
The Software Testing
Automation Framework

by C. Rankin

Software testing is an integral, costly, and time-
consuming activity in the software development
life cycle. As is true for software development in
general, reuse of common artifacts can provide
a significant gain in productivity. In addition,
because testing involves running the system
being tested under a variety of configurations
and circumstances, automation of execution-
related activities offers another potential source
of savings in the testing process. This paper
explores the opportunities for reuse and
automation in one test organization, describes
the shortcomings of potential solutions that are
available “off the shelf,” and introduces a new
solution for addressing the questions of reuse
and automation: the Software Testing
Automation Framework (STAF), a multiplatform,
multilanguage approach to reuse. It is based on
the concept of reusable services that can be
used to automate major activities in the testing
process. The design of STAF is described. Also
discussed is how it was employed to automate a
resource-intensive test suite used by an actual
testing organization within IBM.

In late 1997, the system verification test (SVT) and
function verification test (FVT) organizations with

which I worked recognized a need to reduce per-proj-
ect resources in order to accommodate new projects
in the future. To this end, a task force was created
to examine ways to reduce the expense of testing.
This task force focused on improvement in two pri-
mary areas, reuse and automation. For us, reuse re-
fers to the ability to share libraries of common func-
tions among multiple tests. For purposes of this
paper, a test is a program executed to validate the
behavior of another program. Automation refers to
the removal of human interaction with a process and

placing it under machine or program control. In our
case, the process in question was software testing.
Through reuse and automation, we planned to re-
duce or remove the resources (i.e., hardware, peo-
ple, or time) necessary to perform our testing.

To help illustrate the problems we were seeing and
the solution we produced, I use a running example
of one particular product for which I was the SVT
lead. This product, the IBM OS/2 WARP* Server for
e-Business, encompassed not only the base operating
system (OS/2*—Operating System/2*) but also included
the file and print server for a local area network
(LAN) (known as LAN Server), Web server, Java**
virtual machine (JVM), and much more. Testing such
a product is a daunting, time-consuming task. Any
improvements we could make to reduce the com-
plexity of the task would make it more feasible.

For our purposes, a test suite is a collection of tests
that are all designed to validate the same area of a
product. I discuss one test suite in particular, known
affectionately as “Ogre.” This test suite was designed
to perform load and stress testing of LAN Server and
the base OS/2. Ogre is a notoriously resource-inten-
sive test suite, and we were looking at automation
to help reduce the hardware, number of individuals,
and time necessary to execute it.

�Copyright 2002 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

RANKIN 0018-8670/02/$5.00 © 2002 IBM IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002126

With a focus on reducing the complexity of creating
and automating our testing, we looked at existing so-
lutions within IBM and the test industry. None of
these solutions met our needs, so we developed a
new one, the Software Testing Automation Frame-
work (STAF). This paper explores the design of STAF,
explains how STAF addresses reuse, and details how
STAF was used to automate and demonstrably im-
prove the Ogre test suite. The solution provided by
STAF is quite flexible. The techniques presented here
could be used by most test groups to enhance the
efficiency of their testing process.

The problem

Figure 1 depicts the software testing cycle. Planning
consists of analyzing the features of the product to
be tested and detailing the scope of the test effort.
Design includes documenting and detailing the tests
that will be necessary to validate the product. De-
velopment involves creating or modifying the actual
tests that will be used to validate the product. Ex-
ecution is concerned with actually exercising the tests
against the product. Analysis or review consists of
evaluating the results and effectiveness of the test
effort; the evaluation is then used during the plan-
ning stage of the next testing cycle.

Reuse is focused on improving the development, and
to a lesser extent the design, portions of the testing
cycle. Automation is focused on improving the ex-
ecution portion of the testing cycle. Although every
product testing cycle is different, generally, most per-
son-hours are spent in execution, followed by devel-
opment, then design, planning, and analysis or re-
view. By improving our reuse and automation, we
could positively influence the areas where the most
effort is expended in the testing cycle.

The following subsections look individually at the
areas of reuse and automation and delineate the
problems we faced in each of these areas.

Reuse. This subsection provides some examples from
the OS/2 WARP Server for e-Business SVT team that
motivated the desire for reuse. Within the team,
there were numerous smaller groups that were fo-
cused on developing and executing tests for differ-
ent areas of the entire project. We wanted to ensure
that each of these groups could leverage common
sets of testing routines. To better understand this de-
sire for reuse, consider some of the potential prob-
lems surrounding the seemingly simple task of log-
ging textual messages to a file from within a test.

Several issues arise when this activity is left to be re-
invented by each tester or group of testers, instead
of using a common reusable routine. The problems
are:

● Log files are stored in different places: Some groups
create log routines that store the log files in the
directory in which the test is run. Others create
log routines that store them in a central directory.
This discrepancy makes it difficult to determine
where all the log files for tests run on a given sys-
tem are stored. Ultimately, you have to scour the
whole system looking for log files.

● Log file formats are different: Different groups or-
der the data fields in a log record differently. This
difference makes it difficult to write scripts that
parse the log files looking for information.

● Message types are different: One group might use
“FATAL” messages where another would use
“ERROR,” or one group might use “TRACE” where
another would use “DEBUG.” This variation makes
it difficult to parse the log files. It also increases
the difficulty in understanding the semantic mean-
ing of a given log record.

None of these problems is insurmountable, and many
could be handled sufficiently well through a “stan-
dards” document indicating where log files should
be stored, the format of the log records, and the
meaning, and intended use, of message types. None-
theless, this list provides justification for our desire
for common and consistent reusable routines. Also,
additional problems exist that cannot be addressed
by adhering to standards.

Figure 1 Software testing cycle

PLANNING

EXECUTION

DESIGN

ANALYSIS
OR
REVIEW

DEVELOP-
MENT

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 RANKIN 127

Multiple programming languages. Our testers write a
wide variety of tests in a variety of programming lan-
guages. When testing the C language APIs (applica-
tion programming interfaces) of the operating sys-
tem, they write tests in C. When testing the command
line utilities of the operating system or applications
with command line interfaces, they write tests in
scripting languages such as REXX (which is the na-
tive scripting language of OS/2). When testing the Java
virtual machine of the operating system, they write
tests in the Java language. In order for our testers
to use common reusable routines to perform such
tasks as logging, described above, the routines
needed to be accessible from all the languages they
use.

Multiple codepages. OS/2 WARP Server for e-Business
was translated into 14 different languages, among
them English, Japanese, and German. It is not un-
common for problems to exist in one translated ver-
sion but not in another. Therefore, we were respon-
sible for testing all of these versions. Testing multiple
versions introduces additional complexities in our
tests, and in particular to any set of reusable com-
ponents we wanted our testers to use. One specific
aspect of this situation is the use of different
codepages by different translated versions. A
codepage is the encoding of a set of characters (such
as those used in English or Japanese) into a binary
form that the computer can interpret. Using differ-
ent codepages means that one codepage can encode
the letter “A” in one binary form and another can
encode it in a different binary form. Hence, care must
be taken when manipulating the input and output
of programs that use different codepages—a situa-
tion our testers would frequently encounter when
testing across multiple translated versions of our
product. If our testers were going to use a common
set of routines for reading and writing log files, those
routines had to be able to handle messages not only
in an English codepage, but also in the codepages
used by the other 13 languages into which our prod-
uct was translated.

Multiple operating systems. While we were directly
testing OS/2 WARP Server for e-Business, it was es-
sential for us to run tests on other operating systems,
such as Windows** and AIX* (Advanced Interactive
Executive*) to perform interoperability and compat-
ibility testing with our product. If we wanted our
testers to use common reusable routines to perform
such tasks as logging, described above, the routines
needed to be accessible from all the operating sys-
tems we used.

Existing automation components. As we examined the
types of components that were continually being re-
created by our teams, as well as those that would need
to exist to support the types of automation we wanted
to put in place (as described in the following sub-
section), we realized that we would need a substan-
tial base of automation components. Some of these
components included process execution, file trans-
fer, synchronization, logging, remote monitoring,
resource management, event management, data
management, and queuing. Additionally, these com-
ponents had to be available both locally and in a re-
mote fashion across the network. If the solution did
not provide these components, we would have to cre-
ate them. Therefore, we wanted a solution that pro-
vided a significant base of automation components.

Automation. This subsection provides some exam-
ples, using the Ogre test suite, to motivate the need
for automation. As was mentioned, this test suite was
designed to test the LAN Server and base OS/2 prod-
ucts under conditions of considerable load and stress,
where load means a sustained level of work and stress
means pushing the product beyond defined limits.
The test suite consists of a set of individual tests fo-
cused on a specific aspect of the product (such as
transferring files back and forth between the client
and server). These tests are executed in a looping
pseudorandom fashion on a set of client systems. The
set of client systems is typically large, ranging up-
wards of 128 systems. The set of servers that are be-
ing tested is usually very small, typically no more than
three. The test suite executes on the client systems
for an extended period of time, typically 24 to 72
hours. The combination of the number and config-
uration of clients and servers and the amount of run
time represents a scenario. If all the clients and serv-
ers are still operational after the prescribed amount
of time, the scenario is considered to be successful.
Multiple scenarios are executed during a given SVT
cycle.

Figure 2 shows the basic procedure flow used to ex-
ecute a given Ogre scenario. Note the areas in red.
These areas indicate which steps in the procedure
are currently done manually. The following subsec-
tions describe these areas in more detail.

Test suite execution. Our existing mechanism for start-
ing or stopping a scenario was to have one or more
individuals walk up to each client and start or stop
the test suite. Given the situation of 128 clients
spread throughout a large laboratory, this exercise
is expensive, both in time and human resources. This

RANKIN IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002128

method also introduces the potential of skipping one
or more clients, which can have a significant impact
on the scenario (such as not uncovering a defect due
to insufficient load or stress). Therefore, we wanted
a solution that would allow us to start and stop the
scenario from a central “management console.”

Test suite distribution. As new tests were created or
existing tests were modified, they needed to be dis-
tributed to all the client systems. Our existing mech-
anism consisted of one or more individuals walking
around to each client copying the tests from diskettes.
This method was complicated by the fact that the
tests did not always exist in the exact same location
on each client. Like the previous problem of test suite
execution, this mechanism was very wasteful of time
and human resources. It also introduced another po-
tential point of failure whereby one or more clients
do not receive updated tests, resulting in false er-
rors. Therefore, we wanted a solution that provided
a mechanism for distributing our tests to our clients
correctly and consistently.

Test suite monitoring. While a scenario was running,
we were responsible for continually monitoring it to
ensure that no failures had occurred. Our existing
mechanism consisted of one or more individuals
walking around to each client system to look for er-
rors on the system screen. Such monitoring was par-
tially alleviated by the fact that the tests would emit
audible beeps when an error occurred. The beeps
generally made it possible to simply walk into the
laboratory and “listen” for errors. Unfortunately, we
still had to monitor the scenario after standard work
hours and on the weekend, which meant having in-
dividuals periodically drive into work and walk
around the laboratory looking and listening for er-
rors. Again, this method was very wasteful of time
and human resources. It was also a negative morale
factor, since it was considered “grunt” work. There-
fore, we wanted a solution that provided a remote
monitoring mechanism so that the status of the sce-
nario could be evaluated from an individual’s office
or by telneting in from home.

Test suite execution dynamics. The Ogre test suite was
already very configurable. An extensive list of prop-
erties was defined in a configuration file that was read
during test suite initialization (and cached in envi-
ronment variables for faster access). These proper-
ties manipulated many aspects of the scenario, such
as which resources were available on which servers,
which servers were currently off line, and the ratios
defining the frequency with which the servers were

accessed relative to one another. This configurabil-
ity allowed us, for example, to make a one-line
change that would prevent the clients from access-
ing a given server (in case a problem was currently
being investigated on it) or increase or decrease the
stress one server received in relation to another.
However, the only viable way to modify these pa-
rameters was to stop and start the entire scenario.
As an example, assume that 36 hours into a 72-hour
scenario, we found a problem with one of the serv-
ers. We could stop the scenario, change the config-
uration file to make the server unavailable, and then
restart the scenario, which allowed us to exercise the
remaining servers while the problem was being an-
alyzed. Then, 12 hours later, when a fix for the prob-
lem had been created, we needed to bring the newly
fixed server back into the mix. In order to do this,

Figure 2 Ogre scenario flow before automation

PROCEDURE
ENTRY OR EXIT

DECISION
POINT
DECISION
POINT

MANUAL
TASK
MANUAL
TASK

MONITOR
SCENARIO

STOP
SCENARIO

UPDATE
CONFIGURATION

NEW
BUILD?

CONFIGURATION
CHANGE?

INSTALL
NEW BUILD

SERVER
FAILURE?

YES NO

YES

YES

YES

NO

NO

NONO

NO

YES

START

TEST CASES
CHANGED

START
SCENARIO

DISTRIBUTE
TEST CASES

END

SCENARIO
COMPLETE?

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 RANKIN 129

we had to stop and start the entire scenario, which
effectively negated all of the run time we had accu-
mulated on the other servers at that point. Similar
situations arose when we needed to change server
stress ratios or other configuration parameters.
Therefore, we wanted a solution that would allow
us to change configuration information dynamically
during the execution of a scenario.

Another long-standing issue with Ogre was that we
were only able to execute one instance of the test
suite at a time on any given client. It was felt that
the ability to execute multiple instances of the test
suite on the same client at the same time would al-
low us to produce equivalent stress with fewer cli-
ents. Figure 3 shows the basic procedure flow of a
single instance of the Ogre test suite executing on
a given system. Note the areas in red. These areas
indicate places where running multiple instances of
Ogre on the same system creates conflicts. The fol-
lowing two subsections describe these areas in more
detail.

Test suite resource management. In order to make a
connection to a server, the client must specify a drive
letter (in the case of a file resource) or a printer port

(in the case of a printer resource) through which the
resource will be accessed. When running multiple
instances of the test suite, race conditions arise sur-
rounding which drive letter or printer port to spec-
ify at any given time. Therefore, we wanted a solu-
tion that allowed us to manage the drive letter and
printer port assignments among multiple instances
of the test suite.

Test suite synchronization. Some of our tests have
strict, nonchangeable dependencies on being the only
process on the system running that particular test.
When running multiple instances of the test suite,
we needed a way to avoid having multiple instances
executing the same test simultaneously. Therefore,
we wanted a solution that allowed us to synchronize
access to individual tests.

Existing solutions

Because we had two separate problems (reuse and
automation), we realized we might need to find two
separate solutions. However, we were hoping to find
a single solution that would address both problems.
Our preferences, in order, were:

1. A single solution designed to solve both problems
2. Two separate solutions designed to work together
3. A solution to reuse, which provided components

designed to support automation, from which we
could build an automation solution

4. Two separate, disjoint solutions

In the following subsections, I describe existing so-
lutions that we explored, how they addressed the
problems of reuse and automation, and how they re-
lated to our solution preferences.

Scripting languages. Scripting languages such as
Perl, Python, Tcl, and Java (although Java would not
technically be considered a scripting language, since
it does require programs to be compiled) are very
popular in the programming industry as a whole, as
well as within test organizations, since they facilitate
a rapid development cycle.1 As programming lan-
guages, scripting languages are not intended to di-
rectly solve either reuse or automation. Addition-
ally, they are not directly targeted at the test
environment, although their generality does not pre-
clude their use in a test environment. Despite these
limitations, we felt that given the wide popularity of
scripting languages and the almost fanatical devo-
tion of their proponents, we should examine their
potential for solving our problems.

Figure 3 Single Ogre instance before multi-instance
support

PROCEDURE
ENTRY OR EXIT

NO MULTI-INSTANCE
CONFLICT

MULTI-INSTANCE
CONFLICT

ESTABLISH
CONNECTION(S)
TO SERVER(S)

SELECT RANDOM
SERVER(S)

RELEASE
CONNECTION(S)
TO SERVER(S)

START

SELECT RANDOM
SUBTEST

EXECUTE
SUBTEST

RANKIN IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002130

Although scripting languages are not a direct solu-
tion to reuse or automation, scripting languages do
have some general applicability to the problem of
reuse. To begin with, they are available on a wide
variety of operating systems. They also have large
well-established sets of extensions. Although not
complete from a test perspective, these extensions
would provide a solid base from which to build. Ad-
ditionally, some languages (notably Tcl and Java)
provide support for dealing with multiple codepages.

The benefits of scripting languages would clearly
place them in category 3 of our preferences. Unfor-
tunately, these benefits are only available if one is
willing to standardize on one language exclusively.
As was mentioned earlier, our testers create tests in
many different programming languages, and it would
have been tremendously difficult to force them to
switch to one common programming language. Even
if we could have convinced all of the testers on our
team, we could never have convinced all the testers
in our entire organization (much less those in other
divisions, or at other sites), with whom we hoped to
share our solution. Therefore, we were unable to rely
on scripting languages for our solution.

Test harnesses. A test harness is an application that
is used to execute one or more tests on one or more
systems. In effect, test harnesses are designed to au-
tomate the execution of individually automated tests.

A variety of different test harnesses are available.
Each is geared toward a particular type of testing.
For example, many typical UNIX** tests are written
in shell script or the C language. These tests are gen-
erally stand-alone executables that return zero on
success and nonzero on error. Harnesses such as the
Open Group’s Test Environment Toolkit (TET, also
known as TETware) are designed to execute these
types of tests on one or more systems.2 In contrast,
a harness such as Sun’s Java Test leverages the un-
derlying Java programming language to create a har-
ness that is geared specifically to tests written in the
Java language. It would not be uncommon for a test
team to use both of these harnesses. Additionally,
it is not uncommon for test teams to create custom
harnesses geared toward specialized areas they test,
such as I/O subsystems and protocol stacks.

It is clear that test harnesses have direct applicabil-
ity to the problem of automation. However, as a gen-
eral rule, test harnesses only solve the execution part
of the automation problem. This solution still leaves
areas such as test suite distribution, test suite mon-

itoring, and test suite execution dynamics unsolved.
Additionally, test harnesses have no direct or gen-
eral applicability to the problem of reuse. Thus, test
harnesses are, at best, only part of the solution to
category 4 of our preferences. That having been said,
the proximity of test harnesses to the test environ-
ment made it likely that one or more test harnesses
would play a role in our ultimate solution. However,
we still needed to find a solution for reuse and de-
termine which, if any, of the existing test harnesses
we would use and extend to fill in the rest of the au-
tomation gaps.

CORBA. At a very basic level, CORBA** (Common
Object Request Broker Architecture) is a set of in-
dustry-wide specifications that define mechanisms
that allow applications running on different operat-
ing systems, and written in different programming
languages, to communicate.3 CORBA also defines a
set of higher-level services, sitting on top of this com-
munication layer, that provide functionality deemed
beneficial by the programming community at large
(such as naming, event, and transaction services). It
is important to understand that CORBA itself is not
a product; it is a set of specifications. For any given
set of operating systems, languages, and services, it
is necessary to either find a vendor who has imple-
mented CORBA for that environment, or, much less
desirably, implement it oneself.

CORBA is not intended to directly solve the problems
of reuse and automation. However, CORBA does have
some general applicability to the problem of reuse.
First, CORBA is supported on a wide variety of op-
erating systems. Second, there is CORBA support for
a wide variety of programming languages. Thus,
CORBA solves two of our key reuse problems. In con-
trast, CORBA has no direct support for multiple
codepages. Additionally, the set of available CORBA
services is not geared toward a test environment,
which is understandable given the general applica-
bility of CORBA to the computer programming in-
dustry as a whole.

Given the above, CORBA would clearly fit in cate-
gory 3 of our preferences, although significant work
would be necessary to provide the missing support
in terms of multiple codepages and existing automa-
tion components. Additionally, as we mentioned
above, there is no one company that produces a prod-
uct called “CORBA.” What this means is that for a
complete solution one must frequently obtain prod-
ucts from multiple vendors and attempt to config-
ure them to work together. This attempt has been

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 RANKIN 131

notoriously difficult in the past,4 and, although the
situation is improving, we would rather have avoided
this layer of complication. All told, we felt that a
CORBA solution was not worth the expense neces-
sary to implement and maintain it.

The design of STAF

Having exhausted other avenues, we decided to cre-
ate our own solution. We had a two-phased approach
to the development of STAF. The first phase ad-
dressed the issue of reuse. This phase by itself would
give us a solution that fell into category 3 of our so-
lution preferences. The second phase tackled the
problem of automation. In this phase we would build
on top of the reuse solution and extend it to solve
our automation problem. This two-step approach
provided a solution that fell into category 1 of our
solution preferences. The result of that work was the
Software Testing Automation Framework, or STAF.

In the subsections that follow, I present the under-
lying design ideas surrounding STAF and how they
helped provide a reuse solution. A subsequent sec-
tion will then address how we built and extended this
solution to solve the problem of automation.

Services. STAF was designed around the idea of re-
usable components. In STAF, we call these compo-
nents services. Each service in STAF exposes a spe-
cialized set of functionality, such as logging, to users
of STAF and other services. STAF, itself, is fundamen-
tally a daemon process that provides a thin dispatch-
ing mechanism that routes incoming requests (from

local and remote processes) to these services. STAF
has two “flavors” of services, internal and external.
Internal services are coded directly into the daemon
process and provide the core services, such as data
management and synchronization, upon which other
services build. External services are accessed via
shared libraries that are dynamically loaded by STAF.
These external libraries represent either the service
itself, in the case of languages like C or C��, which
ultimately generate native executable object code,
or a proxy interface to other languages, such as the
Java or REXX languages, which do not generate na-
tive executable object code. The differentiation of
service “flavors” and proxy handling can be seen in
Figure 4.

This ability to provide services externally from the
STAF daemon process allowed us to keep the core
of STAF very small, while allowing users to pick and
choose which additional pieces they wanted. It min-
imizes the infrastructure necessary to run STAF. Ad-
ditionally, the small STAF core makes it easy to pro-
vide support on multiple platforms, and also to port
STAF to new platforms.

Request-result format. Fundamentally, every STAF
request consists of three parameters, all of which are
strings. The first parameter is the name of the sys-
tem to which the request should be sent. This pa-
rameter is analyzed by the local STAF daemon to de-
termine whether the request should be handled
locally or should be directed to another STAF sys-
tem. Once the request has made it to the system that
will handle it, the second parameter is analyzed to

Figure 4 STAF service types

STAF DAEMON

INTERNAL SERVICE

INTERNAL SERVICE

EXTERNAL JAVA SERVICE

EXTERNAL REXX SERVICE

SERVICE
DISPATCH
LAYER

REXX SERVICE PROXY

JAVA SERVICE PROXY

EXTERNAL C/C++ SERVICE

INCOMING REQUEST

RANKIN IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002132

determine which service is being invoked. Finally,
the third parameter, which contains data for the re-
quest itself, is passed into the request handler of the
service to be processed.

After processing the request, the service returns two
pieces of data. The first is a numeric return code,
which denotes the general result of the request. The
second is a string that contains request-specific in-
formation. If the request was successful, this infor-
mation contains the data, if any, which were asked
for in the request. If the request was unsuccessful,
this information typically contains additional diag-
nostic information.

By dealing primarily with strings, we have been able
to simplify many facets of STAF. First, there is only
one primary function used to interface with STAF
from any given programming language. This func-
tion is known as STAFSubmit(), and its parameters
are the three strings described above. Because of the
simplicity of this interface, requests look essentially
identical across all supported programming lan-
guages, which makes using STAF from multiple pro-
gramming languages much easier. Adding support
for a new programming language is also trivial, be-
cause only a very small API set must be exposed in
the target language. Had we chosen to use custom
APIs for each service, the work to support a new pro-
gramming language would be significant, since we
would be faced with providing interfaces to a much,
much larger set of APIs.

Strings also make it easier to create and interface
with external services. The primary interface for com-
municating with an external service consists of a
method to pass the requisite strings in and out of
the service. Additionally, by restricting ourselves to
strings we are able to provide to services a common
set of routines to parse the incoming request strings.
Common routines allow service providers to simply
define the format of their request strings and pass
them to this common parser for validation and data
retrieval, which helps ease the creation of reusable
components. This leads to benefits in the user space
as well, since all service request strings follow a com-
mon lexical format, which provides a level of com-
monality to all services. It also makes it easier to use
services when switching from one programming lan-
guage or operating system to another, because the
request strings are identical regardless of the envi-
ronment. Commonality has the added benefit of hid-
ing the programming language choice of the caller
and the service provider from one another.

Figure 5 details the concepts just described. A STAF
request is initiated by the REXX program running on
machine gamma (running Windows 2000). It is sub-
mitting the request “generate type Build subtype
WebSphere V4” to the event service on machine
delta. In step 1 the REXX interpreter passes the re-
quest to the REXX API layer of STAF. In step 2, the
REXX API layer passes the request to the C API layer.
In step 3 the C API layer makes the interprocess com-
munication (IPC) request to the STAF daemon pro-
cess. At this point the STAF daemon determines that
the request is destined for another system, which ini-
tiates step 4, a network IPC request to the STAF dae-
mon on machine delta (running AIX Version 4.3.3).
The STAF daemon on machine delta determines that
the request is bound for the event service. This leads
to step 5 where the request is passed to the Java ser-
vice proxy layer, the layer responsible for commu-
nicating directly with the JVM, which is step 6. In step
7, the JVM invokes the corresponding method on the
event service object. Upon receiving the request, step
8 shows the event service passing the request string
to the common request parser of STAF for valida-
tion. At this point the event service would perform
the indicated request and steps 1 through 7 would
be reversed as the result was passed back to the REXX
program on machine gamma.

There are a number of things to note about this re-
quest flow. First, it was quite easy to specify a net-
work-oriented request from the point of view of the
REXX program. Second, the machines in question
are running different operating systems on different
hardware architectures, and neither the REXX pro-
gram nor the event service need be aware of this dif-
ference. Third, neither the REXX program nor the
Java-based event service need be concerned with the
language the other was using.

The decision to have STAF deal only with strings was
the most crucial and beneficial decision we made
while designing STAF. It has allowed us to keep STAF
simple and flexible at the same time.

Unicode. Because we focus predominantly on strings
and were concerned with codepage issues, STAF was
designed to use Unicode** internally. When a call
to STAFSubmit() is made, the input strings are con-
verted to Unicode. All further processing is carried
out in Unicode. Data are only converted out of Uni-
code when a result is passed back from STAFSub-
mit(), or if STAF is forced to interact with the op-
erating system or some other entity that does not

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 RANKIN 133

accept Unicode strings. By processing data in Uni-
code, we keep the integrity of the data intact. For
example, if a system using a Japanese codepage sends
a request to log some data containing Japanese
codepage characters to a system using an English
codepage, the data are initially converted to Unicode
(which maintains the integrity of the data) when the
STAFSubmit() call is issued. The data are main-
tained in Unicode until another STAFSubmit() call
is issued to retrieve the data. If the same system run-
ning the Japanese codepage requests the data, the
data will be converted from Unicode back to the Jap-
anese codepage, which preserves the integrity of the
data, since the data were originally in the same
codepage. The data retrieved will be the same data
initially logged even though, for some indeterminate
length of time, the data were being stored or main-
tained on a system using an English codepage. Thus,
by using Unicode throughout STAF, we solved our
problem of handling multiple codepages.

Available services. In order to solve our automation
problems, we needed a set of components on which
to build. As we built STAF, we kept this foremost in
our minds and ensured that the services we devel-
oped included these essential automation compo-
nents. Here we describe some of the services that

STAF provides. We will see these services again later
when we examine how they were used to create the
solution to our automation problems.

Three core services in STAF are the handle, variable,
and queue services. These services provide funda-
mental capabilities that are common across all ser-
vices and provide a foundation from which to build.
Unsurprisingly, these services expose the capabili-
ties of handles, variables, and queuing in STAF.

Handles are used to identify and encapsulate appli-
cation data in the STAF environment. When an ap-
plication wishes to use STAF, it obtains a handle by
calling a registration API. The handle returned is tied
specifically to the registering application. In general,
this is a 1-to-N mapping between applications and
handles. An application may have more than one
handle, but any given handle belongs to a single ap-
plication. However, STAF does support special “stat-
ic” handles that can be shared among applications.
Each STAF handle has an associated message queue.
This queue allows an application to receive data from
other applications and services. It also forms the ba-
sis for local and network-oriented interprocess com-
munication in STAF. Many services deliver data to
an application via its queue. These queues allow ap-

Figure 5 STAF service request flow

 STAF AND STAF-
 HELPER LAYERS

 USER AND SERVICE-
 IMPLEMENTATION LAYERS

REXX API LAYERREXX API LAYERREXX API LAYER

STAF DAEMONSTAF DAEMON

C API LAYERC API LAYER

2

1

3

STAF DAEMONSTAF DAEMONSTAF DAEMON

6

5

8
“generate type Build subtype WebSphere_V4”

,,,
“generate type Build subtype WebSphere_V4”

4

JAVA SERVICE PROXY

JAVA VIRTUAL MACHINE

7

REQUEST PARSER

EVENT SERVICE IMPLEMENTATION

RANKIN IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002134

plications to work in an event-driven manner sim-
ilar to the approach used by many windowing sys-
tems.

STAF provides data management facilities through
STAF variables. These STAF variables are used by
STAF applications in much the same way that var-
iables are used in a programming language. When
a STAF request is submitted, any STAF variables in
the request are replaced with their values. One of
the powerful capabilities of STAF variables is that they
can be changed outside of the scope of the running
application. This capability provides the ability to
dynamically alter the behavior of an application. For
example, an application designed to apply a specific
percentage of load on a system might allow the per-
centage to be specified through an environment vari-
able or as a command line argument. In this case,
once the application is running, the only way to
change the load percentage is to stop the applica-
tion and restart it with the altered environment vari-
able or command line argument. Using STAF vari-
ables allows the value to be changed without stopping
the application. The only change to the application
would be to periodically reevaluate the value of the
STAF variable. These STAF variables are stored in
variable pools. Each STAF handle has a unique vari-
able pool that is specific to that application. There
is also a global variable pool that is common across
all handles on a given STAF system. Commonality al-
lows default values to be specified in the global vari-
able pool, which can then be overridden on a handle-
by-handle basis.

STAF provides several other services in addition to
handle, variable, and queue. STAF provides synchro-
nization facilities through the semaphore and re-
source pool services. The semaphore service provides
named mutual exclusion (mutex) and event sema-
phores. Compared with native semaphores com-
monly provided by an operating system, STAF sema-
phores have two advantages. One, they are available
remotely across the network. Two, they are more vis-
ible, meaning it is much easier, for example, to de-
termine who owns a mutex semaphore and who is
waiting on an event semaphore. The resource pool
service provides a means to manage named pools of
resources, such as machines, user identifiers, and li-
censes. In particular, it provides features for man-
aging the content of the pools as well as synchro-
nizing access to the elements in the pools.

STAF provides process execution facilities through
the process service. This service allows processes on

STAF systems to be started, stopped, and queried. It
provides detailed control over the execution of pro-
cesses including specification of environment vari-
ables, the working directory, input/output redirec-
tion, and effective user identification. The process
service can also, at user request, deliver notifications
when processes end. These notifications are deliv-
ered via the queuing facilities described earlier.

STAF provides file system facilities through the file
system service. Currently, this service provides mech-
anisms for transferring files and accessing file con-
tent. Future versions of STAF will expand the capabil-
ities of this service into file and directory management,
such as directory creation and enumeration and file
or directory deletion.

STAF provides logging facilities through the log ser-
vice. At its most basic layer, this service provides
time-stamped message logging based on levels, such
as “FATAL,” “ERROR,” “WARNING,” and “DEBUG.”
A variety of higher-level facilities are built on top
of this foundation, including local and centralized
logging, log sharing between applications, dynamic
level-masking, and maintenance on active logs. The
dynamic level-masking is of particular interest. Level-
masking refers to the ability of the user to determine
which logging levels will be stored in a log file. Mes-
sages with logging levels not included in the level-
mask will be discarded. The fact that this feature is
dynamic means that the level-mask can be changed
while an application is running. For example, this
ability would allow a user to “switch on” debug mes-
sages when a problem is encountered, without need-
ing to stop and restart the application.

STAF provides remote monitoring facilities through
the monitor service. This service provides a light-
weight publish-query mechanism. Applications pub-
lish their state, which then allows other applications
to remotely query it. The published state is a simple
time-stamped string, yet this has proven sufficiently
robust for monitoring the progress of typical tests
and applications.

STAF provides event-handling facilities through the
event service. This service provides standard publish-
subscribe semantics. Applications register for spe-
cific types and, possibly subtypes, of events. Other
applications generate events based on a type, sub-
type, and sets of properties (which are attribute/value
pairs). The events are delivered via the queuing fa-
cilities described earlier.

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 RANKIN 135

In addition to the services described above, STAF
makes it quite easy for groups to develop their own
services to meet specific needs. These services can
then become part of the set of service components
available for use with STAF. The modular service-
based nature of the platform provides the infrastruc-
ture for evolution and growth.

From reuse to automation

Having addressed reuse, we next focused on auto-
mation. Our plan was to build a solution on top of
STAF by leveraging the automation components that
it provides.

The first area we tackled was the execution of the
Ogre test suite. Instead of trying to retrofit an ex-
isting test harness onto STAF, we chose to create a
new one that was STAF-aware from the ground up.
What we came up with was a program called the Ge-
neric WorkLoad processor or, in abbreviated form,
GenWL (pronounced JEN-wall). This harness allows
us to create a text file defining the configuration data
for the scenario, the processes to be executed, and
the systems on which they should be executed. This
text file is called the workload file. Using GenWL,
we are able to start or stop the entire workload with
a single command from a central management con-
sole, which was our desired goal. GenWL also played
an important role in solving other aspects of the au-
tomation problem, which are discussed below.

Next, we looked to solve the problems associated
with executing more than one instance of Ogre on
a given system. The two most pressing issues were
test suite synchronization and resource management.
To handle synchronized access to tests, we relied on
the STAF semaphore service, in particular, its mutex
semaphore support. This service allowed one in-
stance of the test suite to gain exclusive access to a
test and then release control once execution of that
test was complete. To manage the drive letters and
printer ports, we relied on the resource pool service
of STAF. This service allowed us to set up separate
pools for the drive letters and printer ports. The ser-
vice then manages the access to entries within the
pool. Thus, when one instance of the test suite re-
quests a drive letter, we can be sure that no other
instance of the test suite will obtain that drive letter
until the first instance releases control of it back to
the resource pool service. With these problems
solved, we were able to run multiple instances of
Ogre on our systems. These changes to the test suite
are illustrated in Figure 6. In particular, the light pur-
ple areas of Figure 6 represent where STAF was used
to solve the test suite synchronization and resource
management problems.

While making the synchronization and resource
management changes described above, we found
ourselves redistributing the test suite more often than
usual, so in conjunction with the above changes, we
also set out to solve the test suite distribution prob-
lem. Here we were able to leverage the file system
and variable services of STAF. Using these two ser-
vices, we wrote a small script that iterated through
a list of clients in a file and used the file system ser-

Figure 6 Single Ogre instance after multi-instance support

PROCEDURE
ENTRY OR EXIT

DECISION
POINT

MULTI-INSTANCE
OR STAF SPECIFIC

NO MULTI-INSTANCE
CONFLICT

ESTABLISH
CONNECTION(S)
TO SERVER(S)

SELECT
RANDOM
SUBTEST

NO

SYNCHRONIZED
SUBTEST?

YES

NO

SELECT
RANDOM
SERVER(S)

RELEASE
RESOURCE(S)

YESSYNCHRONIZED
SUBTEST?

START

EXECUTE
SUBTEST

RELEASE
CONNECTION(S)
TO SERVER(S)

RELEASE
LOCK

REQUEST
RESOURCE(S)

ACQUIRE
LOCK

RANKIN IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002136

vice to copy each file. The variable service was used
to deal with mapping the abstract destination defined
in the copy command to the actual destination on

each client. With the list of clients maintained in a
file, we were assured the updated test suite was con-
sistently distributed to all the clients.

With the problems of test suite distribution and ex-
ecution solved, we next addressed the test suite mon-
itoring problem. Here we leveraged the monitor ser-
vice of STAF. Our test suite published its state to the
monitor service every time it entered a subtest or
when an error or warning occurred. Given the pub-
lished information, we next developed a way to view
this information using the GenWL execution har-
ness. The workload file read by GenWL defines all
the test suite instances; thus it is trivial for GenWL
to interact with the monitor service to retrieve the
published state for all the test suite instances.
GenWL then displays this information on a system-
by-system basis. With a single command from our
management console, we were able to ascertain the
current state of the entire Ogre scenario.

Although GenWL and the monitor service allowed
us to determine the state of the scenario at any given
point in time, this capability was not sufficient for us
to determine what had transpired over extended pe-
riods of time (e.g., from one evening until the fol-
lowing morning). With GenWL and the monitor ser-
vice, we could see the state as we left and when we
came in, but we were still unaware as to any prob-
lems that had occurred in between.

To solve this problem we simply exchanged our cur-
rent logging mechanism with calls to the log service
of STAF. This exchange allowed us to use an approach
similar to the one used to solve the test suite dis-
tribution problem. We created a simple script that
iterated over a list of clients in a file and used the
facilities of the log service to retrieve all the error
and warning messages that had been logged over a

given period of time. We were then able to ascer-
tain which, if any, of those errors and warnings were
true problems or simply artifacts of temporarily push-
ing a server beyond its capacity. Remember, Ogre
is a load and stress test, so we expect to occasionally
push the servers beyond their limits.

Finally, we were left with the problem of execution
dynamics. To solve this problem, we leveraged
GenWL again. As mentioned above, the workload
file contains the configuration information for the
scenario. As the workload file is processed, this con-
figuration information is stored on each of the cli-
ent systems using the STAF variable service. As the
test suite executes, it retrieves the configuration in-
formation from the variable service. By using the
variable service, we were able to update the config-
uration information dynamically. Thus, if we needed
to change the configuration information, such as to
reintroduce a server or change server stress ratios,
we simply updated the appropriate values in the
workload file and directed GenWL to push that value
out to all the clients.

Figure 7 illustrates the flow of an Ogre scenario af-
ter our automation changes. In comparison to Fig-
ure 2, note that the majority of the steps are now
automated. The only two steps that are not auto-
mated are updating the configuration and installing
a new build. Updating the configuration consists of
manually updating the workload file with the con-
figuration changes. This updating effectively requires
human intervention. Installing a new build is some-
thing that we have automated in other areas but was
not deemed useful for the Ogre scenarios.

Issues

We have received surprisingly few complaints about
STAF from our users. The vast majority of user is-
sues concern clarifying the documentation or re-
questing new features (such as new services or ex-
tensions to existing services). We have also found
and fixed isolated performance issues. For example,
the log service was originally written in REXX, which
proved to be unacceptably slow. We have since
ported the log service to C��, which significantly im-
proved its performance.

With respect to general overall performance, STAF
requests do incur a minimal amount of overhead since
they require an IPC request to go from the request-
ing process to the STAF daemon, plus the user’s re-
quest string must be parsed (as opposed to dealing

STAF has allowed teams
to focus on directly solving

their problems instead of
inventing infrastructure.

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 RANKIN 137

directly with raw data). This means STAF would not
be appropriate for extremely low-latency requests.
To date, we have not encountered this problem.

Benefits

By providing a reusable framework and reusable ser-
vices, STAF has allowed teams to focus on directly
solving their problems instead of inventing infrastruc-
ture. This advantage is illustrated with the tools de-
veloped for automating Ogre. The test distribution
script and the log-querying script were both less than

50 lines of code. The scripts were so small because
they were able to depend on the underlying STAF in-
frastructure and the services it provides. The GenWL
program relies on a number of STAF services to per-
form its tasks. By reusing these services, GenWL is
free to concern itself with the fundamental activi-
ties of parsing the command line parameters and the
workload file. The remainder of the work is handled
by STAF and includes setting the configuration in-
formation, starting and stopping the processes, and
monitoring the test progress. This work is done with
only nine commands in the GenWL program. We
have found this type of usage to be fairly typical.

If we look at the application of STAF to our auto-
mation problem, we see significant savings arise. By
overcoming our test suite synchronization and re-
source management problems, we were able to re-
duce the required number of client systems by ap-
proximately 33 percent, which in the largest case
meant a reduction of 48 client systems. This reduc-
tion represents a very large savings in the hardware
required to run the test suite.

By overcoming our test suite execution and test suite
distribution problems, we were able to reduce the
time it takes to restart a scenario based on a new
build by roughly 50 percent. Our old manual pro-
cedure took us approximately eight hours. Our new
automated procedure takes us approximately four
hours. This difference is a significant reduction in
time and is amplified even more when builds are re-
ceived late in the day, e.g., 4:00 P.M. Because it pre-
viously took eight hours to start the scenario, we
would typically begin working with the new build at
approximately 8:00 A.M. the following morning. Thus
the scenario was not actually running until 5:00 P.M.
of that following day. However, with a reduction to
four hours, someone can stay and have the scenario
running by 8:00 P.M. the same night, which is an even
more significant cycle-time reduction of 21 hours.
In addition, it used to take several people to per-
form this work. Now one person can perform the
work because we can manage everything from a cen-
tral console. Thus, there are personnel savings as
well.

A major benefit of overcoming our test suite mon-
itoring problems was finding a number of defects in
the product that would have gone undetected oth-
erwise. Detecting problems before they reach the
customer is a very significant source of savings, be-
cause problems found by customers are much more
costly to fix than those found during testing.5 In ad-

YES

YES

YES

NO

NO

Figure 7 Ogre scenario flow after automation

NO

NO

NO

NO

UPDATE
CONFIGURATION

STOP
SCENARIO

YES

NO

YES

YES

YES

YES

PROCEDURE
ENTRY OR EXIT

DECISION
POINT

MANUAL
TASK

AUTOMATED
TASK

CONFIGURATION
CHANGE?

TEST CASES
CHANGED?

TEST CASES
CHANGED?

DISTRIBUTE
TEST CASES

START
SCENARIO

INSTALL
NEW BUILD

START

MONITOR
SCENARIO

SERVER
FAILURE?

IMPORTANT
NEW BUILD?

SCENARIO
COMPLETE?

APPLY CHANGES
DYNAMICALLY

END

RANKIN IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002138

dition, our new monitoring capabilities improved
morale by removing the “grunt” work of perform-
ing periodic monitoring check-ins at night and on
the weekend. If a problem was uncovered while mon-
itoring remotely, we were sometimes able to perform
remote diagnostics and solve the problem without
coming to the site.

Finally, by overcoming our test suite execution
dynamics problems, we were able to save time and
personnel by reducing the frequency of scenario re-
starts. This reduction in restarts was yet another mo-
rale boosting item, since we no longer felt like we
were “twiddling our thumbs” when running the sce-
nario in a configuration that we knew would have to
be restarted in mid-run.

Many times our group had contemplated fixing some
of the problems in the Ogre test suite. We had elab-
orated a list of items that we would need to create
in order to solve the problem. Evaluating this list in
hindsight, we realized that what we actually needed
was STAF. Had we addressed our list of items ear-
lier, we would have ended up with a solution that
was centered around our particular test suite, as op-
posed to the general solution, which is STAF. Instead,
the reuse philosophy of STAF allowed us to pick up
the reusable components it provides and solve our
test suite problems.

Conclusion

To improve the efficiency and effectiveness of the
testing process, groups need to find ways to improve
their reuse and automation. As a solution to help
address these issues, we created STAF. It was designed
to solve our reuse problems and was then leveraged
to solve our automation problems. Using STAF, we
have generated considerable savings with respect to
the people, time, and hardware necessary to perform
testing.

Since its inception, STAF has been adopted by nu-
merous test groups throughout IBM, and it is being
used to create a variety of innovative testing solu-
tions. In my organization alone, we have developed
a pluggable solution that drives automated testing
from build through results collection. When a new
build becomes available, the test systems are auto-
matically set up and installed. Then the test suites
are executed automatically, and the results are col-
lected for analysis. These types of solutions would
be tremendously more difficult, if not impossible, to

create without a solution such as STAF from which
to build.

After a long incubation period, STAF is available in
an open-source form on the SourceForge Web site
(http://staf.sourceforge.net). It is my hope that the
availability of this flexible framework will lead to sus-
tained advances in the testing efficiency and effec-
tiveness of many software organizations.

Acknowledgments

I would like to thank Clay Williams, Karen Rosen-
gren, Sharon Lucas, David Bender, and Don Ran-
dall for reviewing draft versions of this paper. I would
like to express my sincere gratitude to Peri Tarr for
helping me organize my thoughts and for keeping
this paper flowing in a consistent manner. Her as-
sistance has been invaluable in making this paper
available to readers.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.,
Microsoft Corporation, The Open Group, Object Management
Group, or Unicode Consortium, Inc.

Cited references

1. J. Ousterhoust, “Scripting: Higher Level Programming for the
21st Century,” Computer 31, No. 3, 23–30 (March 1998).

2. The Open Group, http://tetworks.opengroup.org/.
3. The Object Management Group, http://www.corba.org.
4. R. Bastide, P. Palanque, O. Sy, and D. Navarre, “Formal Spec-

ification of CORBA Services: Experience and Lessons
Learned,” OOPSLA Conference Proceedings (2000), pp. 105–
117.

5. R. S. Pressman, Software Engineering: A Practitioner’s Approach,
3rd Edition, McGraw Hill, New York (1992), p. 559.

Accepted for publication September 18, 2001.

Charles Rankin IBM Server Group, 11401 Burnet Road, Austin,
Texas 78758 (electronic mail: rankinc@us.ibm.com). Mr. Rankin
is an advisory software engineer in the IBM Austin Development
Laboratory. He graduated with a B.S. degree in electrical engi-
neering from the University of Florida in 1993, after which he
joined IBM in Austin. He has worked extensively with IBM’s PC-
oriented operating systems and networking products. He was the
system test lead for IBM’s Directory and Security Server for OS/2
and IBM’s OS/2 WARP Server for e-Business. He is currently
the lead developer for STAF.

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 RANKIN 139

