design.

Managing Web services

As we have seen, the Web services programming
model is based on service definition through WSDL
documents, discovery through registries of published
services, and SOAP over HTTP communications be-
tween services. The relationships between the client,
the service, the registry, and the SOAP run time are
shown in Figure 2. The management of these ser-
vices should not require the Web services to con-

strict this programming model; in fact, it should be
based on the same set of principles.

A SOAP run time on the service provider’s host will
receive the Web service invocation and delegate the
request to the Web service implementation class, so
we can think of Web services as running within the
scope of a SOAP run time. This positioning provides
us a convenient place from which to do execution
environment manageability instrumentation for the
Web service. We cover the details of what the SOAP
run time should track in the following sections.

Because internal manageability instrumentation is
often exposed as an API or management object, it is
natural to think of this interface as a management-
oriented interface to the service. This means that it
would have its own port in the WSDL document de-
scribing that interface, as shown in Figure 3. As a
result, this WSDL can be published to a UDDI reg-
istry where a management application can discover
and introspect the WSDL, and thus begin to manage
the Web service. More detail is provided in the fol-
lowing sections.

BUSINESS
SERVICE REGISTRY

MANAGEMENT
APPLICATION

CLIENT

MANAGEABLE
SERVICE REGISTRY

SOAP
RUN TIME

FIND

INVOKE

WSDL

PUBLISH

SERVICE

BUSINESS INTERFACEMANAGEMENT INTERFACE

WSDL

PUBLISH

SOAP
RUN TIME

INVOKE

FIND

Figure 3 An application with both its functional and management interfaces accessible as Web services

SOAP
RUN TIME

FARRELL AND KREGER IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002216

Web services management principles

The approach of an organization to Web services
management will be grounded in the generally ap-
plicable management models previously described.
Web services-based applications will have some char-
acteristics that make management a little more chal-
lenging, as follows:

● Web services are described with XML and are ac-
cessible using interoperable standard protocols and
transports. Therefore, applications based on Web
services will be able to use services that execute
in many diverse environments—systems, lan-
guages, platforms, and enterprises. Thus, it is not
practical to dictate the use of one particular man-
agement technology for all Web services. For ex-
ample, JMX may work well for Web services im-
plemented in the Java language, but it is not a
reasonable alternative for services implemented
in C�� or using Microsoft’s .Net** platform.

● Web services-based applications will cross enter-
prise boundaries more now than applications that
have gone before. As a result, it must be possible
to interact with the management aspects of these
applications across enterprise boundaries as well,
preferably using the same communications pipes
and technologies already agreed upon among the
companies.

● Web services define a standard mechanism for pub-
lishing, finding, and interacting with other Web ser-
vices. Management systems have traditionally also
defined such a mechanism, both standards-based
and proprietary, for publishing, finding, and inter-
acting with manageable resources. Management
systems that support Web services should interact
with the Web services publication and discovery
practice.

● Web services have a natural loose coupling that
means a service should be able to “find” its man-
agement services—using the Web services para-
digm—at run time, rather than having them stat-
ically bound or internalized during development.
As a result, the Web services, as well as the man-
agement services, are more portable to different
execution environments.

All of these facts drive the need to develop a man-
agement approach that stays within the Web services
paradigm. It means defining the management inter-
actions with WSDL, the management applications as
Web services, the manageable services with WSDL,
and discovery using service registries and WSDL.

Thus, when considering the nature and usage mod-
els of Web services and the challenges of manag-
ing them, several specific management principles
emerge. We summarize them here, and then treat
each in detail, illustrating each with the StockQuote
service example.

● The principle of separate management interface
means to define the business interface separately
from the administration or management interface.

● The principle of data collection by the run-time in-
frastructure means do not instrument an applica-
tion to collect management data that should be col-
lected by the execution environment, such as
invocation counters, failure counters, execution
timing, and life-cycle events.

● The use an event collector principle means send
events for catastrophic events, metric data changes,
configuration data changes, operation invocation,
or business-specific life-cycle events to an event col-
lector Web service.

The popular and simple StockQuote service exam-
ple is used to illustrate these principles. Since they
are illustrative, the examples will show fragments to
be added to this WSDL for the port and portTypes.
Bindings are not shown in the examples. One can
assume a standard SOAP over HTTP binding will work.
The StockQuote service example is shown in Figure
4.

Separate management interface. A Web service is
fundamentally an interface accessible over a set of
open standard discovery and invocation mechanisms.
The Web services discovery and binding processes
are driven by interface descriptions. A Web service
interface is described as a port type in a WSDL file.
When an organization searches a UDDI registry for
a Web service, the target of the search is an inter-
face described in WSDL. Management operations
should be exposed through a separately described
and published Web service interface, which allows
a separation of concerns between business interac-
tions and management interactions with the service.
There are several reasons for this, as we now de-
scribe.

First, the search for a Web service usually involves
looking for a standard or mutually agreed-to inter-
face. The mixing of management operations with
those that are formally part of the business interface
will interfere with the search for the service based
on interface contents by changing the signature of
the interface.

IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002 FARRELL AND KREGER 217

Second, it will allow business partners to see and use
management interfaces that are not relevant to their
interactions with the Web service. Likewise, it will
clutter management consoles with business opera-
tions when it should only display management op-
erations.

Third, providing a separate service and port in the
WSDL document for the management interface en-
ables more targeted publishing of the business and

management service ports in the WSDL. The service
in the WSDL document for the management inter-
face of a Web service does not have to be published
in a public UDDI registry along with the business in-
terface described in the business service port, since
only management applications will be interested in
them. If it is published in a public UDDI registry, the
service in the WSDL must be categorized as “man-
agement” so that the management system can find
it. The management interface will most likely be pub-

Figure 4 StockQuote service example

�?xml version�''1.0'' encoding�''UTF-8''?�
�wsdl:definitions name�''StockQuoteInterfaceDefinitions''

targetNamespace�''urn:StockQuoteInterface''
xmlns:tns�''urn:StockQuoteInterface''
xmlns:xsd�''http://www.w3.org/2000/10/XMLSchema''
xmlns:soap�''http://schemas.xmlsoap.org/wsdl/soap/''
xmlns:wsdl�''http://schemas.xmlsoap.org/wsdl/''�

�wsdl:message name�''GetQuoteInput''�
�part name�''symbol'' type�''xsd:string'' /�

�/wsdl:message�
�wsdl:message name�''GetQuoteOutput''�

�part name�''value'' type�''xsd:float'' /�
�/wsdl:message�

�wsdl:portType name�''StockQuoteInterface''�
�wsdl:operation name�''GetQuote''�

�wsdl:input message�''tns:GetQuoteInput'' /�
�wsdl:output message�''tns:GetQuoteOutput'' /�

�/wsdl:operation�
�/wsdl:portType�

�wsdl:binding name�''StockQuoteBinding'' type�''tns:StockQuoteInterface''�
�soap:binding style�''rpc''

transport�''http://schemas.xmlsoap.org/soap/http'' /�
�wsdl:operation name�''GetQuote''/�

�soap:operation soapAction�''urn:StockQuoteInterface#GetQuote'' /�
�wsdl:input�

�soap:body use�''encoded'' namespace�''urn:StockQuoteService''
encodingStyle�''http://schemas.xmlsoap.org/soap/encoding/'' /�

�/wsdl:input�
�wsdl:output�

�soap:body use�''encoded'' namespace�''urn:StockQuoteService''
encodingStyle�''http://schemas.xmlsoap.org/soap/encoding/'' /�

�/wsdl:output�
�/wsdl:operation�

�/wsdl:binding�
�wsdl:service name�''StockQuoteService''�

�wsdl:port name�''StockQuoteServicePort''
binding�''sqi:StockQuoteInterface''�
soap:address location�''urn''/�

�/wsdl:port�
�/wsdl:service�

�/wsdl:definitions�

FARRELL AND KREGER IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002218

lished in a private UDDI registry that caters to man-
agement systems as the client, rather than business
systems as the client. Here, management systems,
administration utilities, or operator facilities can dis-
cover and locate manageable services. The manage-
ment service can “introspect” the WSDL to find the
management and administrative operations, avail-
able metrics, and events supported by the service.
Of course, because the WSDL also contains the bind-
ing information for the management port, the man-
agement service will now be able to support and in-
terface with the managed service. In this scenario,
a private UDDI registry is one that is deployed by a
company or organization to further the deployment
of Web services to address its own internal appli-
cation integration needs.

The manageable service can support a generic man-
agement interface that provides a simple access to
identification, configuration, and metric data. Ide-
ally, this port would be widely supported by man-
agement applications that support Web service man-
agement.

An example of a generic, overly simplified, manage-
ment interface that could be implemented by any
manageable Web service is shown below.

public interface ManageableService {
// return an ID string for the service being

managed
public String getServiceID�;
// return an array of metric names and a

corresponding array of values

public String[][] getMetrics�;
// return an array of config property names

and a corresponding array of values
public String[][] getConfiguration�;
// return the WSDL document that describes

this interface
public String getAdminInterface�;
// return true to indicate that the service is able

to respond to requests
// return false if the service is experiencing

out-of-range delays
public Boolean isAvailable�;

}

There might also be a custom manageable service
WSDL interface that contains the interactions for the
specific administrative or management operations
of a Web service. Examples of operations in this kind
of WSDL would be “TraceOn�,” “AddNewUser�,”
or “SelectNewVendor�.”

Using these concepts, we could add these manage-
ment ports to the StockQuote service WSDL. Please
note that these extensions are strictly illustrative. The
service would now look like what is shown in Figure
5. The custom management interface might be de-
fined to be as in Figure 6, and the generic manage-
ment interface is defined to be as in Figure 7.

Data collection by the run-time infrastructure. Web
services are invoked and send data via SOAP, cur-
rently being standardized by the World Wide Web
Consortium’s XML Protocol Working Group.10 The
SOAP processor and related Web services infrastruc-

Figure 5 Port extensions

�wsdl:service name�''StockQuoteService''�
�wsdl:port name�''StockQuoteServicePort''

binding�''sqi:StockQuoteInterface''
soap:address location�''urn''

�/wsdl:port�
�wsdl:port name�''StockQuoteManagementPort''

Binding�''squi:StockQuoteManagementInterface''
Soap:address location�''urn''

�/wsdl:port�
�wsdl:port name�''StockQuoteGenericManagementPort''

Binding�''squi:GenericManagementInterface''
Soap:address location�''urn''

�/wsdl:port�

�/wsdl:service�

IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002 FARRELL AND KREGER 219

ture form a control point that allows automatic in-
strumentation for certain classes of management in-
formation.

Figure 8 shows how the Web services infrastructure
can implement automatic instrumentation using the
Java Management Extensions (JMX). The SOAP pro-
cessor finds or instantiates an MBeanServer when
it is initialized. It then creates or locates an existing
MBean for itself and each Web service it manages.
An MBeanServer fills the role of the agent in the
manager-agent model. Whenever the SOAP proces-
sor is called, it collects execution statistics about the
invocation and response of the Web service. It should
also provide the interface called by the management
system to collect the data for and control a managed
service and the SOAP processor itself. This instrumen-
tation should not be duplicated in the application or
an application-provided agent. Information that the
infrastructure can collect for a Web service includes:

● Identification information that includes Service ID
(identifier) and URL

● Current availability for the URL and port of the
Web service, as well as an indication of whether

or not a request on the service itself completes in
an acceptable time period

● Metrics for:
–Number of requests
–Number of responses
–Number of failure responses
–Number of invocations of each method
–Average response time for invocation of each
method

–Total elapsed execution time
● Operations to enable and disable the ability to in-

voke the Web service
● Events to signal life-cycle changes and request fail-

ures

The execution environment can also collect statis-
tics to be used as a basis for usage monitoring and
billing applications. Some execution environments
will be able to provide basic life-cycle operations (i.e.,
enable, disable) and events (i.e., life cycle and ser-
vice not available).

This principle is in keeping with the often very sim-
ple nature of a Web service. Many Web services are
unsophisticated wrappers around existing applica-

Figure 6 Custom management interface

�wsdl:message name�''ChangeAvailabilityInput''�
�part name�''action'' type�''xsd:string'' /�

�/wsdl:message�
�wsdl:message name�''ChangeAvailabilityOutput''�

�part name�''newState'' type�''xsd:string'' /�
�/wsdl:message�
�wsdl:message name�''setTraceInput''�

�part name�''action'' type�''xsd:string'' /�
�/wsdl:message�
�wsdl:message name�''changeStockExchange''�

�part name�''exchangeName'' type�''xsd:string'' /�
�/wsdl:message�

�wsdl:portType name�''StockQuoteManagementInterface''�
�wsdl:operation name�''setTrace''�

�wsdl:input message�''tns:setTraceInput'' /�
�/wsdl:operation�
�wsdl:operation name�''changeStockExchange''�

�wsdl:input message�''tns:changeStockExchangeInput'' /�
�/wsdl:operation�
�wsdl:operation name�''changeAvailability''�

�wsdl:input message�''tns:ChangeAvailabilityInput'' /�
�wsdl:output message�''tns:ChangeAvailabilityOutput'' /�

�/wsdl:operation�
�/wsdl:portType�

FARRELL AND KREGER IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002220

tions. As such, they are easy to create. Many, in fact,
can be automatically generated by tools such as the
IBM WebSphere Studio Application Developer. By
relying on the Web services execution environment
to provide this basic level of instrumentation auto-
matically, this principle promotes management while
keeping the Web services development tasks as sim-
ple as possible.

For the StockQuote service example, there would
be a number of invocations and average response
time metrics kept for the getQuote method, but not

the management port methods. In fact, if we adhere
to this principle, we would remove the changeAvail-
ability operation in the StockQuoteManagementIn-
terface, since this would be addressed by the enable
and disable operations provided by the execution
environment for all Web services.

Use an event collector. A Web service may need to
signal the occurrence of significant events to the man-
agement system. These include catastrophic events,
metric data changes, configuration data changes, op-
eration invocation, or business-specific life-cycle

Figure 7 Generic management interface

�wsdl:message name�''GetServiceIdOutput''�
�part name�''value'' type�''xsd:float'' /�

�/wsdl:message�

�wsdl:message name�''GetMetricsOutput''�
�part name�''name'' type�''xsd:string'' /�
�part name�''type'' type�''xsd:string'' /�
�part name�''value'' type�''xsd:string'' /�

�/wsdl:message�

�wsdl:message name�''GetConfigurationOutput''�
�part name�''name'' type�''xsd:string'' /�
�part name�''type'' type�''xsd:string'' /�
�part name�''value'' type�''xsd:string'' /�

�/wsdl:message�

�wsdl:message name�''GetAdminInterfaceOutput''�
�part name�''AdminInterfaceWSDLurn'' type�''xsd:string'' /�

�/wsdl:message�

�wsdl:message name�''GetAvailabilityOutput''�
�part name�''value'' type�''xsd:integer'' /�

�/wsdl:message�

�wsdl:portType name�''GenericManagementInterface''�
�wsdl:operation name�''GetServiceId''�

�wsdl:output message�''tns:GetServiceIdOutput'' /�
�/wsdl:operation�
�wsdl:operation name�''GetMetrics''�

�wsdl:output message�''tns:GetMetricsOutput'' /�
�/wsdl:operation�
�wsdl:operation name�''GetConfiguration''�

�wsdl:output message�''tns:GetConfigurationOutput'' /�
�/wsdl:operation�
�wsdl:operation name�''GetAdminInterface''�

�wsdl:output message�''tns:GetAdminInterfaceOutput'' /�
�/wsdl:operation�
�wsdl:operation name�''IsAvailable''�

�wsdl:output message�''tns:IsAvailableOutput'' /�
�/wsdl:operation�

�/wsdl:portType�

IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002 FARRELL AND KREGER 221

events beyond those automatically collected by the
infrastructure. A convenient approach to implement
this interaction is to create an event collector Web
service. This reusable service can encapsulate the in-
teractions with the management system while allow-
ing the managed Web service to signal its events
through a portable management system-independent
mechanism.

Figure 9 shows the use of an event collector. A set
of Web services makes use of a common event col-
lector service that exposes a simple interface for re-
ceiving events. Calls on the event collector interface
cause the events to be forwarded to the management
systems that have registered for them. In this exam-
ple, the event collector uses an MBeanServer to cre-
ate or locate an existing JMX MBean on behalf of
each Web service with which it interacts (theoret-
ically, the same one used by the SOAP processor).
When events are received from a manageable ser-

vice, the event collector uses the MBeanServer to
forward the event to management adapters.

The event collector interface can be quite general
and simple. Minimally, it must include a method that
allows it to receive the management event. For ex-
ample:

public interface EventCollector {
public void deliverEvent (String id, String source,

String severity, String text);
}

The parameters identify the Web service, specify the
cause of the event, indicate the severity of the con-
dition, and provide additional information in the
form of unformatted text. When the Web service ini-
tializes, it can dynamically discover a Web service
that implements this interface, as described by a pub-
lished WSDL document. Alternatively, the Web ser-

MANAGEMENT
APPLICATION

APPLICATION SERVER

JMX MBeanServer

APPLICATION
MBean

ADAPTERAPPLICATION

Figure 9 Event collector management intermediary

EVENT
COLLECTOR

JMX
MANAGEMENT
APPLICATION

APPLICATION SERVER

JMX MBeanServer

APPLICATION
SERVER
MBean

WS MBean

WS MBean

WS MBean

JMX/RMI ADAPTER

SNMP
MANAGEMENT
APPLICATION

SNMP ADAPTER

SOAP
PROCESSOR

Figure 8 Management infrastructure for Web services

FARRELL AND KREGER IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002222

vices developer can statically bind the Web service
to the event collector. The event types are applica-
tion-defined and are not constrained by the event
collector. If an event collector supported delivering
events to interested management services via Web
services, it could also provide a WSDL-described port
that other Web services could use to ask the event
collector to invoke their “receive event” operation
based on certain conditions or contents of the event.

The WSDL for the event collector service would con-
tain the messages and ports given in Figure 10.

For our StockQuote service example, it would emit
events whenever the stock exchange from which it
obtains quotes takes longer than three seconds to
reply or has more than three “too busy to service
you” responses in a row. A management application
could listen for these events and change to a differ-
ent stock exchange. The WSDL for emitting those two

events would look like Figure 11. Note that this WSDL
matches the expected input for the event collector
Web service.

Figure 11 WSDL for delayed reply or busy condition

�wsdl:message name�''Event''�
�part name�''id'' type�''xsd:string'' /�
�part name�''source'' type�''xsd:string'' /�
�part name�''severity'' type�''xsd:string'' /�
�part name�''text'' type�''xsd:string'' /�

�/wsdl:message�

�wsdl:operation name�''deliverEvent''�
�wsdl:output message�''tns:Event'' /�

�/wsdl:operation�

Figure 10 Messages and ports in WSDL for event collector service

�wsdl:message name�''Event''�
�part name�''id'' type�''xsd:string'' /�
�part name�''source'' type�''xsd:string'' /�
�part name�''severity'' type�''xsd:string'' /�
�part name�''text'' type�''xsd:string'' /�

�/wsdl:message�

�wsdl:message name�''requestEventInput''�
�part name�''idpattern'' type�''xsd:string'' /�
�part name�''sourcepattern'' type�''xsd:string'' /�
�part name�''severityrange'' type�''xsd:string'' /�
�part name�''textpattern'' type�''xsd:string'' /�
�part name�''receiverWSDLPort'' type�''xsd:string''/�

�/wsdl:message�

�wsdl:portType name�''EventCollectorInterface''�
�wsdl:operation name�'' deliverEvent''�

�wsdl:input message�''tns:Event'' /�
�/wsdl:operation�

�/wsd:portType�

�wsdl:portType name�EventRequestorInterface''�
�wsdl:operation name�''requestEvents''�

�wsdl:input message�''tns:RequestEventsInput'' /�
�wsdl:output message�''tns:RequestEventsOutput'' /�

�/wsdl:operation�
�wsdl:operation name�''deliverEvent''�

�wsdl:output message�''tns:Event'' /�
�/wsdl:operation�

�/wsdl:portType�

IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002 FARRELL AND KREGER 223

Web services management patterns

The developer of a manageable application is faced
with many choices concerning how to interact with
the management system and how to fit into a man-
ager-agent model. The management principles dis-
cussed above provide a framework for approaching
the problem, but many decisions still remain. We
have found that a set of patterns can provide suf-
ficient guidance to simplify the problem. The devel-
oper chooses the pattern that applies to his or her
application behavior and requirements.

These management patterns are architectural pat-
terns that define components that make up the so-
lution and the relationship between the application
and the management system. They show the place-
ment of function and the flow of information.

Event generator. This pattern is applicable to Web
services whose processing contains events and met-
rics of interest that are not already collected by the
Web services execution environment. Further, the
service does not require run-time operations or dy-
namic configuration control. If these conditions are
met, this pattern offers a very simple approach to
instrumentation. By using an event collector, as de-
scribed earlier, the Web service can be completely
isolated from the details of the management system
under which it operates. The service contains instru-
mentation and sends management data via events
to a management system. Events may represent fail-
ures, life-cycle changes, state changes, metric data,
or configuration data changes. The receiver of this
information is responsible for putting the informa-
tion in context, since the information in the event
may be minimal. The Web service does not publish
a management object and does not support being
invoked for operations or reconfiguration by the
management system. It does not have to implement
any facilities to listen for and respond to manage-
ment requests nor implement the generic manage-
able service port. The Web service does not have a
custom management port. The WSDL interface for
this pattern is a set of notification messages repre-
senting the events.

Noninterruptible. Here again, the service contains
instrumentation and sends events and publishes man-
agement information to a management presence.
Unlike the event generator pattern, the application
makes available to the management system a stan-
dard object that contains the identity and metric in-
formation as well as details of the current config-

uration. Notifications of changes to the management
object can be sent via events specified for that pur-
pose or by resending the updated management ob-
ject to the management system. This pattern is use-
ful over the event generator pattern when there are
great amounts of potentially complex management
data that may be frequently updated. When the man-
agement is not “real time,” sending the entire man-
agement object on a periodic basis rather than ev-
ery time a value is updated tends to be more efficient.
It also allows a set of changes to be sent so that they
are consistent with one another, rather than send-
ing a set of events, some of which may not arrive in
order or at all, leaving the management system’s ver-
sion of the management object in an invalid or in-
consistent state. This pattern should also be used
when a particular management system requires the
data in a particular format. The receiver of this in-
formation receives data already in context of the
management object it understands. The Web service
does not support being invoked for operations or re-
configuration by the management system. It does not
have to implement any facilities to listen for and re-
spond to management requests nor implement the
generic manageable service port. The Web service
does not have a custom management port. The WSDL
interface for this pattern contains notification mes-
sages for events and a notification message for up-
dating the management object.

The management object could be any of several
types. For Web services being monitored by a JMX
management environment, the object could be an
MBean. Some management systems also support the
Common Information Model (CIM)13 so that the ser-
vice could alternatively create a CIM object to fill this
role. It could also create a custom object, but such
an approach may require some kind of bridge code
to make the object understandable to the manage-
ment system. MBeans or CIM objects are more work-
able choices.

Queryable. The queryable pattern is related to the
event generator pattern in that the Web service does
not require configuration or operational control, but
in this case, the service may send events and also im-
plements a management interface that can be called
by the management system. The management sys-
tem can retrieve configuration and metric data di-
rectly from the managed services. This is essentially
read-only management. The managed Web service
supports being invoked by the management system
to obtain current metric and configuration data, but
not being controlled or altered. The management

FARRELL AND KREGER IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002224

data may be represented as complex data types and
objects. Management systems would typically re-
trieve the management data when they need the data
or poll for entire sets of related management data
rather than one or two metrics. This approach works
well for applications with a high rate of change of
metric values or large number of complex metrics
such that sending events to signal changes represents
too much overhead. The Web service may support
a management object and supports being invoked
for query operations by the management system. It
implements facilities to listen for and respond to
management requests and may implement the ge-
neric manageable service port. The Web service may
have a custom management port. The WSDL inter-
face for this pattern contains a set of notification mes-
sages for events and request-response messages for
data requests.

Operational. As in the queryable pattern, the man-
agement system can retrieve configuration and met-
ric data and obtain events from managed service.
However, in this pattern the management presence
can set configuration data, thus changing the oper-
ation of the application. It can also invoke opera-
tions on the managed Web service. Correspondingly,
the Web service must implement methods that can
be called by the management system and must have
a structure designed to allow for configuration
changes. The Web service may support a manage-
ment object and supports being invoked for oper-
ations or reconfiguration by the management system.
It implements facilities to listen for and respond to
management requests and may implement the ge-
neric manageable service port. The Web service may
also have a custom management port. This pattern
employs a WSDL interface to express a set of que-
ries, operations, and notifications.

Figure 12 summarizes the essential characteristics
of these four patterns. These patterns give increas-
ing amounts of information and control over the Web
service to the management application. Any of the
patterns may send events directly to the management
application or through an event collector. Both the
event generator and noninterruptible patterns use
send-only communications and do not implement
any way for the management application to initiate
communications with the Web service. Events are
generally more generic and easily translated to be
understood by any management application; there-
fore, the event generator is more portable than the
other patterns. The noninterruptible pattern sends
a specific management object and is much more de-

pendent on a management application understand-
ing that object. The queryable and operational pat-
terns will usually use a management object as well.
These two patterns must support two-way commu-
nications. They must both implement a way for the
management application to initiate communications
with the Web service. Only the operational pattern
allows the management application to control the
Web service.

In Figure 12, arrows pointing toward the manage-
ment system indicate that events are being sent
asynchronously by the agent. Bi-directional arrows
between the Web service and the management ap-
plication indicate that the management system re-
quests information or operations according to its data
collection scheme.

Management in the IBM Web Services
Toolkit

The IBM Web Services Toolkit is a technology pack-
age available on the IBM alphaWorks* Web site.14

MANAGEMENT
APPLICATION

MANAGEMENT
APPLICATION

MANAGEMENT
APPLICATION

MANAGEMENT
APPLICATION

EVENT

SET

Figure 12 Summary and comparison of Web services
management patterns

IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002 FARRELL AND KREGER 225

It includes the core SOAP and WSDL facilities needed
to deploy Web services, as well as support for cre-
ating applications that use Web services, security fa-
cilities, a UDDI registry, and other infrastructure tech-
nology. It also provides a JMX-based instrumentation
feature that provides the automatic execution envi-
ronment data collection capability called out in our
earlier management principles discussion. In the
toolkit package, cited above, this feature is described
in the SOAP technology preview documentation. The
Web Services Toolkit automatically collects data of
two types: server-wide data and service-specific data.
Data collected at these two levels include the fol-
lowing.

For the overall SOAP server:

● Total number of Web services deployed
● Total number of calls to all services combined

For each deployed Web service:

● Total number of successful invocations
● Number of invocations per method
● Number of failed invocations (the request was re-

ceived by the server but resulted in an exception)
● Average response time for successful requests

The toolkit supports SOAP through the Apache Axis
SOAP processor. It uses a message interception fa-
cility to support a generic management proxy. This
proxy can be used to support any management ap-
proach required by a given implementation. In this
case, the toolkit uses this proxy to create a JMX agent
within which it automatically creates MBeans for de-
ployed Web services. SOAP requests and responses
are monitored, and the appropriate MBean is up-
dated with incremental data. This is accomplished
without examining the bodies of the SOAP messages.
Since the Web Services Toolkit does not require any
particular management system, it provides an exten-
sion to the Apache SOAP administration user inter-
face that allows a user to view the collected data.
This use is a prototype of how execution environ-
ment data collection could function. At this time, the
management support in the execution environment
does not provide support for operations or emit any
notifications. The Web Services Toolkit does not pro-
vide the event collector, Web services management
application, or management-oriented Web services
registry that were discussed in this paper.

Concluding remarks

Web services can be managed using commonly used
management systems and approaches. Choices for
instrumentation and management system interaction
have significant implications on the complexity of the
Web service itself. Because simplicity of development
is a central goal of the Web service model, we have
proposed several principles and patterns that facil-
itate the inclusion of the appropriate level of man-
agement support, while minimizing the impact on
the application. The principles of separating the man-
agement interface from the business interface, push-
ing core metric collection down to the Web services
infrastructure and using intermediate Web services
that act as event collectors, promote this two-pronged
goal. The management patterns we described fol-
low from these principles and allow the Web service
developer to balance management requirements and
complexity implications.

The principles and patterns we proposed can be im-
plemented entirely at the application level, with the
exception of one. Pushing metrics collection down
to the infrastructure requires that such support be
included by an infrastructure provider. We gave the
example of the IBM Web Services Toolkit that im-
plements execution environment data collection and
provides transparent interaction with a JMX-enabled
management system.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.
or Microsoft Corporation.

Cited references

1. K. Gottschalk, S. Graham, H. Kreger, and J. Snell, “Intro-
duction to Web Services Architecture,” IBM Systems Journal
41, No. 2, 170–177 (this issue, 2002).

2. Java Management Extensions Instrumentation and Agent Spec-
ification v1.0, Final Release, April 2000, Sun Microsystems,
Inc., 901 San Antonio Road, Palo Alto, CA 94303; available
through http://java.sun.com/products/JavaManagement.

3. M. T. Rose and K. McCloghrie, How to Manage Your Net-
work Using SNMP: The Network Management Practicum, Pren-
tice Hall Inc., Englewood Cliffs, NJ (1995).

4. M. T. Rose and K. McCloghrie, Structure and Identification
of Management Information for TCP/IP-Based Internets, STD
16, RFC 1155, Internet Engineering Task Force (May 1990),
http://www.ietf.org/rfc/rfc1155.txt?number�1155.

5. J. Case, M. Fedor, M. Schoffstall, and J. Davin, Simple Net-
work Management Protocol, STD 15, RFC 1157, Internet En-
gineering Task Force (May 1990), available through http://
www.ietf.org/rfc/rfc1157.txt?number�1157.

6. M. Rose, SNMP Multiplexing Protocol and MIB, RFC 1227,
Internet Engineering Task Force (May 1991), available
through http://www.ietf.org/rfc/rfc1227.txt?number�1227.

FARRELL AND KREGER IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002226

7. H. Kreger, “Java Management Extensions for Application
Management,” IBM Systems Journal 40, No. 1, 104–129
(2001).

8. Web Services Description Language (WSDL) 1.1 W3C Note,
World Wide Web Consortium (March 2001), http://www.
w3.org/TR/wsdl.

9. Universal Description, Discovery, and Integration, UDDI.org
Consortium, http://www.uddi.org.

10. SOAP Version 1.2 Working Draft, World Wide Web Con-
sortium (July 2001), http://www.w3.org/TR/2001/WD-soap12-
20010709/.

11. H. Kreger, K. Gottschalk, and S. Graham, “Web Services Con-
ceptual Architecture,” http://www.ibm.com/webservices.

12. D. Ferguson, “Web Services Technical Architecture and Prod-
uct Roadmap,” http://www.ibm.com/webservices.

13. W. Bumpus, J. W. Sweitzer, P. Thompson, A. R. Westeri-
nen, and R. C. Williams, Common Information Model Im-
plementing the Object Model for Enterprise Management, Wiley
Computer Publishing, John Wiley & Sons, Inc., New York
(2000).

14. IBM alphaWorks, IBM Corporation, http://www.alphaworks.
ibm.com.

Accepted for publication November 9, 2001.

Joel A. Farrell IBM Software Group, One Charles Park, Cam-
bridge, Massachusetts 02142 (electronic mail: joelf@us.ibm.com).
Mr. Farrell is a Senior Technical Staff Member in the Emerging
Technologies group of the IBM Software Group. He joined IBM
in 1981 in Endicott, New York, and has worked on large-scale
operating systems, parallel and distributed computing, and for-
mal methods in software development. Recently he has been in-
volved in Internet technologies and is a member of IBM’s core
XML technology team. He is currently a member of the IBM Web
Services architecture team. Mr. Farrell received his B.S. degree
in computer science from Kansas State University in 1980 and
his M.S. degree in 1985 from Syracuse University, also in com-
puter science.

Heather Kreger IBM Software Group, P.O. Box 12195, 3039
Cornwallis Road, Research Triangle Park, North Carolina 27709
(electronic mail: kreger@us.ibm.com). Ms. Kreger is a senior ar-
chitect in the Emerging Technologies area of the IBM Software
Group. She represented IBM as a member of the Java Manage-
ment eXtensions (JSR0009) Expert Group. Her years in lead po-
sitions in network management, combined with her experience
on the IBM Web server and WebSphere Application Server prod-
ucts, gives her unique insight into the problems and solutions for
managing applications and e-business. She has contributed to the
specification, reference implementation, and compatibility test
suites for the JMX Reference Implementation and authored “Java
Management Extensions for application management” in Vol.
40, No. 1, 2001, of the IBM Systems Journal. She was also involved
in management issues with other standards bodies, including: The
Open Group Management Program, the DMTF (Distributed
Management Task Force) Application Management Work Group
Chair, and WBEM (Web-Based Enterprise Management) JSR
(Java Specification Request) Expert Group. Ms. Kreger is cur-
rently the lead architect for Web Services in Emerging Technol-
ogies, and recently authored the document, “Web Services Con-
ceptual Architecture.” She chairs the IBM Web services
architecture team, holds an associate position on the IBM AIM
Architecture Board, and is the Specification Editor for JSR109:
Implementing Web Services in the Enterprise being led by IBM.

IBM SYSTEMS JOURNAL, VOL 41, NO 2, 2002 FARRELL AND KREGER 227

