
Preface

Customers and independent software vendors have
a right to expect high-quality, defect-free products
from IBM. The process used for software develop-
ment has a great deal to do with the quality of the
results, and testing is a crucial part of that process.
Because the cost of testing and verification can ex-
ceed the cost of design and programming, the meth-
odologies, techniques, and tools used for testing are
key to efficient development of high-quality software.

In this issue of the IBM Systems Journal, an over-
view essay and nine papers—from IBM, AT&T, and
the University of Massachusetts—discuss technol-
ogy and tools for software testing and verification.
We are indebted to P. Santhanam and B. Hailpern
of IBM Research for initiating the topic, soliciting pa-
pers and mentoring their development, and coordi-
nating this special issue.

Throughout the development process, and especially
during testing and verification, potential defects
(“bugs”) are detected and removed. In the overview
essay, Hailpern and Santhanam provide formal def-
initions for debugging, testing, and verification and
show how each activity relates to the software de-
velopment process. They then discuss recent im-
provements in technology in all three areas.

Testing can be broadly defined as a form of mea-
surement, and the next three papers discuss aspects
of measurement. In the first of these, Bassin, Biyani,
and Santhanam describe metrics that can be applied
as part of the acceptance test for vendor-developed
software. New metrics presented here were devel-
oped for evaluating vendor software components to
be integrated for use during the 2000 Summer Olym-
pics. The authors explain how metrics can be used
to estimate the degree of risk involved in accepting
a software component, based on test case execution.

The paper by Butcher, Munro, and Kratschmer de-
scribes three case studies in which Orthogonal De-
fect Classification (ODC) was used. ODC, a quanti-
tative method used to improve processes as products
evolve, was applied to a mature product, a large
middleware product, and small team project. In each
case, the team was able to reach its objective of im-
proving test effectiveness with minimal impact on or-
ganizational resources.

Weyuker and Avritzer introduce the “performance
nonscalability likelihood” metric, designed to pre-
dict the likelihood that the system will fail to meet
its performance goals when the workload is scaled.
A key step in its application is to identify the key
resources that constrain scalability. The authors de-
scribe how they applied the metric to a case study
of a large industrial production system.

The next two papers discuss the testing process and
tools that support it. Loveland et al. report on the
process, tools, and techniques used to test z/OS*, the
operating system for IBM’s zSeries* processors. Many
z/OS customers have requirements for continuous
availability, and the expectation of “zero down time”
places high demands on testing. The authors pro-
vide a practical guide to key approaches that have
proven effective for testing z/OS and its predeces-
sors.

Because of the variety of platforms and products IBM
develops and supports, there are many testing tools
with similar functionality within the corporation. Wil-
liams et al. describe the architecture, developed by
members of IBM’s Software Test Community Lead-
ers group, for integrating these tools, as well as new
ones. Three integration concerns are addressed: data

PREFACE IBM SYSTEMS JOURNAL, VOL 41, NO 1, 20022

across tools and repositories, control across tools,
and a single user interface into the tool set.

Part of the difficulty in testing complex software is
the very large number of test cases to be designed,
created, executed, and debugged. Some of these ac-
tivities can be automated, as we see in the next three
papers. Farchi, Hartman, and Pinter describe their
use of a test case generator, based on a finite state
machine model derived from natural language soft-
ware specifications. In two experiments testing for
standards conformance, they found that the effort
needed to develop a model and run the test cases
was less than would be needed for conventional test-
ing, and that the model-based testing gave better
code coverage.

Edelstein et al. describe ConTest, a tool that both
generates and executes tests for detecting synchro-
nization problems in multithreaded Java** pro-
grams. The tool first seeds the program under test
with the Java sleep, yield, and priority primitives. As
the program is run, the tool decides either randomly,
or based on code coverage requirements, whether
or not to execute the seeded code.

The paper by Rankin also discusses the automation
of test case execution, focusing on the reuse of ex-
isting test procedures. The Software Testing Auto-
mation Framework (STAF) can be used across plat-
forms and with multiple languages. As an example
of its application, the author explains how it was used
by an IBM testing organization to automate the ex-
ecution of a resource-intensive test suite.

In the last paper in this issue, we turn from software
testing to software verification. Cobleigh, Clarke, and
Osterweil describe a finite state verification (FSV) ap-
proach and FLAVERS, its prototype implementation.
Given source code and some behavioral properties
of the system, FLAVERS attempts to verify that all
possible executions of the program will satisfy these
properties. Unlike other FSV approaches, FLAVERS
generates a compact and conservative model to
which precision can be added as required, based on
analysis results. Experimental results indicate that
the approach can be scaled to address more com-
plex problems.

The next issue of the Journal will be devoted to pa-
pers on e-commerce and Web services.

Marilyn L. Bates John J. Ritsko
Associate Editor Editor-in-Chief

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 PREFACE 3

