Applications

of flexible pricing

in business-to-business
electronic commerce

The increasingly dynamic nature of business-
to-business electronic commerce has
produced a recent shift away from fixed
pricing and toward flexible pricing. Flexible
pricing, as defined here, includes both
differential pricing, in which different buyers
may receive different prices based on
expected valuations, and dynamic-pricing
mechanisms, such as auctions, where prices
and conditions are based on bids by market
participants. In this paper we survey ongoing
work in flexible pricing in the context of the
supply chain, including revenue management,
procurement, and supply-chain coordination.
We review negotiation mechanisms for
procurement, including optimization
approaches to the evaluation of complex,
multidimensional bids. We also discuss
several applications of flexible pricing on the
sell side, including pricing strategies for
response to requests for quotes, dynamic
pricing in a reverse logistics application, and
pricing in the emerging area of hosted
applications services. We conclude with a
discussion of future research directions in this
rapidly growing area.

For centuries, businesses used negotiations and bar-
tering as a matter of routine. The industrial age saw
the emergence of mass production and extended dis-
tribution chains, which made face-to-face negotia-
tions with each customer impractical. Fixed prices
became necessary to manage the enormous growth
in both the volume and the variety of products, dis-
tributed over larger geographic regions.! The advent
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of the Internet and electronic commerce has greatly
impacted the way businesses price their goods and
services, and has allowed for more flexible pricing
based on customer characteristics or dynamically de-
termined based on supply and demand.

Two trends in electronic commerce are causing this
shift from fixed to dynamic pricing. First, the Inter-
net has reduced the transaction costs associated with
dynamic pricing by eliminating the need for people
to be physically present in time and space to par-
ticipate in a market. The menu costs are also con-
siderably reduced. Whereas in the physical world
changing a price incurs huge costs, the same task in
electronic commerce is reduced to a database up-
date. Second, price uncertainty and demand vola-
tility have risen and the Internet has increased the
number of customers, competitors, and the amount
and timeliness of information. In addition, the in-
creased use of flexible pricing itself leads to increased
price uncertainty. Businesses are finding that using
a single fixed price in these volatile Internet mar-
kets is often ineffective and inefficient.

Differential pricing. Electronic markets can reduce
customers’ costs for obtaining information about
prices and product offerings from alternative sup-
pliers. They can also reduce these suppliers’ costs
for communicating information about prices and
product characteristics to customers. This has im-
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plications for the efficiency of an economy in terms
of the search costs experienced by buyers and their
ability to locate appropriate sellers.? Electronic cat-
alogs were the first step in this direction. Over the
past few years, companies have put their product cat-
alogs on the Web, in order to make them widely avail-
able. Most electronic catalogs are comprised of fixed
offers in the form of fixed list prices. Search engines
and shopping bots (robots) make it easy for custom-
ers to compare these offers. In particular, standard-
ized goods are subject to price wars and strong brands
often become commoditized. Researchers in agent-
based computational economics have analyzed these
developments using computer simulations.® My-
Simon (http:/www.mysimon.com) or DealTime
(http://www.dealtime.com) provide real-world exam-
ples for this new kind of competition.

Many economists see product and price differenti-
ation as a solution to this “over-commoditization.”
Product differentiation can be accomplished by add-
ing additional attributes (e.g., service agreements)
or by generalizing existing attributes (e.g., flexibility
in terms and conditions). By differentiating products,
suppliers can decrease the substitutability of their
products and services and customize offers to the re-
quirements of specific consumers or market seg-
ments. The more successful a company is at differ-
entiating its products from those of others, the more
monopoly power it has—that is, the less elastic the
demand curve for the product is. In such markets
(often referred to as monopolistic competition), it
is possible for providers to extract consumer surplus
even from consumers who have perfect price informa-
tion. Often, suppliers use mechanisms such as person-
alization, targeted promotions, and loyalty programs
in order to distinguish their products from those of their
competitors and establish customer relationships.

Impeding price comparison basically means reintro-
ducing search costs.*’ This can also be achieved by
charging different prices to different consumers for
the same product. Price differentiation® is achieved
by exploiting differences in consumer valuations, such
as volume discounts and group pricing (e.g., senior
citizen discounts). This discrimination strategy re-
quires detailed consumer information and indepen-
dent billing and is also described as third-degree price
differentiation. Second-degree price differentiation
(or “nonlinear pricing”) means that the producer
sells different units of output for different prices, but
every individual who buys the same amount of the
product pays the same price (i.e., quantity discounts
and premiums). Finally, first-degree or “perfect”
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price differentiation means a producer sells differ-
ent units of output for different prices and the prices
may differ from person to person.

Airlines are often cited as pioneers in differential
pricing. Airline pricing can actually be seen as an ex-
ample of both price discrimination (e.g., frequent fli-
ers) and product differentiation (e.g., refund poli-
cies, weekend stays, etc.). Currently, it is easy to
search for convenient flights, but finding the least
expensive rate is cumbersome, because the number
of different tariffs is huge. Complicated pricing
schemes for airline tickets defy comparison shopping.
Airlines introduced this discriminated price struc-
ture (frequent flyer programs, early reservation dis-
counts, weekend tariffs, etc.) to deliberately reduce
market transparency after a phase of open price com-
petition.” This field has matured, and by the mid-1970s
most airlines had already deployed sophisticated rev-
enue (or “yield”) management systems, which use
optimization and forecasting techniques to calculate
the prices that are to be offered to customers now
in order to maximize overall profitability.®

Dynamic pricing. Although product and price dif-
ferentiation have successfully been deployed in many
industries, they have had less penetration in markets
where there is uncertainty about the price of goods
or services and there is little knowledge about mar-
ket participants. This uncertainty may stem from un-
known or volatile supply and demand (e.g., band-
width, electricity), or from the fact that the item being
traded is unique. Auctions and competitive bidding
(often referred to as dynamic pricing mechanisms)
help to find a price in cases where no one person
knows the true value, and each individual’s estimate
may be highly imperfect. In an auction, a bid-taker
offers an object to two or more potential bidders
whose bids indicate how much they are willing to pay
for the object.’ That is, any well-defined set of rules
for determining the terms of an exchange of some-
thing for money can reasonably be characterized as
an auction.'” An auction clears when it commands
an allocation based on the bids it has received. The
competitive process serves to consolidate the scat-
tered information about bidders’ valuations.

By ensuring that prices match current market con-
ditions, these mechanisms create an optimal outcome
for both the buyer and the seller that is otherwise
unobtainable. In traditional markets, the high trans-
action costs associated with dynamic pricing mech-
anisms have limited their application to specific sec-
tors such as finance, commodities, and art. On the
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Internet, companies such as Onsale or eBay success-
fully run live auctions where people outbid one an-
other for computer gear, electronics components,
and sports equipment.!'> However, the shift from
fixed pricing to dynamic pricing is expected to be
most evident in the business-to-business electronic
commerce. Although the future penetration of dy-
namic pricing is unknown, predictions by some in-
dustry analysts are very optimistic. Forrester Re-
search predicts that sales involving dynamic pricing
models will reach $746 billion by 2004 across all in-
dustries in the United States, compared to $30 bil-
lion in 2000." The conclusion is that bidding, and
other forms of electronic negotiation, can be ex-
pected to be more competitive in electronic markets
than in traditional markets.'* Certainly, fixed pric-
ing will never disappear, but the Internet is chang-
ing the balance in favor of dynamic pricing. This
opens a wealth of new research issues ranging from
revenue management in the context of dynamic pric-
ing to the design of new pricing mechanisms.®

In this paper we survey new applications of flexible
pricing in electronic commerce and describe how new
pricing strategies have become possible through the
Internet. We use the term flexible pricing to refer to
both differential pricing and dynamic pricing.
Through a variety of relevant IBM projects, we illus-
trate how flexible pricing impacts the way business
is being conducted and the challenges companies
face in dealing with this new phenomenon through-
out their supply chain. We focus on the challenges
of business-to-business electronic commerce—for
dynamic pricing in business-to-consumer electronic
commerce we refer the reader to Kannan and Ko-
palle.®

In the section “Flexible pricing and the supply chain,”
we analyze the impact of flexible pricing from a sup-
ply chain management point of view. Then, in “Price
negotiation for procurement,” we describe a num-
ber of multidimensional auction formats for procure-
ment and sourcing. In the section “Sell-side pricing
strategies,” we analyze new applications of flexible
pricing on the sell side. We conclude with a brief sum-
mary and final comments.

Flexible pricing and the supply chain

Flexible pricing for an enterprise in a business-to-
business (B2B) context presents independent chal-
lenges on both the buy side (procurement) and the
sell side of a typical enterprise supply chain.'® Flex-
ible pricing requires tight integration between the
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buy and sell sides, with the capability of real-time
updates to key operational data flows.

Figure 1 illustrates some of the mechanisms for flex-
ible pricing on the buy and sell sides. Auctions are
probably the most common realization of dynamic
pricing on the sell side. Assuming demand exceeds
supply, the price of the auctioned entity rises to a
level where there is no excess demand. Computer
manufacturers, such as Sun Microsystems and IBM,
are now selling increasing numbers of servers via auc-
tions. Another sales channel common in the com-
puter industry is the request for quote (RFQ), in which
a buyer posts an RFQ for a specific product meeting
certain minimal requirements, and sellers respond
with a single closed bid, with possible subsequent ne-
gotiation. This problem is discussed in more detail
in the section, “Sell-side pricing strategies.” Sellers
may also sell through indirect channels, such as in-
termediaries, and this presents the challenge of es-
tablishing optimal pricing and allocations across all
available channels. The final sell-side channel shown
in Figure 1, direct Web-site sales, is basic to business-
to-consumer (B2C) models. Many such sites have im-
plemented personalization capabilities designed to
target content to individual consumers based on
knowledge of their individual preferences. In some
cases, this has led to controversial price differenti-
ation in the prices to consumers."’

Turning to the buy side, channels for procurement
include reverse auctions, RFQs, and direct contract
negotiations. Reverse auctions'® are emerging as a
standard buy-side dynamic pricing technique in
which a single buyer accepts bids from multiple sell-
ers, with the lowest bid ultimately determining the
winning bid. Business transactions are complex, and
auction infrastructures must increasingly support
multidimensional auction in which the offering con-
sists of multiple products and/or services, and bid-
ders are allowed to bid on a subset of the products.
These negotiation mechanisms for procurement are
discussed in detail in the section “Price negotiation
for procurement.”

As shown in Figure 1, sell-side demand generates
requirements that eventually impact procurement
policies, whereas procurement management must be
able to generate accurate real-time available-to-
promise information in order to satisfy instantaneous
demand on the sell side. These issues are addressed
later in this section.
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Figure 1 Flexible pricing and the supply chain
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applications of revenue management are discussed
in References 20-23. As shown in Figure 1, we gen-
eralize these concepts to include pricing policy (e.g.,
price discrimination) on the sell side as well as the
question of how to allocate fixed product resources
UNIT optimally across the multiple sales channels men-

Figure 2  Seller-based price discrimination
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CURVE tomers switching between fare classes. The down-
ward shifting of the price-demand curve in Figure
2 is due to cannibalization. In general, it is possible
to increase revenue by optimal allocation of the to-
tal quantity across multiple price classes.* Signifi-
cant additional complications arise when bills of ma-
terials are present, because we need to do a similar
analysis across multiple resources.

n

»
QUANTITY

ql q*

Revenue management. Revenue management orig-
inated in the airline industry as the practice of con-
trolling the availability and/or pricing of travel seats

in different booking classes, with the objective of
maximizing revenue and/or profits.'” Other recent
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Pricing policy, including product-portfolio decisions,
can include product differentiation (mentioned
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earlier in the section “Differential pricing”) and
product/service bundling as a means of capturing
consumer surplus (i.e., the portion of the market that
is willing to pay more than the average price). At
any point in time, different sell-side channels will
have potentially different market conditions (e.g., de-
mands and price elasticities), and thus channel al-
location, driven by current market conditions, is be-
coming an increasingly important technology for
businesses with multiple sales channels. To some ex-
tent, this is driven by the observation that the In-
ternet not only provides buyers the ability to make
price comparisons but can also make sellers’ costs
transparent to buyers.*

Product differentiation imposes specific require-
ments across the supply chain. Bundling price and
delivery commitments in a business-to-consumer
environment and providing enhanced inventory man-
agement offerings such as JIT (just in time) and VMI
(vendor-managed inventory) in a business-to-busi-
ness environment can be a means to create differ-
entiation. It is a widespread practice among the sup-
pliers in assembly manufacturing and high-tech
industries to offer price and service bundles. A man-
ufacturer, for instance, can bundle price with a num-
ber of delivery options and thus generate differen-
tiation.? In order for this practice to be effective, a
manufacturer needs to be able to generate an ac-
curate ATP (available to promise) profile. Compa-
nies also need to be able to make real-time projec-
tions of the cost of providing these bundles. This may
require advanced ABC (activity-based costing), par-
ticularly in cases where bundles are massively cus-
tomized.

Procurement management. Improving procurement
cost efficiency and availability of components re-
quires proper demand planning, component inven-
tory management, and supply contract management.
For instance, a manufacturer that needs to procure
components in a procurement auction first needs to
determine what components should be procured
through this channel and at what quantities. Then,
in order to maximize procurement cost effectiveness
within the manufacturing availability requirements,
it needs to balance the management of its supply con-
tracts simultaneously with its procurement-auction
policies. In commodity spot markets, supply short-
ages are known to cause wild price fluctuations.
Therefore, many companies may have to implement
a hybrid procurement strategy in which they main-
tain long-term contracts for some portion of the an-
ticipated demand, and use reverse auctions or par-
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ticipate in spot markets or trading exchanges to
satisfy more speculative demand. This issue is dis-
cussed further in the subsection “Business process
for direct procurement.”

In high-tech industries, purchasers desire flexible
supply contracts because of frequent technology
changes, sudden changes in demand characteristics,
and rapid price decline. Using buy auctions for con-
tract portfolio management could be promising for

Buyers, as well as suppliers,
will require advanced contract
evaluation tools
for decision support.

efficient procurement management. In an environ-
ment where this is practiced, design of contracts that
can address manufacturing planning and execution
requirements is essential for efficient supply-chain
management. Furthermore, buyers will have to be
able to evaluate and compare multiple bids. Price,
flexibility in delivered quantity, on-time delivery, and
reliability are all desired performance measures that
will typically have to be traded off against each other.
This requires advanced contract evaluation tools that
are designed for multiobjective decision making, as
well as minimizing risk associated with reliance on
too few suppliers. Suppliers will also have to use such
tools to understand cost and profit implications of
their bids and improve their chances of making a win-
ning bid. A supply-chain management framework
that encompasses such decision-making processes
will be needed.

Supply-chain coordination. Supply-chain coordina-
tion is essential for companies that seek to imple-
ment dynamic pricing strategies. It is critical for all
parties involved in a supply-chain relationship to
understand the kinds of collaboration capabilities
needed for successful implementation. This coordi-
nation is needed at both the planning and execution
levels.

Coordination of supply and demand is a key issue
in planning. In particular, propagating timely signals
(of market reaction to changes in price) and updated
forecasts to all parties in the supply chain is crucial.
In typical supply-chain management, demand is as-
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sumed to be an external variable that needs to be
forecasted. The use of dynamic pricing, however,
adds price as a control variable, and makes demand
forecasting a much more complex process that needs
to be coupled with the pricing process. For compa-
nies that participate in auctions, for instance, param-
eters of demand forecasting are very rich and change
constantly. Supply-chain partners that share such in-
formation may be able to develop a better under-
standing of their collective demand structure. As a
result, a more efficient demand and supply planning
can be achieved throughout the supply chain.

Supply-chain partners can also use dynamic pricing
to reduce excess inventory in the supply chain. Ex-
cess supply created as a result of over-prediction of
demand can be reduced via coordinated actions (e.g.,
discounted prices and the use of special auctions with
low reservation prices) across the supply-chain part-
ners. Because demand and supply planning have in-
ventory implications for all parties in the chain, pric-
ing policies to eliminate unwanted inventories will
have to be coordinated across all parties as well.

Similarly, during supply-chain execution, companies
that can coordinate information with their supply
chain partners will have significant advantages over
the competitors that lack such coordination, partic-
ularly in advanced e-marketplace environments. As
an example, consider a marketplace for computers
that gives advanced configuration possibility to buy-
ers. In such a marketplace, a manufacturer discon-
nected from its suppliers may lack competitive
power, even if it is able to generate real-time ATP
to quickly respond to buyer bids. If there is demand
in excess of planned supply, companies that do not
have real-time connectivity with their suppliers will
not be able to respond to such revenue opportuni-
ties. On the other hand, a manufacturer that has real-
time coordination capability with its suppliers can
check its suppliers’ ATP (price, quantity, delivery
date), plan the desired configuration, project when
it can deliver, calculate the total cost of all compo-
nents and the cost of assembly, and finally generate
an asking price “on the fly.”

The following two sections contain examples of the
methodologies discussed here. The next section de-
scribes an example of multidimensional procurement
auctions, and the following section discusses several
examples of flexible pricing on the sell side.
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Price negotiations for procurement

Although there exist several alternatives for price
negotiations, auctions have emerged as the most pop-
ular mechanism for implementing negotiations in the
context of electronic commerce and are the focus of
this section. Auctions achieve high rates of Pareto
efficiency,” and exhibit rapid convergence to equi-
librium, which is important in a business context.
These features are very attractive in a procurement
context where large companies are buying, both di-
rectly and indirectly, materials from suppliers that
are dependent on them for a significant portion of
their revenue. In such settings, the buyers institute
private auctions as the price negotiation mechanism
for procurement and require suppliers to participate
in the process as part of the business relationship.
Procurement auctions take the form of reverse auc-
tions with a single buyer and a set of precertified sup-
pliers negotiating within the context of a private
exchange.

Decision support for procurement. The business
process and essential functional requirements for
auction-based price negotiations are illustrated in
Figure 3. The procurement manager (buyer) initiates
an auction by sending a request for quote (RFQ) to
various select suppliers. The RFQ specifies the item(s)
that the buyer intends to purchase, and the responses
(or bids) to the RFQ provide an indication of the sup-
plier’s ability to satisfy this demand and at what cost.
As discussed below, evaluation of these bids can re-
quire sophisticated analysis in order to determine
the optimal bid, subject to certain business rules as
constraints.

The typical use of electronic auctions has been in a
business-to-consumer context, where the negotia-
tions are restricted to price, since the product at-
tributes are fixed a priori. In a business-to-business
context, items being purchased often need to be spec-
ified along several attributes and are themselves sub-
ject to negotiations. As a result, bids should allow
the specification of multiple attributes. In addition,
the negotiation is conducted for a large number of
units of an item, and the bids often include volume
discounts. Buyers also tend to bundle their demand
for multiple items in a single auction, and thus in-
crease the size of the transactions, and to exploit cost
complementarities in an effort to minimize procure-
ment cost. Such a setting requires that the suppliers
be allowed to provide all-or-nothing bids for bun-
dles of items. Auctions designed to capture these
complexities are sometimes called “multidimension-
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Figure 3 Decision support for procurement
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al auctions,” where the dimensions refer to (1) the
multiple attributes, (2) the multiple units, and (3)
the multiple items over which the negotiation is be-
ing conducted.®” Figure 4 illustrates these dimen-
sions. The need for multidimensional auctions, and
hence sophisticated bid-evaluation systems, is grow-
ing.

Another consideration in the bid-evaluation process
is the use of business rules to constrain the selection
of winning suppliers. Typical rules are motivated by
risk hedging considerations. For example, the num-
ber of winning suppliers may be constrained to have
a minimum, because dependence on too few sup-
pliers might expose the firm to the misfortunes or
supply fluctuations of the chosen suppliers. Con-
versely, too many suppliers would lead to high ad-
ministrative costs, and hence the number of winning
suppliers is also constrained from above. Other con-
straints might be related to regulations such as re-
quirements of choosing at least a minority supplier.

The focus of this section is on the decision support
tools required for different bid types (in terms of the
dimensions defined in Figure 4). The next subsec-
tion describes a bid evaluation engine for multi-item
and multiunit bids, whereas the following subsection
briefly discusses evaluation and visualization tech-
niques appropriate for multiattribute bids.
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Figure 4 Multidimensional procurement auctions
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Evaluation of multi-item and multiunit bids. Trans-
actions arising in the procurement of direct inputs
used in the manufacturing of a company’s primary
outputs are usually very large (in total quantity and
in dollar value) and require the use of special price
negotiation schemes that incorporate appropriate
business practices. Typically, bids in response to an
RFQ in these settings have the following properties:

1. The transaction volume is large and the suppli-
ers provide volume discounts that are specified
as a curve with a quantity range associated with

BICHLER ET AL. 293



Figure 5 Business process for direct procurement
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each price level (e.g., $1000/unit up to 100 units,
$750/unit over 100 units).

2. Often the suppliers provide all-or-nothing bids on
a set of items where a special discounted price is
offered on a bundle (e.g., $150 for 30 units of item
1 and 20 units of item 2, and will not sell the items
partially or separately).

After receiving such bids, the buyer needs to iden-
tify the set of bids that minimizes total procurement
cost subject to business rules such as:

e The total number of winning suppliers should be
at least a minimum number to avoid depending
too heavily on just a few suppliers.

 The total number of winning suppliers should be
at most a maximum number to avoid the admin-
istrative overhead of managing a large number of
suppliers.

e The maximum amount procured from each sup-
plier is bounded to limit exposure to a single sup-
plier.

* Atleast one (or some fixed number of) supplier(s)
from a target group (e.g., a minority) needs to be
chosen.

e If there are multiple winning bid sets, then the set
that arrived first is taken as the winning set.
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Identifying the cost minimizing bid set subject to
these business rules is a hard optimization problem
and difficult to do by inspection, as is common prac-
tice today. We are developing a bid evaluation en-
gine that provides the decision support required in
this setting. Additionally, the engine can be coupled
with an existing auction platform to conduct com-
plex auctions that allow for the above-mentioned
real-world business practices. It is estimated that the
use of this decision support tool to identify optimal
bids can reduce procurement costs by a few percent,
resulting in very significant savings for organizations
with large procurement budgets.

Business process for direct procurement. The quan-
tity of items to be purchased is usually based on the
forecast demand for a planning horizon—typically
a quarter of a year. However, since there is consid-
erable uncertainty in the forecast, a common strat-
egy is to do an initial procurement up front in order
to satisfy a significant fraction of the demand fore-
cast, followed by a series of more frequent (e.g.,
weekly) procurements in order to satisfy short-term
fluctuations in demand. Since the initial, up-front
procurement is potentially large, suppliers typically
provide volume discounts in their bids. However, the
short-term demand is usually much smaller and there
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is less room for price negotiation. In addition, in-
direct items are also procured in small quantities.
An approach adopted to induce more competition
is to aggregate demand over several commodities and
over different locations, and negotiate price for the
entire bundle. Also, in order to exploit the cost
complementarities that suppliers might have for dif-
ferent commodities or locations, it becomes neces-
sary to allow all-or-nothing bids over bundles. Fig-
ure 5 provides an overview of the business process
for direct procurement. Note that the long-term de-
mand is procured using volume-discount bids, and
the weekly demand is procured by aggregating across
different locations and plants and soliciting all-or-
nothing bids to exploit complementarities in suppli-
er’s cost structure.

Volume-discount auctions. Volume-discount bids al-
low the seller to specify the price charged for an item
as a function of quantity that is being purchased.
For instance, a computer manufacturer may charge
$1000 per computer for up to 100 computers, but
for more than 100 computers would charge $750 per
computer. Bids take the form of supply curves, which
specify the price per unit of an item as a function
of the quantity of items being purchased. In general,
when there are multiple suppliers providing volume
discount bids, the choice of the winning bids and the
amount to be procured from each supplier is a dif-
ficult optimization problem that is modeled as an in-
teger program and solved using a commercial solver
like 1BM’s Optimization Solutions Library (OSL).* In
addition, the various business rules are captured as
side constraints within the mathematical formula-
tion. The solution approach is based on modeling
the problem as a variation of the multiple choice
knapsack problem.*

The volume discount auctions lead to a mixed in-
teger linear program with continuous variables.
These problems are quite difficult to solve. The use
of customized knapsack covers is effective in improv-
ing the performance of these problems for up to 40
suppliers and 30 items. For larger problems, we have
developed column-generation-based heuristics that
provide approximate solutions to within 1 percent
of optimal.*®

Combinatorial auctions. As mentioned previously, for
procuring weekly demand it is advantageous to ag-
gregate demand over several locations and plants,
since this leads to a larger transaction. An additional
advantage is that suppliers can provide a discounted
bid on a bundle (e.g., demand for sugar in New York
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Figure 6 An example of a combinatorial auction with
bundled bids

SUPPLIERS

PROCUREMENT ITEM:
SUGAR UNITS

100 TO NEW YORK

5 TO CHICAGO

20 TO BOSTON

SELLER BID PRICE $150 | $125 | $300 | $125

=18

DECISION VARIABLE x2 x3 x4

MINIMIZE 150 x1 + 125x2+ 300 x3 + 125 x4
SUCHTHAT 30x1+ 80x2+ 100x3+ 30Xx4>=100
5x2 + 5x3 >= 5

> 20x1+ 10x2+ 20x3+ 10x4>= 20
SOLUTION: x2 = 1 AND x4 = 1 =» PRICE = $125 + $125 = $250

and in New Jersey), since they might have excess in-
ventory in a local warehouse or spare capacity in the
carrier and hence can reduce transportation costs.
However, the discounted bid price is valid only if the
entire bid is accepted. Figure 6 provides a simple il-
lustrative example in the context of a food manu-
facturer.

In this example, a food manufacturer has posted an
RFQ for sugar in three locations (locations of man-
ufacturing plants) and solicits bids from four sup-
pliers. Each supplier has provided a bundled “all-
or-nothing” bid and a price for the bundle
represented by the seller (first) column in Figure 6.
By introducing a simple decision variable (x1,x2,x3,
and x4) for each bid, we can formulate an optimi-
zation problem that can be solved optimally using
the formulation shown in the figure. The formula-
tion attempts to minimize total procurement cost
while ensuring that the demand for each item is sat-
isfied. Notice that the optimal supply may over-sat-
isfy demand, as is the case here for sugar in New York
(the minimum cost solution generates a supply of
110 tons). If there are no holding costs, this might
be acceptable or even desirable.

The complexity of finding the cost minimizing bid
setin general can be a very hard problem as the num-
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ber of bids begins to get large. Notice that each sup-
plier is usually allowed more than one bid and, as
the number of items increases, the number of bids
can get quite large. The combinatorial auction can
be formulated as a set covering problem with side
constraints (arising from the business rules). A sig-
nificant departure from the conventional formula-
tion is that the side constraints make the feasibility
problem hard. However, we introduce (expensive)
dummy bids to effectively deal with the feasibility
problem. Integer programming techniques are effec-
tive in solving problems with 500 items and up to
5000 bids. We rely on combinatorial optimization to
solve this problem by modeling it as an integer pro-
gram and using OSL.

Future directions include the development of mul-
tiattribute auction formats as well as the combina-
tion of multiattribute and volume discount auctions
in order to enable negotiations on multiple units of
complex goods. Decision support for buyers and sup-
pliers plays an important role in these complex auc-
tion formats. A key requirement is the buyer’s trade-
off for various attributes. Assuming that this is
available, the utility for each unit (based on a bid)
can be computed and used in the bid evaluation pro-
cedure by replacing cost minimization by utility max-
imization.

Evaluation of multiattribute bids. A crucial issue for
multiattribute auctions is the bid evaluation and scor-
ing process, which also influences how suppliers try
to improve their bids. If the bid process is repeated
frequently, and the number of bids for each RFQ is
high, then determination of the winning bid by con-
ventional evaluation methods can be tedious and
time-consuming. This problem can be addressed by
acombination of analytical bid evaluation techniques
and visualization. One straightforward approach is
to assume that the bid score is a linear weighted sum
of the contributions due to each attribute, with the
weights specified by the bid evaluator. A more so-
phisticated analytical approach® is to determine
these weights via an iterative process whereby the
evaluator is asked to rank-order selected pairs of bids
determined by the algorithm. This analytical ap-
proach has been integrated with the ABSolute sys-
tem? to form an effective bid-evaluation tool.

In the ABSolute system developed at the IBM Tho-
mas J. Watson Research Center, we provide a ca-
pability for bid evaluators to explore visually mul-
tiattribute bids using parallel coordinates.®® It
provides a tree-view for RFQ specification and re-
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vision, and a table-view and a visualization for dis-
playing submitted offers. Providing a comprehensive
overview of all bids by visualization helps users make
purchase decisions with confidence. Furthermore,
the visual interface is an effective multiattribute de-
cision analysis tool that allows buyers to view, ex-
plore, navigate, search, compare, and classify sub-
mitted bid offers. For interactive analysis, the
interface provides a set of useful visual facilities in-
cluding dynamic filtering and querying, dynamic scor-
ing and ranking, comparison, tagging, color-coding,
Pareto optimality analysis, and zooming.

Sell-side pricing strategies

In this section, we present two examples of decision
support systems for pricing strategies developed at
IBM Research, and then consider some interesting
flexible-pricing issues that arise in the emerging area
of e-utilities.

Flexible pricing for response to RFQ. One form of
flexible pricing that arises on the sell side is the ca-
pability to apply price differentiation in responding
to an RFQ received from a prospective customer. An
example is a computer vendor deciding how to price
arequest for a bid on a large number of specific com-
puters. Typically, a pricing specialist will take into
account a number of factors in arriving at a final of-
fering price for the overall configuration to a spe-
cific customer. These factors can include inventory,
profit at approved price, quantity, degree of com-
petition for this bid, and anticipated future revenue
and profit from this customer. If inventory is taken
into account, then this problem can be viewed as a
yield-management problem in which the objective
is to allocate a constrained resource across the cur-
rent demand so that revenue or profit is optimized.

Bid pricing is typically performed in the absence of
inventory information, and seeks a price that max-
imizes expected profit based on the probability of
winning the bid as a function of offered price. Ref-
erence 34 provides an overview of various bid-pric-
ing models. Figure 7 shows a specific example of the
determination of an optimal price given the com-
puted expected profit as a function of the bid-re-
sponse price. This price clearly reflects a trade-off
between enhanced likelihood of winning a bid at a
low price (e.g., cost) versus increased profit at a
higher price (e.g., list price). Computation of the win-
ning probability is a difficult problem, given its de-
pendence on a number of factors including the spe-
cifics of the bid and the number and identity of the
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Figure 7 Price optimization in bid response
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competing bidders. One approach is to use histor-
ical bid data to build a predictive model® to esti-
mate the winning probability for a new bid. Such a
model requires a large number of historical bids, each
tagged with a win/loss label as well as a set of at-
tributes characterizing the conditions at the time of
the bids. Separate models can be built within each
customer segment and each product group, reflect-
ing different behaviors across both customers and
purchased products. For losing bids, it is likely that
neither the winning price nor the identity of the win-
ning bidder will be known, thus complicating the de-
velopment of robust models. Unlike price-based auc-
tions, it is also possible that the winning bid will not
necessarily reflect the lowest offered price, but in-
deed may reflect other factors (discussed earlier in
the subsection “Evaluation of multi-item and mul-
tiunit bids”) taken into account by the buyer’s bid
evaluation system.

An alternative approach?® to the strict use of his-
torical data is to rely on input from human pricing
experts to evaluate parameters in a simplified pre-
dictive model. These parameters can include the cus-
tomer’s price sensitivity, as well as key attributes of
each known competitor such as discounts off list price
as a function of demand. Extensions to these mod-
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els can use estimates of potential future revenue,
analogous to the use of “lifetime value” in consumer-
based customer-relationship-management models.
Using this information, flexible pricing ultimately can
be used to offer lower prices to customers based on
the enhanced likelihood that a winning bid will gen-
erate proportionately greater revenue in the future.

Flexible pricing for reverse logistics. In this section,
we discuss reverse logistics, a form of flexible pric-
ing on the sell side, integrated with a special kind
of supply-chain environment. The reverse logistics
process includes the management and the sale of sur-
plus and returned equipment and machines from the
hardware leasing business. To maximize the profit,
manufacturers can sell the machines at market val-
ues, or dismantle (de-manufacture) the machines to
sell parts, or use a combination of the two, directed
across various sales channels.

The typical sales channels for reverse logistics include
traditional direct negotiation (e.g., via telephone)
with a set of preferred brokers/business partners,
Web-based catalog sales, and auctions. In practice,
the preferred channels for commodity products such
as PCs are direct Web catalog sale, negotiated me-
dium volume contract sale, or market clearance sale
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Figure 8 Decision support system for reverse logistics with flexible pricing
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for all lots. Larger servers are normally sold to the
business partners and brokers, with smaller remain-
ing quantities sold through auctions.

The trading process is complex since it involves mul-
tiple products ranging from parts (e.g., memory
cards) to machines (e.g., PCs, servers, and supercom-
puters), sold across multiple channels characterized
by different demands across the different products.
Furthermore, each channel has its unique operation
mechanism, and a group of products might go
through several of them before completing the sale.
An additional complication is that the supply of prod-
ucts is driven by external factors such as lease ex-
piration dates, whereas the demand potentially var-
ies on a much different (and less predictable)
timescale.

Figure 8 shows the structure of a decision support
system performing channel allocation and flexible
pricing for the reverse logistics application discussed
above. Inputs to the price optimization engine in-
clude supply forecasts (e.g., the number of machines
expected to be returned from leasing), historical
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transactions to establish current bounds on market
prices and price elasticities, demand forecasts across
the multiple channels, and possibly customer-seg-
mentation information. The optimization engine de-
termines optimal strategies, including the division
between whole systems and systems disassembled for
parts, the allocation of components and systems
across the multiple sales channels, pricing strategies
within each channel, and transitions between sales
channels. For example, given a supply of machines,
the output of the optimization engine is a set of al-
locations and recommended prices (or reserve prices
for auctions) for each channel, as well as terms or
conditions for the switch to different channels. Some
of the optimization tools, such as the optimal dis-
assembling decision support tool, have been success-
fully employed in a reverse logistics application. Oth-
ers, e.g., catalog pricing strategy, can be borrowed
from the practice of various other industries, and
some are developed anew, such as the channel tran-
sition scheme. More importantly, all these modules
are integrated in order to provide a set of strategies
that can achieve a global optimum.
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Flexible pricing for e-utilities. In an accelerating
trend, corporations of all sizes out-source their in-
formational and commercial Web sites to profession-
ally managed hosting companies, such as IBM. The
basic services offered by hosting companies are shelf-
space rental, electricity, air conditioning, and band-
width. In many cases, hosting companies provide or
maintain servers and storage as well. These are the
first steps toward an “e-utility.”

Pricing models for hosting are becoming standard-
ized, with a combination of flat rate and variable
charges. A “best-effort” treatment of all user requests
leads to outsourcing customers over-subscribing to
hosting services in order to protect premium users,
thereby substantially increasing costs. A simple rem-
edy is to provide differentiated services to classes of
user requests, which may be grouped by profile, by
past history, or by the Web page requested. Ideally,
premium users should always be able to access the
site even at peak usage. Differentiated services, if
properly priced, would be universally beneficial. It
would lower the cost to nonpremium users, increase
the probability that services are available for pre-
mium users, and yield the proper incentives to the
service provider. This model follows the revenue
management strategies developed within the airline
industry (see the “Differential pricing” subsection
early in this paper).

An application scenario generic to most Web host-
ing configurations is the following. When a user HTTP
(HyperText Transfer Protocol) request arrives, it is
handled by a request dispatcher, which serves the
role of gatekeeper, and by a load balancer directing
traffic to the server clusters in the back end. Depend-
ing on the implementation of the dispatcher, a re-
quest may be forwarded for immediate service,
buffered in a best-effort queue, or dropped. The dis-
patcher can access the cookie information stored in
a request message in order to look up user-specific
information, thereby establishing the user profile and
the class membership. Accepted requests are for-
warded to the server clusters. The dispatcher receives
constant information about system resource usage,
and applies control policies to prevent over-loading
and consequent violation of contracted service level
agreements.

Paschalidis and Tsitsiklis*® study resource allocation
using a revenue management formulation, with the
motivation to find a fair allocation of network re-
sources viewed as a common good. Their basic as-
sumption is that there is a relationship between de-
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mand and price, and the price is set based on network
congestion and allocation of resources to the high-
est bidder. This is similar to the ways that airline seats
have been sold (at least until reverse auctions be-
came possible). In the case of the e-utility, however,
the users of the service are not necessarily the ones
who pay for the service. While conceptually one may
wish to think of premium users paying a higher price
for assured access, the actual payment may be made
on their behalf by the Web site owner who in return
will require evidence that premium users are being

Flexible pricing has become a
mechanism used by businesses
to balance supply and demand
in real time to manage risks
and improve profitability.

well treated. This evidence will necessarily be sta-
tistical in nature, and will probably be averaged over
fairly long time intervals in order to develop a rea-
sonable quality-of-service (QOS) estimate for differ-
ent service classes. Liu et al.”” develop a quite re-
alistic model whereby a Web-hosting service provider
can optimally allocate resources to meet differen-
tial QOS measurements, for forecasted arrival and
service rates.

In the e-utility, dynamic pricing will probably apply
when the estimated loads are much higher than pre-
dicted. In this case, the Web site owner is in the same
position as the business traveler who requires an air-
line seat on short notice. The owner may wish to con-
tract for a short-term “assured” burst to cover the
requirements of the premium users. Of course, since
this burst is over and above the contracted levels,
the service provider can and should charge a high
premium for it. It may be possible for the service pro-
vider to estimate the frequency of such bursts, since
from the point of view of the service provider one
premium user is the same as another, just as a late-
booking IBM business traveler is the same to the air-
line as one from General Electric. It is the total pop-
ulation of premium users that determines the arrival
process and the consequent requirement to allocate
excess capacity. But in contrast to the airlines, it does
matter which Web site is bursting, because the ac-
tual loads generated will vary from Web site to Web
site.
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This suggests that in addition to specifying differ-
entiated quality of service, e-utility contracts should
also specify peak load forecasts broken out by ser-
vice classes. When these peak load forecasts are vi-
olated, then the service provider can charge appro-
priately high prices for those bursts. By standardizing
the service classes (and possibly also the applications
used by the premium service classes), the service pro-
vider may be able to develop robust statistical mod-
els for the bursting and thereby manage the capac-
ity needed to meet the assured service levels.

Summary and conclusions

The increasingly dynamic nature of business-to-busi-
ness commerce and value-chain relationships has ac-
celerated the shift from fixed pricing to flexible pric-
ing. Flexible pricing has increasingly become a
necessary mechanism for companies to stay compet-
itive, balance supply and demand in real time, man-
age risks, and improve profitability. However, the
short cycle time for real-time decision making and
the requirement to analyze the huge volume of data
has created new challenges for enterprises. New flex-
ible pricing and more intelligent decision support
tools are needed to help companies manage real-time
information from complex market environments and
value-chain relationships, as well as to optimize their
operations. The requirement for flexible pricing
opens a wealth of new research issues, ranging from
revenue management in the context of dynamic pric-
ing to the design of new pricing mechanisms based
on real-time supply-chain and market information.

This paper is intended to lay a foundation for the
design of intelligent decision support systems for flex-
ible pricing and to explore ways to maximize their
impact on business objectives. We have focused our
discussion of flexible pricing from the supply-chain
management perspective. We first summarized the
concept of differential pricing and dynamic pricing
and called it flexible pricing. We then discussed flex-
ible pricing in the context of supply chain, including
revenue management, procurement, and supply-
chain coordination. Key issues, challenges, and re-
search areas were identified. Several new scenarios
and applications involving flexible pricing in business-
to-business electronic commerce were presented. Fi-
nally, the opportunities, issues, and strategy for ap-
plying flexible pricing techniques to the emerging
application hosting services (e-utilities) were
discussed.
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We argue that flexible pricing must be integrated with
the end-to-end supply-chain management: real-time
market information and company supply-chain ve-
locity need to be considered in pricing strategies. Suc-
cessful utilization of flexible pricing can significantly
enhance a company’s competitive advantage and
help manage changing market demands, improve
customer relationships, and manage supplier rela-
tionships. Although flexible pricing has demonstrated
promising results, current research is still in its early
stage. Additional work is needed in defining flexible
pricing strategies based on different business objec-
tives, and on the development of new algorithms for
analyzing real-time information. With the advances
in research and the tight integration of pricing and
supply-chain management, flexible pricing will be-
come a common business practice in the next few
years.
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