
A metric for predicting
the performance of
an application under
a growing workload

by E. J. Weyuker
A. Avritzer

A new software metric, designed to predict the
likelihood that the system will fail to meet its
performance goals when the workload is scaled,
is introduced. Known as the PNL (Performance
Nonscalability Likelihood) metric, it is applied to a
study of a large industrial system, and used to
predict at what workloads bottlenecks are likely
to appear when the presented workload is
significantly increased. This allows for intelligent
planning in order to minimize disruption of
acceptable performance for customers. The case
study also outlines our performance testing
approach and presents the major steps required
to identify current production usage and to
assess the software performance under current
and future workloads.

In this paper we introduce a new metric, the Per-
formance Nonscalability Likelihood (PNL) met-

ric, intended to be used to predict whether a soft-
ware system is likely to encounter performance
problems when the workload is significantly in-
creased. Here we use the term scalability to refer to
a software system’s ability to handle such increased
workloads. We also include a case study using a newly
developed software system for a large customer care
service provider. In the case study, we describe our
approach to the performance testing of the customer
care database system, and also the workload char-
acterization, the test design, the performance mea-
surement results, and our recommendations for per-
formance improvement. We also describe the
computation of the PNL metric for this system to show
the utility of making predictions of this sort, and to
demonstrate how to collect and analyze the neces-

sary data for a system of this magnitude and com-
plexity.

Our personal experience is that most performance
testing efforts create the test load without having
done a careful workload characterization in the pro-
duction environment. It is true that collecting the
necessary data and doing the analysis are often dif-
ficult and costly, but we have found that the use of
field-collected data is an extremely valuable asset that
has allowed us to accurately predict the behavior of
the system under varying workloads, and thereby al-
lowed us to plan for, and prepare for, likely bottle-
necks that might have catastrophic consequences
were they to occur in the field. Even for new systems,
such as the one we describe in our case study, we
have found that it is often feasible to collect the data
necessary to describe the production workload. This
might happen because the input to the system un-
der examination is the output of some already ex-
isting software system or device. Therefore, even
though the software system being assessed is new,
the workload that is being characterized is not. For
example, we were involved in doing load testing for
a new system that was to be used to issue alarms when
certain combinations of events occurred at a hard-
ware switch. Prior to the implementation of this sys-
tem, the assessment of the switch outputs and the
determination of the appropriate actions had been
manually accomplished. Nonetheless, the switches

�Copyright 2002 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 0018-8670/02/$5.00 © 2002 IBM WEYUKER AND AVRITZER 45

had been issuing messages for many years, and a
careful analysis of these messages led to an accurate
characterization of the new system’s expected work-
load.

Another reason why the workload of a newly built
software system might be available is that its input
space is the same as that of another existing system.
Thus, for example, a company’s customer base is
likely to exist for billing purposes, including data de-
scribing customers’ usage habits. A new software sys-
tem may then be built to make targeted offerings of
new goods or services based on data derived from
the existing database information, or a new fraud-
detection system might rely on an analysis of this
data. In either case, the inputs to the new system
would be the same as those for an existing system
and therefore could be collected and analyzed.

Still, there are situations under which it is not pos-
sible to collect this type of data, in which case the
approach we discuss will not be usable in that envi-
ronment. A new system being deployed in produc-
tion may not have a target system from which to col-
lect production data. Even when production systems
exist, they may be very difficult to instrument for data
collection. Other possible reasons are the complex-
ity of the system under test and the lack of person-
nel trained in performance testing and data collec-
tion techniques, or a belief that such efforts are too
expensive or are unnecessary. In addition, the same
data can be used to prioritize fault removal efforts
and also as the basis for determining when to stop
testing. A central conclusion of this work is that col-
lecting the types of workload data that was neces-
sary for our approach is often feasible, and when it
can be done, it is well worth the necessary resources.

For this project, we used field data collection to char-
acterize current production usage, sometimes known
as an operational distribution or operational profile,
and used performance testing to identify the bottle-
neck resources of interest to the analysis. A thor-
ough description of the collection of operational pro-
file data is available in Reference 1, and its use in
test case selection during the load testing phase is
described in Reference 2. Specifically, we have used
the operational distribution, which is derived at test
planning time, as the basis for test case generation,
along with Markov chain modeling. Markov chains
have also been used to predict software reliability3

and to capture usage statistics from empirical data.4

Selecting performance tests based on the operational
distribution guarantees that the testing done in the
test lab provides an accurate image of the actual field
environment, and we used the operational distribu-
tion to determine an efficient order in which to con-
centrate our fault removal effort. This guaranteed
that failures observed during performance testing re-
ceive priority according to the expected impact they
will have in the production environment. In contrast,
when the performance test design has not been based
on production data, it is difficult to determine how
to best use scarce resources to meet critical project
needs.

For the specific system that will be used in our case
study, we needed to validate the performance re-
quirements for a system that had been acquired off-
the-shelf. This meant that we did not have access to
design documents or the code itself and, therefore,
we could perform neither design reviews nor code
reviews. We were assured that thorough functional
testing at the unit, integration, and system test lev-
els had been done by the software vendor, prior to
the start of performance testing, but, of course, it
was not possible to quantify the comprehensiveness
in the way that one can for software that is produced
in-house. In our organization, as in many industrial
software production sites, the quality of functional
testing is typically evaluated using specification and
code coverage metrics, while performance testing is
usually benchmarked against system-wide quality
metrics such as performance and reliability require-
ments.

There are certainly advantages to doing performance
testing throughout the software life cycle, just as
there are advantages to doing correctness testing dur-
ing development. Nonetheless, since the usual pro-
cedure in our organization for both systems devel-
oped in-house, and those purchased off-the-shelf, is
to focus performance testing effort after the system
is fully developed and thoroughly tested for correct-
ness, our performance testing approach and the PNL
metric are predicated on this assumption.

The paper is organized as follows. The next section,
“Predicting scalability,” defines our PNL metric, de-
signed to predict whether or not there are likely to
be performance problems when the workload is sig-
nificantly increased. Then, in the section, “Deriving
the operational distribution,” we describe the way
we determined the operational distribution for the
customer care service provider that will serve as the
system in our case study. In the section “Performance

WEYUKER AND AVRITZER IBM SYSTEMS JOURNAL, VOL 41, NO 1, 200246

testing,” which follows, we present our approach to
performance test design and the main conclusions
derived from the performance testing effort for the
customer care system. The section “Computing the
PNL” demonstrates the computation of the PNL met-
ric for the customer care system, and the last sec-
tion contains our conclusions.

Predicting scalability

In this section we describe a way to predict the abil-
ity of a system to handle significantly increased work-
loads. This will be known as the Performance Non-
scalability Likelihood (PNL) metric. In the section
“Computing the PNL,” we apply it to a production
system. Being able to determine whether perfor-
mance problems are likely to occur when the work-
load becomes significantly heavier than its current
level will allow project personnel to plan for neces-
sary server capacity upgrades in a way that is trans-
parent to users.

The PNL metric is designed to capture the expected
performance loss at a given load value. This is done
by distinguishing between states for which the be-
havior is acceptable and those for which it is not. Al-
though we designed this metric in response to the
needs of a particular project, namely the one that
is included in this paper as our case study, we have
defined the metric generally, and will then describe
how we particularized it in ways that were most ap-
propriate for this project.

C(s) is a reward function that maps state s to a value
within the closed interval [0, 1]. It indicates whether
performance degradation has occurred, and may in-
clude an indication of the degree of that degrada-
tion. The coarsest way of defining C(s) simply dis-
tinguishes between acceptable behavior (for which
C(s) is set to 0) and unacceptable behavior (for which
C(s) is set to 1). For the system used in the case study,
this is the most appropriate distinction—the perfor-
mance is either acceptable or it is not. For other sys-
tems, however, this might not be a subtle enough
distinction. For example, when modeling the
performance of real-time systems, every state that
fails to meet the deadline could be considered a failed
state and therefore assigned the value 1, while the
reward assigned to states that meet the deadline
could be computed using a function of the distance
from the real-time deadline, which is mapped to the
appropriate range. Conversely, when dealing with
non-real-time systems, all states that meet the per-
formance objective could be considered good states

and for those states C(s) would be set to 0, while
the penalty for missing the performance objective
could be proportional to the distance from the ob-
jective. For a discussion of similar issues in the as-
sessment of software reliability, see Reference 5.

Other related work appears in the extensive liter-
ature on performability. Two particularly useful
sources in this area are References 6 and 7, both of
which have very comprehensive bibliographies. Per-
formability is defined as the probability that the sys-
tem under study performs at the required perfor-
mance level.6 It is designed to be used when there
is a need to evaluate both the performance and de-
pendability of computer systems, particularly when
the system’s performance is degrading because of
faults. A stochastic process is defined, which is used
to model the system under study. The model is then
used to assign values to performability metrics for
a certain operating environment. Different types of
reward variables are used, depending on the time
during which the rewards are accrued.

Therefore, performability modeling could be used
to encompass any problem that involves a reward
structure, and in that sense is closely related to the
PNL metric that we introduce here. Although the
most common applications of performability theory
are to degradable system components in the pres-
ence of failures, in either the hardware or software
domain, in this paper we are interested in predict-
ing the likelihood that a software system under study
will fail to meet its performance goals when the work-
load is scaled. Thus, although similar techniques are
involved, the work presented here has a fundamen-
tally different perspective. We are interested in pre-
dicting the future performance behavior of a system
that does not fail, given that it is going to have to
handle a significantly heavier workload than it cur-
rently has to handle. In contrast to this, performabil-
ity modeling is concerned with assessing the perfor-
mance of a system that is degrading because of
failures.

The PNL metric is designed
to capture the expected

performance loss at a
given load value.

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 WEYUKER AND AVRITZER 47

The formal definition of PNL, for program P relative
to operational distribution Q is:

PNL�P, Q� � � Pr�s�C�s� (1)

where Pr(s) denotes the steady state probability as-
sociated with state s, under the operational distri-
bution Q, and C(s) denotes the degree of perfor-
mance degradation, with C(s) � 1 indicating that
the performance is unacceptable, and C(s) � 0 de-
noting that the performance is entirely acceptable.
The range of C(s) is the interval [0, 1].

The intuition behind our metric is that PNL includes
the probability mass associated with exactly those
states whose performance behavior is considered to
be unacceptable. Therefore, the PNL metric captures
the probability that the system will not meet its per-
formance objective for a given load value.

To compute the PNL metric, the following process
should be followed:

● The performance objective is defined in terms of
the maximum acceptable response time.

● The arrival process distribution is determined.
● The service time distribution is determined.
● The system under study is modeled to generate a

state definition that captures the performance met-
ric of interest.

● The model is solved to generate the state prob-
ability distribution.

● The PNL metric is computed from the state prob-
ability distribution.

In the section “Computing the PNL,” we illustrate
the PNL metric computation for a particular system.
Although the metric and the process described above
to compute its value for a given system are general,
the approach used to solve the model and the actual
computation of the metric may vary from model to
model, and hence from system to system. Specifi-

cally, even though we were able to analytically solve
the model used in our case study, for some systems,
including those that yield more complex models, this
may not be possible, and the metric may have to be
computed using simulation or numerical methods.

Deriving the operational distribution

In this section we describe a production system, the
data that were collected during production, and the
method used to determine the operational distribu-
tion. A detailed description of this testing approach
is included in Reference 2.

The system being tested for our case study is a cus-
tomer care database with a large customer base. The
system has a Web browser front end that initializes
with a home page for customer care agents. Pages
are served by an off-the-shelf Web server that caches
requests. The customer care repository contains in-
formation that can be displayed dynamically to cus-
tomers, as well as to agents. In this way, customers
can obtain help using a self-service Web interface,
thereby reducing the number of customer care agents
needed.

A key part of the application is a search feature that
provides the capability for a customer or agent to
search the customer care repository based on spec-
ified keywords. The cost of customer care provided
by agents taking phone calls is very high. Allowing
the customer direct access to the application reduces,
and, in many cases, eliminates the need for the cus-
tomer to speak with an agent.

The application runs on four servers, with two serv-
ers dedicated to transactions by agents, and the other
two supporting customers. The analysis of the types
of requests submitted by users revealed distributions
for agent-facing and customer-facing servers as
shown in Table 1. The four primary types of requests
include: static pages, search forms, search results,
and error code pages. This last type of page repre-
sents application codes that customers are trying to
interpret. A primary reason that customers access
this software or contact agents is that they have re-
ceived such a code and are trying to decode its mean-
ing. These error codes should not be confused with
browser codes such as 404. Note that the operational
distribution data for the case study was derived by
collecting field data over a two-and-one-half-month
period.

In the workload characterization effort we focused
on understanding the traffic scale, the traffic load bal-

Table 1 Page request distribution on the servers

Agent-Facing Customer-Facing
Page Type Percentage Page Type Percentage

Static page 50 Static page 23
Error code page 10 Error code page 23
Search form 7 Search form 30
Search result 8 Search result 16
Other pages 25 Other pages 8

WEYUKER AND AVRITZER IBM SYSTEMS JOURNAL, VOL 41, NO 1, 200248

ancing between the servers, and the characterization
of the low activity periods and high activity periods.
We also determined the cache hit ratio for the serv-
ers, and analyzed page requests at 15-minute inter-
vals. We note that each Web server has a cache as-
sociated with it.

We found that generating static pages usually re-
quires fewer resources than generating search result
pages because a search result page generally involves
multiple disk requests. For that reason, the requests
on the customer-facing servers are often more re-
source-intensive than agent-facing ones because of
the larger fraction of search pages typically requested
by customers. Agents were more than twice as likely
to request a static page than customers, whereas cus-
tomers were more than four times as likely to use
a search form than agents.

Throughout this paper, we refer to data collected
about the Web server cache. The cache hit proba-
bility was computed as the average cache hit ratio,
weighted by the frequency of each request type. The
range of the cache hit probability was stable from
day to day, ranging between 80 and 87 percent.

Performance testing

The workload characterization effort described in the
previous section was used to design tests that reflect
actual production usage. In addition, tests were also
designed to cover the key parameters that impact
the system capacity of the customer care platform,
including single transaction tests, multiple transac-
tion tests to reflect customer and agent workloads,
tests using different database sizes, and tests using
varying numbers of Web server processes.

In order to avoid overloading our internal intranet,
the tests were run on it after hours, in a dedicated
performance testing lab. The dedicated test environ-
ment was designed to guarantee that there would
be no overlap between our tests and other usage. We
had exclusive access to the servers and routers be-
tween the test drivers and the system under test. The
application was installed on dedicated performance
testing servers that reproduced the production envi-
ronment as closely as possible. The primary differ-
ence between the production and test environments
was that in the test environment, the network delays
were local area network delays as opposed to wide
area network delays experienced by customers and
agents that access our production systems over the
Internet.

We started our performance testing effort by run-
ning single transaction tests of types static, error
code, search form, and search result. We then ex-
ecuted tests using workloads that represented the
customer and agent transaction mixes determined
in the field and described in the previous section.
We concluded by investigating the impact of data-
base size and multiple HTTP (HyperText Transfer
Protocol) server processes on the performance.
Throughout, we had to determine how to exercise
the Web server cache. We controlled the caching ex-
plicitly, and each one of the tests in this section in-
dicates whether or not the caching mechanism was
turned on. In addition, we also simulated the mea-
sured cache hit probability of 85 percent by prepar-
ing a set of tests that would drive the process so that
it reflected this probability.

The performance testing machine was instrumented
with the SUN SE Toolkit.8 We found that for single
transaction tests, with the caching mechanism turned
off and a database size of 200 MB, both error code
and search result pages experienced a steep increase
in response time far earlier than search form and static
page types. These differences for different request
types were not surprising because, as mentioned
above, error code and search result pages are more
resource-intensive than static pages and search
forms.

When we considered the CPU time spent for each
transaction type, we also found very noticeable dif-
ferences in response times for the different types of
page requests, when the caching mechanism was
turned off. In this case, only the error code pages
showed a precipitous rise in cost, brought about by
bottlenecked database semaphores. The other three
types of page requests showed much more modest
increases as the load increased.

Similar tests were performed for single transactions
when the caching mechanism was turned on. For
these sets of tests, all requests were served from the
cache. These tests were designed to distinguish be-
tween the cost expended to perform database access
and the rendering of pages. The central observation
was that, as expected, caching provided a significant
speedup over accessing all pages from the database.
In particular, we observed that the response times
when the cache was turned on showed a 50-fold
speedup as compared to when the cache was turned
off. In addition, the caching mechanism provided for
a significant extension of the workload that could be
handled. Even when the request rate was increased

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 WEYUKER AND AVRITZER 49

to roughly five times the load used when the caching
mechanism was turned off, there was no problem
handling that load. Therefore, in this architecture,
some scalability could be achieved if we could attain
the goal of all requests being served from the cache.

This translates to a 100 percent cache hit probabil-
ity. For our customer care system, for which an 85
percent average cache hit probability was observed,
we saw a very high variability in response times. We
conclude that the variability in performance of the
cached versus noncached transactions is the likely
source of any customer perception of poor perfor-
mance.

Measurements on semaphore spins reported by the
SE Toolkit indicate that transactions were consum-
ing CPU time while waiting for service. This conclu-
sion was further substantiated by measurements of
CPU usage for transactions. We found that the CPU
time consumed by transactions was sensitive to load.
This was also observed for the single transaction tests.
We observed that the CPU usage per request for the
agent workload was significantly higher than the CPU
usage per request for the customer workload.

We observed increases in the response time as the
database size was increased from 200 MB to 400 MB
and then to 600 MB in the customer workload test.
In particular, we observed an increase in response
time of 25 percent when the size of the database was
increased from 200 MB to 400 MB with a fixed re-
quest rate. When the size of the database was fur-
ther increased from 400 MB to 600 MB, the increase
in response time was 33 percent at the same request
rate.

Our analysis also allowed us to detect an instability
point. The decrease in response time as the request
rate was increased was caused by a severe slowdown
of the system which led to a decrease in the through-
put because of a substantial number of aborted trans-
actions. In particular, for a 200MB database, 37 per-
cent of the transactions aborted at a certain load,
whereas 85 percent aborted at a somewhat higher

load. For a 400MB database, the abort rates were
40 and 49 percent for these loads. When the data-
base size was increased to 600 MB, the rates rose to
80 and 86 percent, respectively.

We used the same databases for the agent tests as
we did for the customer tests. Here we observed even
larger increases in response times as the size of the
database was increased. By far the largest increase
in response time occurred when the size of the da-
tabase was increased from 400 MB to 600 MB,
namely 354 percent.

In addition, the steep increase for the 600MB da-
tabase began earlier for the agent database than it
did for the customer databases and the 200MB and
400MB agent databases. These different increases
can be attributed to the different amounts of CPU
time per request used by the agent and customer
workloads when the caching mechanism was turned
off. In the agent workload case, an increase in the
kernel semaphore holding time, caused by the larger
database size, created an unstable queue for sema-
phores above a certain load. We also saw a severe
system slowdown for the agent workload, which led
to aborted transactions and reduction of response
time above this load.

For the multitransaction tests with the cache turned
on, we assumed that the cache hit probability was
100 percent. In practice, the cache hit probability will
be significantly less than 100 percent. For this sys-
tem, we found an average cache hit probability of
approximately 85 percent. Therefore, to obtain an
accurate estimation of the production working range,
a test was designed to simulate a cache hit proba-
bility of 85 percent. The load that could be handled
was significantly higher than that handled with the
cache tuned off, but not as high as when all requests
were retrieved from the cache.

The SE Toolkit identified bottleneck states for both
the cache on and cache off test cases. In the cache
off case, there was kernel contention observed for
database semaphores. In the cache on case, a CPU
run queue and a network bottleneck were revealed
above a certain request rate. These bottlenecks were
caused by limitations in the networking software,
such as the maximum number of connections allowed
to be set up. Since the cache on bottlenecks occurred
at much higher request rates than we ever expect to
see in practice, we expect that they can be safely ig-
nored for the foreseeable future. However, since we
are concerned about workload scalability, knowledge

The high variability in system
response times is the likely

source of any customer perception
of poor performance.

WEYUKER AND AVRITZER IBM SYSTEMS JOURNAL, VOL 41, NO 1, 200250

of such potential bottlenecks at greatly increased
loads is very valuable information that can be used
for proper planning.

To alleviate a mutual exclusion kernel bottleneck,
we investigated the performance impact of using
multiple HTTP servers, varying the number of HTTP
servers from one to six. We used customer workload
tests designed to generate a simulated cache hit rate
of 85 percent for the single HTTP server case, run on
the 200MB database, with multiple HTTP server con-
figurations.

By adding HTTP servers, we found two conflicting sit-
uations. On the one hand, by having n-HTTP serv-
ers, we created n queues, each of which could be ex-
ecuted independently on an n-CPU server. Since each
queue maintains its own lock, lock contention was
significantly reduced. This led to an ability to han-
dle a much heavier workload with a minimal increase
in response time. On the other hand, however, the
cache hit probability was reduced when multiple
HTTP servers were run, because the caching mech-
anism is maintained inside the HTTP server. This ef-
fect was seen by an increase in response time as the
number of HTTP servers was increased. What we ob-
served was that the cache hit probability dominated
the response time at low loads, but the queuing for
the database lock caused the curves to cross over as
the number of requests per unit time continued to
increase. Eventually, the reduced caching probabil-
ity was the main factor in determining the response
time. Therefore, the 2-HTTP server configuration pro-
vided the best performance results for both low loads
and high loads.

Computing the PNL

In this section, we describe how we computed the
PNL metric for the customer care system. We first
determined our performance objective, defining Tmax

to be the maximum acceptable response time. This
allowed us to precisely characterize poor perfor-
mance. We defined the arrival process for the cus-
tomer care system to be Poisson because that is the
traditional way of modeling a system with a large
population of users, and we have found in the past
that we have gotten meaningful results when we as-
sumed this type of distribution for similar systems.

To define the service time distribution, we noted that
for this dedicated database all access is serialized.
Furthermore, users experience a degradation in per-
formance only if an arriving transaction at the da-

tabase finds at least N � Tmax/x waiting transac-
tions, where x is the constant service time provided
at the Web server when the caching mechanism is
turned off. This statement is true because requests
served from the cache always meet the performance
objective.

Since our performance tests indicate that the data-
base service time distribution can be accurately ap-
proximated by a deterministic process, we modeled
our customer care service provider database as an
M/D/1 queue. This means that we assumed Poisson
arrivals and deterministic service times. Because the
measured cache hit probability was 85 percent, only
15 percent of the total requests were served by the
M/D/1 queue. Therefore the state that will be used
to compute the PNL metric is:

S � number of customers found in service at the
M/D/1 queue

In general, the model we obtain should be solved
using either a simulation tool or analytical methods.
For this system we used M/D/1 queue tables to ob-
tain the model solution. To compute the PNL met-
ric, we need to determine the probability that users
would experience poor performance, i.e., have a re-
sponse time exceeding Tmax.

Finally, the PNL metric was computed by weighting
the probability of finding N � Tmax/x customers in
service at the M/D/1 queue, by the probability that
the request was not found in the cache.

The probability of finding N or more customers in
service on an M/D/1 queue using a first-come, first-
served queuing discipline was tabulated in Reference
9 and is shown in Table 2, for N equal to 1, 2, 3, and
5. Plots of the PNL value for the system with cache
hit probabilities of 85 and 95 percent are shown in
Figures 1 and 2. These plots were used to assess the
probability that the users would experience poor per-
formance as the workload scales.

Figures 1 and 2 show how queuing at the Web server
impacts the value of the PNL metric, for a given cache
hit probability. For example, if the cache hit prob-
ability is 85 percent, we would use Figure 1 and draw
a line representing the maximum acceptable PNL par-
allel to the “offered load” axis. We would then com-
pute N � Tmax/x. If the PNL curve for the com-
puted N lies within the rectangle defined by the axes,
the maximum acceptable PNL value, and the max-

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 WEYUKER AND AVRITZER 51

imum expected load, then the system would be scal-
able. Otherwise, performance problems can be ex-
pected when the indicated loads are reached. This
would imply that additional capacity would have to
be added before those load levels are reached in or-
der to maintain acceptable performance.

Applying this approach to the customer care system,
we selected the 85 percent cache hit probability
shown in Figure 1, because that was consistent with
the measured cache hit probability observed in the
field. Our goal was to meet the PNL objective of no
more than 0.02 for loads that we determined to be
as high as we might encounter in the foreseeable fu-

ture. In this case we selected a load of 0.5 units. We
see that the system will meet the requirement for
N � 5, N � 3, and N � 2, for loads in this range.
If the load was increased to 0.6 units, then there
would likely be problems for N � 1 and N � 2, but
not for N � 3 or N � 5. In contrast, if the workload
were to be increased to 0.8 units, then we see from
Figure 1 that there would likely be problems for N �
1, N � 2, and N � 3.

For comparison, we again consider loads of 0.5, 0.6,
and 0.8 units with a maximum PNL of 0.02, this time
with a cache hit probability of 95 percent. The rel-
evant information is shown in Figure 2. We see that
with the higher cache hit probability and a workload
that does not exceed 0.5 units, any of the considered
values of N would be unlikely to encounter prob-
lems. When the workload was increased to 0.6 units,
the system would likely meet the requirements for
all values of N except N � 1. For a load of 0.8 units,
there would likely be problems when N � 1 and N �
2.

Conclusions

In this paper we presented a new metric, PNL, used
to predict whether a software system is likely to pro-
vide satisfactory performance under heavier work-
loads. A case study involving the performance test-
ing for a large industrial production system is
included, and the computation of the PNL metric for
this system is described in detail.

Our performance testing method relied on produc-
tion workload characterization. First, we collected
measurements from the production environment in
order to characterize the system workload and to cap-
ture the system performance. We classified page re-
quests by type and estimated the cache hit ratio for
each request type. Next, we put in place a detailed
performance testing plan to obtain response time
curves and CPU costs per transaction for each request
type, under various load levels. A primary conclu-
sion of our analysis was that the main performance
discriminators for this system were the cache hit
probability and the serialized access to the database
server. We determined that an observed perfor-
mance bottleneck could be relieved by increasing the
number of Web servers and by reducing the time re-
quired to obtain pages from the database. This led
to a series of recommendations for the project that
were likely to alleviate the bottleneck by allowing
parallel access to databases.

Figure 1 PNL for cache hit probability 85 percent

OFFERED LOAD

0.10

Table 2 M/D/1 system, probability of a transaction waiting
longer than N service times

Offered Traffic N � 5 N � 3 N � 2 N � 1

0.25 0.000016 0.001704 0.01685 0.147924
0.50 0.002476 0.030507 0.106083 0.351283
0.75 0.070931 0.213147 0.368701 0.627677
0.85 0.217355 0.409456 0.561451 0.763608
0.90 0.368163 0.557102 0.684924 0.837845

WEYUKER AND AVRITZER IBM SYSTEMS JOURNAL, VOL 41, NO 1, 200252

We then applied the PNL metric using data collected
from the customer care service provider. The results
were used to communicate to management the like-
lihood of problems caused by future workload
growth.

As expected, the cost of deriving the operational dis-
tribution was modest, whereas the payoff was very
high. In particular, it would have been likely that the
system would not have been able to handle the re-
quired workload once its predicted customer base
was achieved. Generally, we recommend that
projects collect daily reports on traffic and perfor-
mance measurements, and benchmark performance
during lab testing for new releases and proposed sys-
tem changes. This will be useful for developing an
operational distribution for performance testing.

We expect that our PNL metric will be applicable to
a wide range of systems including backend systems
that support a large number of TCP/IP (Transition
Control Protocol/Internet Protocol) connections,
HTTP and HTTPS (HTTP over Secure Sockets Layer)
servers, and database engines. Of course, more com-
plicated models may be required, depending on the
resources being modeled and the protocols used for
access. A key step to enable applicability is the bot-
tleneck identification process, which is performed to
identify the key resources that constrain scalability.
This allows us to proceed to the modeling step re-
quired to compute the PNL metric. It is our expe-
rience that mature software development organiza-
tions that develop large industrial software invest
time and resources to understand how their software
will be used and to locate the performance bottle-
necks. Therefore, we believe that our PNL metric will
be widely applicable to large software systems that
have stringent scalability requirements.

Cited references

1. J. D. Musa, “Operational Profiles in Software Reliability En-
gineering,” IEEE Software 10, No. 2, 14–32 (1993).

2. A. Avritzer and E. J. Weyuker, “The Automatic Generation
of Load Test Suites and the Assessment of the Resulting Soft-
ware,” IEEE Transactions on Software Engineering 21, No. 9,
705–716 (1995).

3. S. S. Gokhale and K. S. Trivedi, “Structure-Based Software
Reliability Prediction,” Proceedings of Advanced Computing
(ADCOMP)’97, Chennai, India (1997) pp. 1–7.

4. J. A. Whittaker and M. G. Thomason, “A Markov Chain Model
for Statistical Software Testing,” IEEE Transactions on Soft-
ware Engineering SE-20, No. 10, 812–824 (1994).

5. S. N. Weiss and E. Weyuker, “An Extended Domain-Based
Model of Software Reliability,” IEEE Transactions on Soft-
ware Engineering SE-14, No. 10, 1512–1524 (1988).

6. J. F. Meyer, “Performability Evaluation: Where It Is and What
Lies Ahead,” Proceedings of 1995 IEEE International Computer
Performance and Dependability Symposium, Erlangen, Germany
IEEE, New York (1995) pp. 334–343.

7. Performability Modeling: Techniques and Tools, B. R. Haver-
kort, R. Marie, G. Rubino, and K. S. Trivedi, Editors, John
Wiley & Sons, Inc., New York (2001).

8. A. Cockcroft and R. Pettit, Sun Performance and Tuning, Sec-
ond Edition, Sun Microsystems (1998).

9. P. Kuhn, Tables on Delay Systems, Institute of Systems and Data
Technics, University of Stuttgart, Germany (1976).

Accepted for publication October 16, 2001.

Elaine Weyuker AT&T Research Laboratories, 180 Park
Avenue, Florham Park, New Jersey 07932 (electronic mail:
weyuker@research.att.com). Dr. Weyuker received a Ph.D. in com-
puter science from Rutgers University, and an M.S.E. in elec-
trical engineering from the University of Pennsylvania. She is cur-
rently a technology leader and an AT&T Fellow at AT&T in
Florham Park, NJ. Before joining AT&T in 1993, she was a pro-
fessor of computer science at the Courant Institute of Mathe-
matical Sciences of New York University, where she had been
on the faculty since 1977. Prior to that she was a faculty member
at the City University of New York, a systems engineer at IBM,
and a programmer at Texaco, Inc. Dr. Weyuker is a Fellow of
the ACM and a senior member of the IEEE. She was awarded
the YWCA Woman Achiever award in 2001. She is a member
of the Board of Directors of the Computing Research Associ-
ation, and on the Technical Advisory Board of Cigital, Inc.

Figure 2 PNL for cache hit probability 95 percent

P
N

L

CACHE PROBABILITY = 0.95

OFFERED LOAD
0.3 0.5 0.7 0.9

0.0

0.01

0.02

0.03

0.04

0.05

N=3N=2N=1 N=5

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 WEYUKER AND AVRITZER 53

She is a member of the editorial boards of ACM Transac-
tions on Software Engineering and Methodology and the Empirical
Software Engineering Journal, and she is an advisory editor
of the Journal of Systems and Software. She has been the
secretary/treasurer of ACM SIGSOFT and an ACM national lec-
turer. Her research interests are in software engineering—par-
ticularly software testing and reliability—and software metrics.
She has published more than 100 refereed papers in journals and
conference proceedings in those areas. She is also interested in
the theory of computation and is the author (with Martin Davis
and Ron Sigal) of Computability, Complexity, and Languages, pub-
lished by Academic Press.

Alberto Avritzer AT&T Laboratories NDPA, 200 Laurel Avenue,
Middletown, New Jersey 07748 (electronic mail: avritzer@att.com).
Dr. Avritzer received a Ph.D. in computer science from the Uni-
versity of California, Los Angeles, an M.Sc. in computer science
from the Federal University of Minas Gerais, Brazil, and a B.Sc.
in computer engineering from the Technion, Israel Institute of
Technology. He is currently a technology consultant at AT&T
Laboratories in Middletown, NJ. Dr. Avritzer spent the summer
of 1987 at the IBM Research Center in Yorktown Heights, NY.
His research interests are in software engineering, particularly in
software testing and reliability, real-time systems, and perfor-
mance modeling, and he has published several papers in those
areas. Dr. Avritzer is a member of ACM SIGSOFT, and IEEE.

WEYUKER AND AVRITZER IBM SYSTEMS JOURNAL, VOL 41, NO 1, 200254

