
Testing z/OS:
The premier operating
system for IBM’s
zSeries server

by S. Loveland
G. Miller
R. Prewitt
M. Shannon

The “z” in zSeriesTM stands for zero down time.
As businesses have come to rely more and more
on the continuous availability of their largest
systems, the verification techniques used by IBM
in developing those systems have had to evolve.
Methodologies, techniques, and tools need
continuous enhancements to develop the
necessary verification processes that support
development for a “zero down time” system. This
paper describes the verification methodologies
used in z/OSTM development, as well as test
technologies and techniques. Special attention
is paid to tool and test case reuse, and to
techniques for testing for data integrity and
system recovery. We also explain how these
methodologies can be used for both traditional
on-line transaction processing and newer Web-
based or distributed applications.

What is z/OS*? It is the premier operating sys-
tem that powers IBM’s zSeries* processors. It

is a general-purpose operating system that many bus-
inesses rely on. Commonly referred to as “main-
frames,” the zSeries processors (and their prede-
cessors) have been the backbone of commercial
computing for decades, renowned for their reliabil-
ity, scalability, availability, and other industrial-
strength attributes. But why the distinction between
mainframes and other types of servers? Historically,
some platforms were designed for scientific and tech-
nical computing, with massive, extended “number
crunching” on relatively small amounts of data and
relatively low interactions between the processor and
external storage. Other platforms were designed for
a commercial environment, with exactly the oppo-
site characteristics—constant movement of data be-
tween the processor and external storage, very large

amounts of data, and processor resources consumed
in short bursts for each transaction or read/write op-
eration.1 The IBM zSeries server and its z/OS oper-
ating system were designed for just this kind of com-
mercial environment.

What are some characteristics of z/OS that allow it
to support these commercial requirements? One
characteristic is usable capacity. E-business applica-
tions have dramatic swings in user activity, with or-
ders of magnitude changes occurring in seconds. In
order to survive these peaks, many platforms are typ-
ically over-configured to run with a peak CPU uti-
lization of 50–60 percent, with average CPU utiliza-
tion of 20–30 percent. zSeries systems, on the other
hand, can automatically and continuously reallocate
system resources (processors, memory, and I/O) in
response to changes in demand. This allows z/OS to
run at a peak of 100 percent, and an average of 65–75
percent—although it is fully capable of running at
100 percent CPU utilization 24 hours a day.1 In ad-
dition, zSeries systems can move the large amounts
of data required in a typically data-intensive e-busi-
ness application among processors, memory, and I/O
at a rate of up to 25 times that of other high-end
servers.2 Its usable capacity allows z/OS to effort-
lessly handle workload spikes and enables custom-
ers to squeeze maximum utility out of their comput-
ing investment while keeping their end users satisfied.

rCopyright 2002 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 0018-8670/02/$5.00 © 2002 IBM LOVELAND ET AL. 55

Another characteristic is concurrency. A zSeries
server is a tightly coupled, multiprocessor (MP) sys-
tem, where all processors are interrupt-driven and
share a common memory store. Furthermore, up to
32 such servers can be clustered together into a
loosely coupled Parallel Sysplex*, utilizing a shared
storage medium known as a coupling facility (li-
censed internal code running in a special type of log-
ical partition in certain ES/9000*, S/390*, and zSeries
processors3), as shown in Figure 1. A fully config-
ured Parallel Sysplex could contain as many as 640
processors operating in concert to achieve multiple,
concurrent business objectives. Another aspect of
z/OS concurrency is robust support for multiple, dis-
parate workloads running concurrently on the same
server image, or within the same sysplex cluster. This
approach stands in stark contrast to servers with a
scientific computing heritage, in which a given server
is typically dedicated to one and only one task. The
additional concurrency allows z/OS customers to
consolidate multiple applications on a single server,

reducing systems management costs while maximiz-
ing a given server’s exploitation.

Many z/OS customers have business requirements
for continuous system availability. System down time
or unplanned outages, even of short duration, can
cost millions of dollars in lost revenue or other sig-
nificant negative business impact. Thus z/OS custom-
ers do not think about availability in terms of min-
imizing the time of an outage; they think in terms
of minimizing outages—period. Again, this is histor-
ical. From the beginning, for z/OS as well as its pre-
decessors, a basic assumption has been that hundreds
or even thousands of users would depend on it. That
is why its error detection and correction systems are
so deeply ingrained.4 In fact, the anticipated mean
time between failures of IBM z900 systems ap-
proaches 30 years.2

Although z/OS itself has a long history, so do its users’
suites of applications. It is not unusual for a z/OS

Figure 1 Parallel Sysplex elements

2

12
1

7

8

9

10

11

COUPLING TECHNOLOGY
SYSPLEX-WIDE LOCKING,
SYSPLEX-WIDE CACHE

ENTERPRISE SYSTEM CONNECTION/
FIBER CONNECTION

12
1

2

3

4

5
6

7

8

9

10

11

CF
CF

zSERIES PROCESSORS

SYSPLEX TIMERS

zSERIES PROCESSORS

READ/WRITE DATA SHARING

LOVELAND ET AL. IBM SYSTEMS JOURNAL, VOL 41, NO 1, 200256

customer to have millions of dollars invested in busi-
ness-critical applications that have been operating
and evolving on z/OS and its predecessors for 20
years or more. Ensuring that this customer invest-
ment is preserved requires each z/OS release to
maintain compatibility with prior releases. For some
releases this is easy; for others, such as the change
from 24-bit to 31-bit addressing, and again from 31-
bit to 64-bit addressing, it presents challenges. But
regardless of the complexities involved, application
compatibility is expected for every z/OS release.

Finally, an operating system must maintain data in-
tegrity—a system that is up but quietly corrupting
data is worse than one that is down. z/OS address
spaces separate applications from each other to min-
imize the risk of one program corrupting another
program’s private storage or data area. Storage-pro-
tect keys prevent user programs from altering sys-
tem storage. Extensive system locking and serializa-
tion techniques coordinate system events and actions.
Data integrity is a core attribute of z/OS.

Testing challenges

The very attributes that distinguish z/OS as a pre-
mier commercial operating system create very real
challenges with respect to its testing. Wide-ranging
application compatibility from release to release
must be demonstrated; capacity and concurrency
must be validated across large system configurations
driven at or near 100 percent utilization for extended
periods; failure isolation, recovery services, and over-
all system availability in the face of harsh conditions
must be verified; and the maintenance of data in-
tegrity must be confirmed. At the same time, cus-
tomer demands for these qualities of service are
colliding with business requirements demanding
speedier “time to market.” Such a conflict drives a
need to maximize test efficiency without sacrificing
test coverage.

Most research on software testing focuses on for-
mal methods for identifying coding errors in a pro-
gram. While the continuation of this research and
the improvement of the tools and practices that re-
sult from this work are important, it is equally im-
portant for testers to understand other approaches
for software verification. In practice, methodologies
must be followed that focus different test phases on
the defects they are most suited to extracting, direct
testing efforts toward the system attributes of most
concern, and optimize testing resources by empha-
sizing the value of reuse. Test cases must be written

with automation in mind. Tools must allow high-vol-
ume test execution with minimal intervention, max-
imize a test case developer’s efficiency in complex
environments, and adapt to allow expansion and re-
use. Sometimes this requires introducing special
“testability” features into z/OS itself. Finally, spe-
cial attacks need to be targeted against critical, yet
tricky areas such as system recovery and data integ-
rity. Above all, the test team must ensure that within
the set of defects they find is the subset of defects
most likely to disrupt real production environments;
in other words, they must find the defects that mat-
ter.

Addressing such realities is a challenge for any soft-
ware development team. This paper describes some
of the actual methodologies, tools, and experiences
of the z/OS software test team at the IBM z/OS de-
velopment laboratory in Poughkeepsie, New York,
in meeting the needs of both our business and its
customers.

Test methodology and process

This section gives an overview of the z/OS develop-
ment laboratory’s testing methodology, with a focus
on system and integration testing (see Figure 2).

Process definition. At a high level, the methodology
used for testing z/OS is similar to that of most com-
plex software projects, with testing broken down into
phases following the classical waterfall model:

1. Unit verification test (UVT). The developer of an
individual module verifies its basic operation, in-
cluding all possible branches, loop terminations,
etc.

2. Function verification test (FVT). A separate test
team validates the new features of an entire func-
tion or component (such as the real storage man-
ager, I/O subsystem, etc.), including its complete
operation, internal and external interfaces, limit
conditions, messages, and so on.

3. System verification test (SVT). Another team tests
the entire operating system kernel, with all com-
ponents working together to support a large num-
ber of clients.

4. Performance verification test (PVT). The perfor-
mance characteristics of the operating system are
measured.

5. Integration test (IT). All elements of the operat-
ing system are tested in conjunction with re-
sources managers, networking products, and ap-
plications as part of an end-to-end solution.

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 LOVELAND ET AL. 57

Experiences are published externally for customer
reference.

The UVT and FVT phases are executed in a single-
user, emulation environment where break points and
trace paths can be used to facilitate testing. SVT, PVT,
and IT phases are typically executed in large, native
hardware environments where the system can be
pushed to its limits. Different classes of bugs are tar-
geted at different phases, based upon where it is most
efficient to catch them. For example, attacks are de-
vised during FVT to find problems with user inter-
faces and mainline operation, whereas timing and
serialization issues are a prime target during SVT. In
IT, the focus is not necessarily on code bugs, but on
validating the workings of the entire platform. Are
the systems manageable? What tasks and setup are
needed to maintain continuous operations? Is the
product documentation accurate and complete?
How best can new function be implemented with-
out requiring a system outage? One of the outputs
of the IT team is a document of the team’s hints and
tips, suggestions for customization settings, and other
relevant experiences.5

The role of a tester. Good testers enjoy breaking
things, especially other developers’ software. They
delight in identifying likely vulnerabilities and de-
vising attacks to expose them, including generalized
categories of attacks that can be applied to a wide
range of software products.6 This is unlike most other
software professionals, who view defects as annoy-
ances to be avoided, “bumps in the road” toward
their goal of seeing things work. Having this “break-
er mentality” is a crucial trait for those testing soft-
ware developed to support continuous operations.

But the role of a tester goes beyond simply trying
to break things. At a fundamental level, a z/OS tester
acts as an advocate, looking out for the well-being
of customers. This means more than proving that the
software under test does what the specifications state.
It also means ensuring that the specifications and de-
sign of the software will not cause problems in cus-
tomer environments. For example, a function may
work exactly as specified, but not provide an ade-
quate external user interface. A good function tester
will identify this and work directly with developers
to address the issue, sometimes advocating a design
change. System testers must create environments and

Figure 2 z/OS development cycle

DEVELOPMENT AND
UNIT TEST

FUNCTION TEST

SERVICE TEST

INTEGRATION TEST

BETA

SYSTEM TEST AND
PERFORMANCE TEST

FIRST
CUSTOMER

SHIP
GENERAL

AVAILABILITY

INTERNAL BETA

LOVELAND ET AL. IBM SYSTEMS JOURNAL, VOL 41, NO 1, 200258

use tools and applications that closely mirror the way
customers will utilize the functions. In fact, z/OS de-
velopers consider the system test team to be their
first customer.

Test plan. The foundation for any test begins with
a solid test plan, where attacks targeted against new
features of the operating system are devised and doc-
umented. From FVT onward, the plan is typically a
formal document. Input comes from several sources,
including product specifications, “postmortems”
from prior tests of the same or similar components
(where testers reflected upon and documented the
strengths and weaknesses of their approach), and test
approach reviews (TARs). The TAR is a formal meet-
ing between the FVT, SVT, and development person-
nel responsible for each new feature to be tested.
Planned test scenarios are reviewed, and gaps or
overlaps are identified and removed.

SVT phases. Once the test plan has been approved
and appropriate entry criteria met, testing com-
mences. Each phase has its own natural flow, but in
this paper we focus on SVT. This phase typically starts
with regression and migration testing, moves on to
basic load and stress testing, then into new function
(including scenario-driven) testing, and finally recov-
ery testing. Each is discussed in the sections that fol-
low.

Regression, migration, and load and stress testing.
In regression testing, the objective is to ensure new
features in the product have not broken, or “re-
gressed,” previously existing support or application
compatibility. A related objective in migration test-
ing is to validate that a new version can interoperate
with older versions of the operating system within
the same sysplex cluster. In both cases, automation
tools are used to execute a collection of batch and
interactive test cases, initially in an essentially single-
threaded environment at low system-stress levels,
and progressing up to a full load and stress test, with
a high degree of concurrency and CPU utilization lev-
els exceeding 95 percent for extended periods of
time. Individual test cases target a specific function
or set of functions within the operating system, from
the allocation and deletion of files, to global resource
serialization, to reservation and updating of system
storage areas. Individually, each test case exercises
only a tiny slice of the operating system code. Taken
together, they drive a broad range of functions that
span many operating system services.

Where do the regression test cases come from? z/OS
regression test cases have been accumulating for over
20 years, with no end in sight. All originated as ve-
hicles for testing new function in past releases; once

that role was satisfied, they were saved in “regres-
sion test buckets.” But in order for these test cases
to execute in a fully automated manner, they must
be designed to meet certain standards. Specifically,
each test case must be:

● Self-checking. It must programmatically verify that
the functions it exercises have performed correct-
ly; if they have not, an error return code must be
set or an abnormal termination triggered.

● Debuggable. When a failure is detected, the test
case must externalize as many details as possible
about its current status, so that when viewed hours
later by a human, the source of the failure can be
diagnosed.

● Well-behaved. It must not alter control blocks or
other resources owned by system components. The
test case must also be able to coexist with other
completely unrelated test cases (i.e., it cannot re-
quire the entire system for itself).

● Self-operating. It should not require manual inter-
vention, for example, forcing an operator to re-
spond to periodic messages before proceeding.

● Restartable. During testing, the system can fail at
any moment, terminating the execution of many
test cases prematurely. Therefore, when a test case
begins running it must assume it is running in a
“dirty” environment, where files or other resources
it plans to create have been left around from a pre-
vious, aborted execution. So, its first step must be
to attempt to delete any such resources, to ensure
that its environment is clean before proceeding.

● Self-cleaning. This is related to, but distinct from,
restartable. In SVT, and particularly in IT, test work-
loads can often run continuously for days, weeks,
or months at a time. If the test cases in those work-
loads update system resources, such as databases,
they must do so in a way that prevents those re-
sources from “aging” ungracefully, or becoming
invalid and in need of resetting. For example, a
transaction-based workload may consist of many

Good testers enjoy
breaking things, especially

other developers’ software.

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 LOVELAND ET AL. 59

test cases that read, update, add, or delete data-
base records. To be self-cleaning, when an indi-
vidual test case updates a record, before it com-
pletes it must reset that record to its value prior
to the update—and do so within the same unit of
recovery context. If the test case deletes a record,
it must restore it before terminating. In this way,
the data do not age; records are not deleted, nor
does the number of records within the database
grow. Yet, the required functions of the database
system have been exercised.

Test cases that meet these standards can potentially
live forever in automated z/OS regression buckets,
earning their keep through reuse day after day. In-
deed, once the regression phase of SVT is over, the
job of regression test cases is not done—it has just
begun.

New function. When the operating system has proven
that it can withstand the onslaught of thousands of
existing batch and interactive test cases running in
parallel at high levels of load and stress for an ex-
tended period, then these regression test cases shift
their role. They become a rich source of complex
“background noise,” providing the backdrop of heavy
load and stress against which new test cases and sce-
narios can be executed. This is a key point. In z/OS
SVT, no test of a new function, whether an applica-
tion-like coded test case or a manually executed sce-
nario, is considered successful until it has been ex-
ecuted in a high load and stress environment with
the system pushed to its maximum usable capacity.
A rich, varied, high-stress workload can flush out tim-
ing and serialization problems that are difficult to
find in any other way. What better way to generate
this background of load and stress than with a col-
lection of thousands of test cases, built up year by
year, designed specifically to exercise all aspects of
the operating system with precision accuracy? We
say that “good test cases never die—they just increase
your stress.”

Validation of all the new functions in a release of
z/OS may require the creation of hundreds of coded
test cases, all written to the exacting standards pre-
viously described. The amount of time required for
such extensive test case development is frequently
challenged by business demands. Reusing test cases
saves time, but what about test cases for attacking
previously nonexistent function? In SVT, we reuse
test cases developed to exploit the new function in
a prior test phase. The FVT team must spend a great
amount of resources on test case development, but

much of what these test cases cover are exactly the
same functions the SVT team needs to exploit. Once
the function testers have completed executing their
test cases in a low-stress, single-user environment,
if they have followed the SVT test case standards then
their work can be reused. FVT test cases make an
excellent starting point for exercising the new func-
tion in the heavy stress, highly concurrent SVT
environment, reducing requirements for unique,
SVT-specific test case development significantly while
simultaneously broadening test coverage.

But, while such reuse does provide significant test
efficiencies, it is still not enough. The FVT team must
spend a great deal of time in test case development,
and attacks against some new functions often require
that SVT-specific test cases must be created. This de-
velopment work can be slowed by the complexities
involved in establishing the proper application envi-
ronment for homing in on specific functions. The
team addresses this issue through techniques such
as modularized test case development tooling and
inserting testability features directly into the z/OS
product. Both are discussed later in this paper.

Scenario-driven testing. When validating new func-
tions, in addition to coded test cases that exercise
the function, an important technique is scenario-
driven test execution. A scenario is defined as a se-
ries of discreet events (such as running test appli-
cations or issuing command-driven operator actions)
executed in a particular order designed to bring about
a particular result. By creating scenarios that sim-
ulate customer activities, one is able to focus special
testing effort where it has the most value: in finding
bugs likely to be pervasive and having a high impact
if allowed to escape. A very simple example is dynam-
ically configuring a CPU to be off line and then back
on line—against a backdrop of high load and stress,
of course. For a more interesting example, consider
a z/OS feature, called Hiperbatch,7 that speeds se-
quential reads against a certain type of file by a col-
lection of applications accessing it in parallel. The
support works by caching data read by the first reader
as it works its way through the file, then satisfying
subsequent readers of the same data by pulling it
from the in-memory cache.

System testing of this function involved creating a
group of cloned test applications that would read the
same file, then enabling the caching feature for that
file and running the cloned applications in parallel.
This simple technique was indeed effective in flush-
ing out bugs in the code, but eventually the group

LOVELAND ET AL. IBM SYSTEMS JOURNAL, VOL 41, NO 1, 200260

of applications could run without error. The next step
was to run multiple such groups in parallel, each
against a different file. This also found problems, but
again eventually completed without error. At this
point, system testing of this function could have
stopped, but it did not. The test team recognized that
most users of this support function would not be run-
ning applications that were exact clones of one an-
other against a particular cached file, nor would they
necessarily run them in a tight group that all began
and finished at the same time. In particular, they re-
alized that the applications would likely perform dif-
fering amounts of processing against each record be-
fore proceeding to the next—meaning that the
applications would make their way through the file
at different speeds. Also, the applications would likely
begin their processing at somewhat staggered time
intervals.

Combining these two observations, the team created
a scenario in which two groups of applications were
run against a particular file. The first group was al-
tered to include a small, artificial delay after each
read. This “slow” group was started first. Once it was
partially through the file, the next group was started.
This second group had no such artificial delay; it read
through the file as quickly as possible. Before long,
the fast group caught up to and overtook the slow
group. At that moment the “lead reader,” the ap-
plication instance for which data were being cached
for the benefit of the others, changed.

The team found that precisely when this “changing
of the leader” occurred, a data integrity bug hit. In
fact, multiple such bugs hit, all caused by very nar-
row timing windows. Such windows will normally
elude single-user tests or code coverage tools, be-
cause they depend not on a single errant path
through the code, but on multiple occurrences at the
same instant across multiple processors on a tightly
coupled MP system. That is why it is so important to
execute such scenarios under heavy load and stress.

The example shows how a scenario was created to
attack data integrity in an environment of high con-
currency by rearranging the execution sequence of
existing test cases in a way that discovered new and
critical bugs. Importantly, this sequence was not
picked at random, but was based on the expected
customer usage of the function.

Recovery. Since no software engineering process pro-
duces defect-free code, how can a goal of continu-
ous availability be achieved? One technique is to ac-

cept reality and design, develop, and test software
products with the assumption that failures will oc-
cur. z/OS programmers are taught to assume that
the next instruction in their module may abnormally
terminate. z/OS itself provides robust recovery ser-
vices for programmers to exploit. In fact, nearly 60
percent of z/OS software deals in some way with the
inevitability of errors—isolating them, recovering
from them, and documenting them.2 Recovery test-
ing is really another class of z/OS scenario testing,
but it deserves special mention. Internal, module-
level recovery testing is normally the purview of FVT,
where an emulation environment can be exploited
to set breakpoints and generate error conditions. Re-
covery from external failure events fits more natu-
rally into the “real-world” environment of SVT and
IT. The external events can range from an unexpected
system interrupt (such as a machine check), to the
sudden loss of a major subsystem (such as a trans-
action monitor or database manager), to the failure
of a hardware component (such as a disk drive or
a zSeries coupling facility), to the complete failure
of a partner system in a clustered environment.

In many cases, z/OS has specific support for shifting
work away from the failing area, or dynamically re-
building the failed component on a partner system,
in such a way that the end user is unaware that any
outage occurred. In these cases, test scenarios are
devised where system load and stress are ramped up
to extreme levels, then individual failure events are
generated (either manually or through tools—see the
discussion on the “coupling facility error injection”
tool later in this paper) and the system is monitored
to ensure that the automated recovery actions op-
erate correctly. For example, one scenario would be
to issue an operator command to abruptly terminate
a CICS* (Customer Information Control System)
transaction monitor region that is processing user
work. This would force the region to go through its
recovery processing, which in turn would alert the
remaining regions to the failure and force new work
to be diverted to them. The scenario continues by
ensuring that the component failed without unex-
pected side effects, can be restarted cleanly, and re-
sumes normal processing.

Regardless of the nature of the recovery support un-
der test, it is important that a matrix of all critical
failure conditions be created and specific scenarios
devised to generate these conditions. Perhaps the
failure can be created through a simple operator ac-
tion. If not, then more sophisticated approaches or
tools must be devised. Of course, since failures in-

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 LOVELAND ET AL. 61

variably occur at the most inopportune times (i.e.,
when the system is at its busiest), the scenarios must
be executed while the system is running at high lev-
els of load and stress.

The z/OS development laboratory spends a signif-
icant portion of each z/OS release cycle testing re-
covery functions. This special focus has no doubt con-
tributed to the reputation of z/OS for reliability and
recoverability, and ultimately to customer satisfac-
tion.

Methodology summary. The z/OS test methodology
has several distinguishing characteristics. First is the
emphasis on steadily building upon what already ex-
ists, for everything from test plan development to
workload creation. This philosophy may not be
unique to z/OS testing, but it does stand in contrast
to a well-known item in many software “best prac-
tices” lists, known as “minimizing regression test cas-
es.” Minimizing test cases is not the policy for z/OS,
where part of the operating system’s attractiveness
is its ability to support multiple, disparate produc-
tion workloads on the same server, and where part
of a tester’s goal is to emulate this wide-ranging envi-
ronment with highly automated test streams. Build-
ing upon existing experiences and test suites has
proven to be a very efficient approach to meeting
that goal. Second, there is a heavy emphasis on load
and stress, both in and of itself as a vehicle for prov-
ing systems stability, and as a backdrop for new func-
tion- and scenario-based testing. This is critical to
validating system operation at maximum concurrency
and capacity utilization. Finally, the extensive recov-
ery support within z/OS demands and receives spe-
cial focus in every phase of the operating system’s
testing, ensuring that if an error does occur, real-
time system recovery will operate as designed and
customer impact will be minimized. It is an excel-
lent example of steering test efforts in the direction
of the defects that matter the most to customers.

Tools and approaches

A strong tool suite helps a test team to execute its
methodologies. Over the years, the z/OS team has
developed a set of tools that accomplish several goals.
They allow the automation of massive batch and in-
teractive test case streams while directing tester at-
tention to exception conditions. They address the
need to simplify test case creation in complex en-
vironments in order to optimize that development
resource, and do so in a modular way that allows re-
use. They interact with specially introduced “test-

ability” features in the operating system product it-
self. Finally, they focus on particularly difficult, yet
critical areas, such as recovery and data integrity. A
few of the key tools used by the z/OS test commu-
nity are described in the sections that follow.

Note that a common thread, reuse, runs through
these tools. Some tools have been designed from the
beginning to be modular and reusable. Others proved
so simple to use and effective for their initial pur-
pose that they were modified and extended many
times to meet new challenges. This consistent reuse
not only saves time and allows the achievement of
time-to-market goals; it also helps to ensure the sta-
bility of the base functionality of the operating sys-
tem during development stages, where significant en-
hancements are likely.

Automated workloads. A combination of batch and
interactive workloads running together forms the ba-
sis of z/OS SVT. Different tools are used to automate
their execution. For batch test cases, z/OS testers use
two primary tools: BERD and JMON.

The BERD (background environment random driver)
tool is a simple program that sequentially or ran-
domly submits test cases for batch execution, keep-
ing track of which ones have already been run to
avoid resubmitting a test case until the entire suite
has been run. User input to the tool includes a list
of MVS (multiple virtual storage) partitioned data sets
that contain the test cases to submit, a count of the
number of passes to make through all the test cases,
and the number of seconds to wait between test case
submissions (a value of zero tells the tool to submit
the test cases as fast as it can). This has proved so
effective that, whereas the test cases themselves have
continually grown and evolved, the tool for submit-
ting them has been used in the testing of z/OS and
its predecessors, and has remained largely un-
changed, since the early 1970s!

The BERD tool can drive the execution of many thou-
sands of test cases within a given 8-hour period of
machine time. Manual review of the output from
each test case in search of failures is untenable, so
a method of output reduction is needed. The z/OS
team uses the JMON (Job MONitoring subsystem)
tool for this purpose. JMON hooks into the z/OS job
entry subsystem (in particular, it takes advantage of
the subsystem interface of z/OS to establish itself as
a secondary subsystem) to intercept the actual re-
turn codes issued by each test case and compare them
against the expected return codes for that test

LOVELAND ET AL. IBM SYSTEMS JOURNAL, VOL 41, NO 1, 200262

case—an oracle, if you will. When the expected re-
sult is achieved, the test case’s output is flushed; when
the expected result is not achieved, the output is re-
tained and a highlighted message is sent to the op-
erator console. During the run, JMON can be que-
ried on the overall success/fail ratio for the workload;
at the end of the run, JMON can provide a more de-
tailed accounting for each test case. Furthermore,
JMON exploits z/OS system services to establish it-
self, monitor activity, and purge or retain output. So
JMON itself tests pieces of z/OS.

But batch processing is only part of the z/OS work-
load. Interactive test cases (which require simulated
users to, say, submit an input form and process the
response received) are also key. Interactive work-
load tests have in the past been driven through the
TPNS (teleprocessing network simulator8) tool, which
can simulate thousands of end users banging on key-
boards to process work through various on-line sys-
tems (such as CICS and IMS* [Information Manage-
ment System]). Many of these test cases run COBOL
programs that update legacy databases within the
context of a transaction monitor.

As zSeries customers have moved into e-business,
they typically have not started by creating new ap-
plications “from scratch.” A common first step is to
adapt their traditional, 3270 interface-based trans-
actional applications for the Web environment. In
z/OS testing, we took the same approach. Our tra-
ditional COBOL transaction programs were originally
written with no thought of Web processing. We
treated them as our “legacy” applications and added
new Web-based front ends, utilizing everything from
CGI (Common Gateway Interface) to EJB** (Enter-
prise JavaBeans**) technology, just as our custom-
ers have done. But TPNS was unable to drive the re-
sulting HTTP (HyperText Transfer Protocol), so new
tools were needed to generate load and stress. For-
tunately, workstation-based tools that simulate HTTP
users coming in over a network are widely available
in the industry and we were able to use one for this
purpose. This is another example of continually find-
ing ways to build upon existing test suites and ex-
ploit them for new environments.

Component Test Tool. When testing in the z/OS envi-
ronment, there are many environmental and oper-
ational requirements that a test case must meet to
be considered a comprehensive and useful test tool
on the platform. The concept behind the Compo-
nent Test Tool (CTT) was to create a testing frame-
work within which testers could quickly and efficiently

create and modify test cases using a highly structured
programming language and built-in, easy-to-use ser-
vices. The major strength of CTT is its support for
building a wide variety of z/OS operating environ-
ments, quickly, consistently, and, most importantly,
correctly. Traditional test case development in other
programming languages, over time, can spread in-
correct code models across many software test
groups, which can lead to invalid test cases and al-
low defects to escape. CTT encapsulates, in callable
services and other framework functions, the error-
prone code required to establish the complex sys-
tem environments in which test cases often need to
execute. This technology allows the creation of en-
vironments and test models in a consistent manner,
a very important aspect of code reuse. Once these
code models and constructs have been validated, they
can be quickly and confidently populated across
many test cases, across many testing groups on the
z/OS platform. This implementation of reuse has
been a critical aspect of increased testing produc-
tivity. Additionally, as we will explain, user updates
to CTT test cases do not require compile, assemble,
and link. Therefore, test case modification time is
significantly reduced and is, in some sense, interac-
tive.

Overview. CTT provides a set of functions, or “verbs,”
that allow the tester to very easily create test cases
in extremely complex environments. For example,
executing in SRB mode (a service request block is a
unit of work that carries higher than normal prior-
ity) in z/OS can require system locks, serialization,
and other complex processes in order to be estab-
lished. CTT performs all of the complex tasks of es-
tablishing these environments with the single invo-
cation of a verb. This simplicity allows the tester to
focus on the services being tested in SRB mode, rather
than expend time and effort on the nontrivial cod-
ing of the SRB mode environment.

Figures 3 and 4 show the two approaches that can
be used to create the SRB mode environment. The
code in Figure 3 implements the scheduling of the
SRB using a high-level programming language. We
see from the amount of code and complexity of the
services that must be called that there is opportu-
nity for error. The program must perform the fol-
lowing tasks: enter a system-authorized state to per-
form the schedule operation, load the actual program
that will execute when the SRB is dispatched, initial-
ize the SRB control structure that outlines the sys-
tem characteristics under which the SRB will execute,
and exit the system-authorized state.

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 LOVELAND ET AL. 63

Figure 3 Traditional z/OS SRB schedule

/* Code fragment to schedule SRB (Service Request Block) routine */
 DCL CVTPTR PTR(31) LOCATION(16);
 DCL SRBREG REG(6) PTR(31) RSTD;
 DCL SRBPTR PTR(31);
 DCL ASCBPTR PTR(31);
 DCL SRB_ADDR PTR(31);
 DCL MYSRB CHAR(LENGTH(SRBSECT)) BDY(WORD); /* SRB storage */
 /* SRB parameters */
 DCL SRB_PARMLIST BDY(DWORD);
 ?MODESET KEY(ZERO) MODE(SUP);
 /* GET NON-SWAPPABLE */
 GEN(SYSEVENT DONTSWAP);
 /* LOAD THE SRB */
 ?LOAD EP('SRBRTN') LOADPT(SRB_ADDR)
 GLOBAL(YES,F) ERRET(BADLOAD2);
BADLOAD2:
 IF SRB_ADDR=0 THEN /* If load failed */
 DO; /* Terminate */
 RETCODE=16;
 ?WTO('Load failed for SRB routine SRBRTN') ROUTCDE(11);
 END; /* End of load failed */
 ELSE DO; /* SRB loaded */
 SRB_PARMLIST=''B; /* Clear out parameter list */
 /* SETUP SRB SRBRTN */
 SRBREG=ADDR(MYSRB); /* Get addressability to SRB */
 RFY SRBSECT BASED(SRBREG);
 SRBSECT=''B; /* Clear out SRB */
 /************************/
 /* Initialize the SRB */
 /************************/
 SRBPTR = ADDR(SRB); /* Set address of SRB */
 SRBID = 'SRB '; /* Initialize acronym */
 SRBPASID = PSAAOLD -> ASCBASID; /* SRB is to run in Home address space */
 SRBASCB = PSAAOLD;
 SRBPTCB = PSATOLD; /* Purge tcb affinity */
 SRBEP = SRB_ADDR I '80000000'X; /* Indicate AMODE 31*/
 SRBPARM = ADDR(SRB_PARMLIST); /* Set up SRB parm list */
 SRBRMTR = ADDR(CVTBRET); /* No resource manager */
 /***/
 /* Actual call to the system to schedule the SRB for execution */
 /* Additional complexity on scheduling the SRB is introduced */
 /* when different types of system locks are required */
 /* This is the most simplistic case */
 /***/
 ?SCHEDULE SRB((SRBPTR)) SCOPE(LOCAL) LLOCK(NO)
 FRR(NO) MODE(NONXM);
/* GET SWAPPABLE */
 GEN(SYSEVENT REQSWAP);
/* Get unauthorized */
 ?MODESET KEY(NZERO) MODE(PROB);

LOVELAND ET AL. IBM SYSTEMS JOURNAL, VOL 41, NO 1, 200264

The code in Figure 4 makes use of the CTT test case
infrastructure. The interesting part is the function
named SCHEDULE. This single statement, by pass-
ing control to a CTT functional routine, performs the
entire set of tasks outlined in Figure 3 without re-
quiring the programmer to understand all of the de-
tails. Clearly, CTT makes it easier to develop test cases
and eliminates worry about the complexities of the
underlying environment.

Figure 5 shows another example of establishing en-
vironments using CTT. Here the tester has spread the
test case across multiple systems in a z/OS Parallel

Sysplex. This multisystem capability allows testers to
validate cross-system functions and processes that
are, otherwise, very complex to build and implement.

A CTT test case that is developed for multiple sys-
tems can execute in any multiple system Parallel Sys-
plex regardless of the number of systems currently
active. If the CTT test case has been coded for more
than the current number of active systems in the clus-
ter, CTT will intelligently distribute the portions of
the test case across the currently active systems. This
helps in CTT’s portability to, and reuse across, dif-
ferent test environments.

Figure 4 CTT z/OS SRB schedule

INIT TESTCASE=SCHEDULE,ASID=MAINASID,
 MAINID=MAINTASK; /* Identify the test case */
/**/
/* Sample CTT deck to Schedule an SRB and wait for the */
/* SRB to end its processing. */
/**/
STARTDEF TYPE=MAIN,ID=MAINTASK; /* Start of MAIN task */
 SCHEDULE SRBID=SRB1,ASID=MAINSID; /* Schedule an SRB */
 WAIT WAITID=WAITER1; /* Wait for SRB to complete */
ENDDEF TYPE=MAIN,ID=MAINTASK; /* End of MAIN task */

STARTDEF TYPE=SRB,ID=SRB1; /*Start of the SRB*/
 POST WAITID=WAITER1,ASID=MAINASID; /* Post main task */
ENDDEF TYPE=SRB,ID=SRB1; /* End of the SRB */

Figure 5 Multisystem CTT test

//CTTDECK JOB
 //CTTIN DD *
 INIT TESTCASE=CTTDECK,SYSTEMID=SYS1,
 CTT functions (VERBS) to be performed on SYS1
 INIT TESTCASE=CTTDECK,SYSTEMID=SYS2,...;
 CTT functions (VERBS) to be performed on SYS2
 INIT TESTCASE=CTTDECK,SYSTEMID=SYS3,...;
 CTT functions (VERBS) to be performed on SYS3

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 LOVELAND ET AL. 65

An additional capability allows other programming
language modules and programs to be called from
within the CTT environment, giving programmers the
flexibility to code in familiar languages as extensions
to CTT.

Implementation details. The design and implemen-
tation of CTT allows quick and convenient extend-
ability. CTT is comprised of two processes, parsing
and processing. During the parse phase the input is
deciphered and interpreted. CTT completely parses
the entire input stream and, if there are errors, re-
ports on all of them and the execution stops. If the
parse is successful, CTT builds control structures rep-
resenting each individual input statement. These con-
trol structures are linked into a double-threaded
queue structure that is an ordered representation of
the input statements. Once the parse phase has com-
pleted, CTT begins processing each individual con-
trol structure element to perform the function that
it provides. It processes these control structures us-
ing a simple dispatching algorithm that traverses the
queue and examines the control structure represent-
ing a particular input statement. One of the data

items within the control structure element is the ad-
dress of a program to be called to perform the func-
tions associated with the element. The control struc-
ture element contains all of the parameters and
options specified on the input statement. The pro-
cess program, which is called by the dispatching al-
gorithm, interprets the data passed via the control
structure element and performs the actual function
requested. Figure 6 shows the CTT dispatching ap-
proach.

This implementation is key to the extendability of
CTT. Both the parse program and process program
that are called by CTT are simple plug-ins. Testers
wishing to implement new or improved CTT verbs or
functions can simply specify an input pointer to a
set of verb definition files that specify the name of
the parse and process routines that CTT is to load
and utilize for the specific verb. At any time, testers
can then develop their own verbs or functions for
use under the CTT framework. The CTT user com-
munity reviews provided functions to determine their
value to the overall tool and its users. If there is suf-

Figure 6 CTT dispatching algorithm

. . .

1 2 N

DISPATCHING
ALGORITHM

INIT VERB

@ OF VERB
PROCESS

INIT VERB
PROCESS
PROGRAM

STARTDEF VERB
PROCESS
PROGRAM

ENDDEF VERB
PROCESS
PROGRAM

STARTDEF VERB

@ OF VERB
PROCESS

ENDDEF VERB

@ OF VERB
PROCESS

LOVELAND ET AL. IBM SYSTEMS JOURNAL, VOL 41, NO 1, 200266

ficient value in the new functions, the support is
added to the base CTT.

The conceptual implementation of the multisystem
CTT test case initiated as shown in Figure 5 is shown
in Figure 7. The CTT address space executing on SYS1
gets initiated. The main CTT address space commu-
nicates with the address spaces resident on all sys-
tems in the cluster to initiate the different portions
of the test case on the target systems. At the con-
clusion or abnormal termination of the test case (on
one or any of the target systems), all of the output
is routed back to the initiating system (SYS1, in this
case) where it is presented to the user.

CTT conclusion. CTT is a testing tool that was de-
veloped to be used by multiple testing phases in the
development process. Its primary use is in the FVT
phase, where system and application interfaces are
validated and verified. However, it is also integral
to z/OS SVT efforts where heavy load and stress con-
ditions are exercised. Therefore, it is critical that test
cases that are coded in this technology have self-ver-
ifying and self-cleaning characteristics. The system
verification test team can itself make use of CTT’s ca-
pabilities to build stress test cases that exercise the
new functionality of zSeries.

CTT has evolved, over the past 15 years, along with
the operating system and its new technologies. From
the basic implementation of z/OS application pro-
gram interfaces, to support for z/OS UNIX** systems
services and other environments, this tool has moved
with the platform to attack the most complex envi-
ronments and problems. This is another example of
adapting existing tools to a constantly changing bus-
iness environment.

Software testability and the coupling facility error
injection tool. In order to ensure recoverability of
components of the z/OS operating system, constant
interaction between the test and development com-
munities is required. By working closely with devel-
opers, testers get a better appreciation for the ac-
tual code implementation and how it can be tested.
Introducing “testability” or “ease of test” into the
software that is being verified allows the tester to val-
idate the software more efficiently and effectively.
“How easy will it be for our testers to verify and val-
idate this software solution?” is a question that all
designers and developers should be asking them-
selves. Independent testing tools that attempt to
hook into product code can interfere with the over-
all behavior of the product if not properly imple-

mented by the testers. It is critical for the testers to
work directly with the development and design teams
to see where there are opportunities to improve the
testability of the product code. One successful ex-
ample is the coupling facility (CF) error injection pro-
gram.

The CF error injection program was developed in or-
der to inject failures in S/390 coupling facility struc-
tures9 without interfering with normal processing
(i.e., without setting traps, modifying actual code,
etc.). To do this, system operation codes were de-
fined within the coupling facility support code to al-
low a tester to cause the next operation on the cou-
pling facility structure to fail. This enhancement
required help from architects and developers.

The user of the program targets a specific structure
name and requests that a failure be injected against
that structure. On receipt of this request, the cou-
pling facility returns a failure response code on the
next operation requested against that structure. The
capability to inject errors at random allows the test
organization to validate all of the appropriate recov-

Figure 7 Multisystem CTT test case

SYS1

SYS3

TC 5 TEST CASE

A/S 5 ADDRESS SPACE

CTTX 5 CROSS-SYSTEM CTT

SYS2

CTT TC

CTT TC

CTT TC

CTT A/S

CTTX
A/S

CTTX
A/S

CTTX
A/S

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 LOVELAND ET AL. 67

ery actions of z/OS and all of its subsystem products.
To date, there have been no field-reported problems
with regard to recovery from a coupling facility struc-
ture failure condition.

This program has become an integral part of the S/390
testing approach and, most recently, it has been re-
leased for use by customers to help create recovery
scenarios to test their applications and product so-
lutions.10 Each time new software making use of the
zSeries coupling technology enters test, the use of
the CF error injection tool should be considered.

To use this tool, the z/OS system programmer or op-
erator creates a scripted routine to invoke the test
tool. Then the operator or tester can invoke the tool
with the following z/OS command:

S INJERROR,PARM5’strname,XXX’

where INJERROR is the name of the tool, strname
is the name of the coupling facility structure into
which the error is to be injected, and XXX is an op-
tional parameter that indicates whether an old or
new instance of the coupling facility structure should
have the error injected. This parameter is applica-
ble in certain recovery cases.

The user receives the following messages to indicate
the result of the command:

*INJERROR: PROCESSING STARTED
- VERSION 2.0 - 09/01/99

*INJERROR: INPUT RECEIVED
- STR5strname, STRTYPE5N/A

*INJERROR: STR FAILURE INITIATED
AGAINST STR5strname

*INJERROR: PROCESSING COMPLETE

After receiving the “processing complete” message,
the application structure into which the coupling fa-
cility failure condition is introduced will enter into
its recovery actions. Simple to use and very effec-
tive, this tool allows the z/OS test team to ensure
the recovery of the coupling technology platform on
zSeries executing z/OS. This tool illustrates the kind
of technology needed to ensure continuous availabil-
ity on the zSeries platform.

Thrashers. Maintaining data integrity is an essen-
tial role of an operating system. Data placed in a stor-
age location (either in memory or on disk) is expected
to be valid and intact when it is later retrieved. This
is so fundamental that most applications program-

mers never even think about it; they know that the
operating system will handle it. But, as those who
develop operating systems know, the code that moves
data back and forth is just as likely to have bugs as
any other code. In fact, given the complexities in-
volved in managing storage, bugs in such code are
quite likely.

Compounding the difficulty, data integrity problems
are among the most difficult to debug. They are of-
ten caused by narrow timing windows related to se-
rialization. Since normal test applications (or cus-
tomer applications) assume data integrity is being
maintained, they likely will not immediately notice
when something has gone wrong. Instead, they sim-
ply continue processing the invalid data. Eventually,
they may be affected in some way (such as dividing
by zero) that will crash the application and bring it
to the attention of the tester. Or, the program may
end normally—but with invalid results. In any case,
by the time the error is detected, the system has long
since covered its tracks, the timing window has
closed, and prospects for debugging it are slim.

Validating data integrity requires testers to think dif-
ferently from other programmers. Specialized attacks
are required. Test cases must be written that do not
take it for granted that when a value is written to
storage, that same value will later be retrieved. In
fact, the test cases must assume the opposite—and
be structured in a way that will facilitate debugging
data integrity problems when they strike. In z/OS,
we use a set of tools for this purpose that we refer
to as “thrashers.”

Our first thrasher was written in the 1980s in response
to a data integrity bug in a prerelease model of the
3090 mainframe processor. The bug turned out to
be related to how the machine was handling a type
of memory used for fast paging and swapping, called
expanded storage. At the time, of course, no one
knew where the problem lay, only that data were be-
ing corrupted, and after weeks of analysis the cul-
prit had proved elusive. A thrasher was written; it
almost immediately caught the problem, which was
then quickly debugged. Since then, variations on this
short, deceptively simple program have been used
during the testing of many products and features re-
lated to storage management, whether on disk or in
memory. Easy to create and run, thrashers have
proven themselves to be a very powerful and valu-
able tool in the z/OS test arsenal.

LOVELAND ET AL. IBM SYSTEMS JOURNAL, VOL 41, NO 1, 200268

There are a few basic rules involved in creating a
good thrasher. First, the processing of the thrasher
code should be kept to the absolute minimum, to
ensure that system code, not the thrasher code, be-
comes the bottleneck. Second, the thrasher should
be designed in such a way that multiple copies of it
can be run in parallel, as separate address spaces or
processes. In z/OS, virtual storage is managed on an
address space basis, and one possible bug involves
pages from one address space being exchanged with
those of another—running multiple thrashers in par-
allel is the way to catch such problems. Finally, the
golden rule is: trust nothing.

Implementation details. Figure 8 shows a pseudocode
representation of a virtual storage thrasher. Param-
eters to control the thrasher’s execution are passed
in from the user, including the number of pages of
storage to thrash through and any delays desired for
throttling the thrasher’s speed. A template for what
will be stored in each page is defined. Note that the
first two fields here, PADDR and PASID, are used to
uniquely identify each page in a way that the pro-
gram can independently validate. For PADDR, the
page’s own virtual address is stored into itself. For
PASID, the identifier for the address space within
which this instance of the thrasher is executing is
saved. These two values will be used to determine
if corruption has occurred. The remaining data fields
serve a dual purpose. On the one hand, they pro-
vide useful debugging information. On the other
hand, they provide fields that the thrasher can
change, forcing real storage frames to be updated.

Next, the thrasher dynamically obtains the storage
table and initializes it. Note that the size of each en-
try in the table is related to how the underlying op-
erating system and hardware manages virtual stor-
age. z/OS manages storage on a 4096-byte page basis,
so each entry is 4096 bytes long.

Finally, the thrasher goes into an infinite loop and
begins working its way through the table. For each
page, it first checks for corruption. If any is detected,
it immediately forces abnormal termination. Typi-
cally, the tester sets a system trap for this abend,
which upon detection will immediately freeze the en-
tire system so that storage can be dumped and the
failure analyzed. If no corruption is detected, then
the program updates the table entry to force a write
to the real storage backing the virtual page. It per-
forms any delays requested by the user, then pro-
ceeds to the next page. Note that with this flow, af-
ter a page has been updated, it is allowed to “brew”

for a while before it is rechecked for corruption. This
is necessary in order to give errant timing windows
sufficient opportunity to arise, but of course this
means that there will be a slight delay between the
time an error occurs and when it is detected.

Execution. The thrasher program is started, and it
runs until it is canceled or detects a defect. As stated
earlier, multiple instances of a given thrasher are nor-
mally run concurrently. Similarly, streams of unre-
lated thrashers are often run in parallel. In fact, a
secondary benefit of thrashers is that they provide
an easy method for generating high load and stress,
with minimal setup requirements, and can provide
good background “noise” while other tests are run
in the foreground. Furthermore, the design described
here of that first thrasher written two decades ago
has been reused and extended over the years for ver-
ifying data integrity in many additional technologies
as they have come along, including such z/OS fea-
tures as data spaces, hiperspaces,11 coupling facil-
ities, BatchPipes,12 Hiperbatch, and the UNIX Sys-
tems Services hierarchical file system.

Thrasher conclusion. Data integrity problems are cer-
tainly at the top of the list of defects that matter the
most to customers, for any operating system. It is no
surprise that companies call their information tech-
nology buildings “data centers.” Thrashers have
proved themselves to be an easy-to-use, yet power-
ful tool for validating data integrity. Their simplicity
encourages frequent use and reuse by testers. This
is another example of taking a testing tool that has
demonstrated its effectiveness and finding ways to
build on that strength for the benefit of subsequent
projects.

Measurements

How effective are the methodologies, tools, and tech-
niques used by the z/OS test team? In some sense,
the widespread reputation of z/OS speaks for itself—
and the bar set by our customers can be very high.
For example, one grocery store chain in the United
Kingdom has run a six-system Parallel Sysplex,
spread across two sites, for as long as 550 days with-
out a single minute of sysplex-wide outage, planned
or unplanned. A major Canadian bank has kept their
six-system Parallel Sysplex, which runs their critical
banking applications, available for over 4 years. This
has been achieved while making numerous upgrades
to all hardware and software components to main-
tain currency. And a retail business in the United
Kingdom has achieved 100 percent application avail-

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 LOVELAND ET AL. 69

Figure 8 Pseudocode representation of a virtual storage thrasher

PROGRAM THRASHER(PAGES FIXED(31), WAIT1 FIXED(32), WAIT2 FIXED(32));

Declare PAGESIZE = 4096; /* One page equals 4096 bytes */
Declare STORPTR, PAGEPTR PTR(31); /* Pointers to beginning of obtained storage table, and individual pages */
Declare PAGENUM FIXED(31); /* Loop counter, corresponds to pages in storage table */
Declare REFNUM FIXED(31); /* Counter of number of times we've looped through the storage table */
Declare 1 PAGEMAP BASED(PAGEPTR), /* Template for each page in table */
 2 PADDR PTR(31), /* Address of this page in virtual storage */
 2 PASID FIXED(16), /* Address space ID which owns this page */
 2 * CHAR(2), /* Dummy halfword, so what follows will be on word boundary when viewed in dump */
 2 PTIME CHAR(8), /* Clock from last time this page was updated */
 2 PSYSNAME Char(8), /* Name of system */
 2 PJOBNAME Char(8), /* Name of job running this instance of the thrasher */
 2 PCOUNT FIXED(32); /* Number of times this page has been updated */
GET STORAGE ADDRESS(STORPTR) LENGTH(PAGES*PAGESIZE) BOUNDARY(PAGE); /* Get storage table to be thrashed through */
PAGEPTR=STORPTR;
DO PAGENUM=1 TO PAGES; /* Initialize storage table */
 PADDR=PAGEPTR;
 PASID=MyASID; /* MyASID obtained from system control block */
 STCK(PTIME); /* Store value obtained from current clock */
 PCOUNT=0; /* Page not trashed through yet */
 PJOBNAME = MyJob; /* MyJob obtained from system control block */
 PSYSNAME = SysName; /* SysName obtained from system control block */
 PAGEPTR=PAGEPTR=PAGESIZE; /* Go to next page in storage table */
END;

REFNUM=1;
DO FOEVER; /* Loop through storage area until job is cancelled */
 PAGEPTR=STORPTR;
 DO PAGENUM=1 TO PAGES; /* Make a pass through the storage area */
 IF PADDR¬=PAGEPTR | PASID¬=MyASID THEN /* Data integrity error detected */
 Force the program to abend; /* Force an OC3 abend */
 ELSE
 DO
 PADDR=PAGEPTR; /* Else, update page again... */
 PASID=MyASID; /* MyASID obtained from system control block */
 PJobName = MyJob; /* MyJob obtained from system control block */
 PSysName = SysName; /* SysName obtained from system control block */
 STCK(PTIME); /* Store current clock value in this page */
 PCOUNT=REFNUM; /* Update reference count for this page */
 PAGEPTR=PAGEPTR+PAGESIZE; /* Go to next page */
 IF WAIT1¬=0 THEN /* Delay between pages */
 Wait for WAIT1 Seconds;
 END;
 END;

 REFNUM=REFNUM+1;
 IF WAIT2¬=0 THEN /* Delay between passes through table */
 Wait for WAIT2 Seconds;
END;

LOVELAND ET AL. IBM SYSTEMS JOURNAL, VOL 41, NO 1, 200270

ability for a critical depot management application
running in a cluster spread across two sites for the
last eight years. Indeed, in the z/OS mainframe envi-
ronment, system reliability has been proven under
fire, time and time again.

Now we dig deeper and look at some data. Several
different classes of data could be examined, but here
we focus on indicators of defects that escaped dur-
ing test and were found in the field. In particular,
we look at system outage reports and high-impact
defects reported by customers.

In Figures 9 and 10, we used isotonic regression13 to
smooth the data, and the smoothed curves are shown
as red lines. This procedure finds the monotonic data
sequence closest to the actual data.

Figure 9 shows customer-reported unplanned out-
ages across more than one member of a sysplex clus-
ter. The data points are by month over almost three
years, and demonstrate a steady improvement in sys-
tem availability. This resiliency is the system char-
acteristic targeted by the test team’s focus on real-

time recovery. As described earlier, FVT tests
module-level recovery of internal failures and SVT
tests system recovery from external failures while the
system is performing multiple tasks under load and
stress conditions.

Figure 10 shows field-reported defects identified by
the customer as having significant impact to their sys-
tem. Each of these, of course, represents a problem
that escaped detection during test. The data are by
month over a three-year period and show an ongo-
ing reduction in high-impact defects. This reduction
parallels our testing objective: to target the defects
that matter most to customers.

So, the data show a clear trend toward the reduc-
tion of both system outages and high-impact defects
discovered in the field over time. Drawing definitive
correlations between field data and test effectiveness
is hardly an exact science. Certainly a number of
other factors contribute to these results, not the least
of which are changes in the product itself. Nonethe-
less, a key goal of the testing approaches described
in this paper (the steady buildup of reused test cases

Figure 9 Number of unplanned outages by month over a three-year period

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

MONTHS

N
U

M
B

E
R

 O
F

U
N

P
LA

N
N

E
D

 O
U

TA
G

E
S

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 LOVELAND ET AL. 71

combined with new ones that accurately attack com-
plex environments, a relentless focus on the testing
of recovery and data integrity features, cooperation
between testers and developers to ensure the test-
ability of new features, etc.) is to achieve a down-
ward trend in the defects that adversely affect cus-
tomer availability. The data show that actual results
are consistent with that objective.

Conclusion

The z/OS mainframe operating system and its pre-
decessors have been part of commercial computing
for decades. z/OS includes certain characteristics that
FORTUNE 500 companies rely on, such as highly us-
able capacity, strong concurrency, consistent appli-
cation compatibility, pervasive real-time recovery,
and robust data integrity. Validating these attributes
poses a set of challenges. This paper has explored
those challenges and described methodologies and
tools for meeting them. Examples were provided
based on implementation experiences at the IBM
z/OS development laboratory in Poughkeepsie, New
York, along with data showing the results of those
efforts. The intent was not to perform an exhaustive
review, but rather to provide a practical guide to sev-

eral key approaches that have proven themselves
over many years.

Not all techniques described here will be universally
applicable. However, we assert that use of the fo-
cused methodologies and standards, full exploitation
of easy-to-use, modular tools that encourage exten-
sion and reuse, cooperation between test and devel-
opment organizations to ensure the testability of new
features, and a relentless emphasis on heavy load and
stress in the system test phase should be key aspects
of any real-world software test strategy. Experiences
in testing z/OS have shown that key targets for tool-
ing are areas such as workload automation, simpli-
fication of complex programming environments, er-
ror injection, and data integrity. Not coincidentally,
these are areas of concern to customers who insist
on rich functionality and high availability. Exploit-
ing techniques and tools that zero in on these areas
is a way to find defects that matter.

Acknowledgment

We thank Ram Biyani for help with isotonic smooth-
ing.

Figure 10 Number of high-impact problems by month over a three-year period

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

MONTHS

N
U

M
B

E
R

 O
F

H
IG

H
-I

M
PA

C
T

P
R

O
B

LE
M

S

34 36

LOVELAND ET AL. IBM SYSTEMS JOURNAL, VOL 41, NO 1, 200272

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.,
or The Open Group.

Cited references

1. Enterprise Server Essentials, GF22-5122-00, IBM Corporation
(May 1999).

2. F. Bothwell, Meeting the Business Challenges of the 21st Cen-
tury: Comparative Large System Capabilities and Attributes,
Enabling Technologies Group, Inc. See http://www.etginc.
com/services/publications/index.shtml.

3. OS/390 V2R10.0 MVS Setting up a Sysplex, Chapter 4, “Man-
aging Coupling Facility Resources,” GC28-1779-09, IBM Cor-
poration (July 2000).

4. N. S. Bowen, J. Antognini, R. D. Regan, and N. C. Matsakis,
“Availability in Parallel Systems: Automatic Process Restart,”
IBM Systems Journal 36, No. 2, 284–300 (1997).

5. The z/OS integration test team’s experience reports are avail-
able on the Internet at http://www-1.ibm.com/servers/
eserver/zseries/zos/integtst/.

6. J. A. Whittaker, “How to Break Software,” Proceedings, The
International Conference on Software Testing Analysis & Re-
view, Orlando, FL (May 1–5, 2000).

7. MVS Hiperbatch Guide, GC28-1470-00, IBM Corporation
(March 1994).

8. TPNS V3R5 General Information, GH20-2487-08, IBM Cor-
poration (October 1996).

9. J. M. Nick, B. B. Moore, J.-Y. Chung, and N. S. Bowen, “S/390
Cluster Technology: Parallel Sysplex,” IBM Systems Journal
36, No. 2, 172–201 (1997).

10. The CF error injection tool is available on the Internet at
http://www-1.ibm.com/servers/eserver/zseries/zos/integtst/
injerror.html.

11. OS/390 V2R7.0 MVS Extended Addressability Guide, GC28-
1769-04, IBM Corporation (January 1999).

12. IBM BatchPipes/MVS Introduction, GC28-1214-02, IBM Cor-
poration (July 1995).

13. R. E. Barlow, Statistical Inference Under Order Restrictions:
The Theory and Application of Isotonic Regression, John Wiley
& Sons, Inc., New York (1972).

Accepted for publication September 25, 2001.

Scott Loveland IBM Server Group, 2455 South Road, Poughkeep-
sie, New York 12601-5400 (electronic mail: d10swl1@us.ibm.com).
Mr. Loveland is a senior software engineer in the z/OS devel-
opment laboratory. He joined IBM in 1982 after receiving his B.A.
degree in computer science from the University of California,
Berkeley. His entire career within IBM has been spent in test for
z/OS and its predecessors, MVSTM and OS/390w. His work has
spanned the function, system, and integration test disciplines, with
specialization in real storage management, Hiperbatch, dynamic
I/O management, Parallel Sysplex, networking, and Web-based
e-business transaction processing. He has authored two inven-
tions in the area of testing for data integrity, and teaches a class
within IBM on performing effective system testing. Most recently,
Mr. Loveland has been working as the Linux test architect in the
Poughkeepsie zSeries software test organization.

Geoffrey Miller IBM Server Group, 2455 South Road, Poughkeep-
sie, New York 12601-5400 (electronic mail: geoffm@us.ibm.com).

Mr. Miller is a Senior Technical Staff Member in the z/OS de-
velopment laboratory. He joined IBM after graduating in 1982
with a B.S. degree in mathematics from Muhlenberg College. He
has held various technical leadership positions in MVS, OS/390,
and z/OS product packaging and test. Mr. Miller worked closely
with the first customer of Parallel Sysplex technology, playing a
key role in the joint IBM-customer study and prototyping efforts.
He has designed and implemented many large-scale system and
integration test efforts for the zSeries platform and the z/OS soft-
ware stack. Mr. Miller is a core member of the zSeries Business
Leaders Council and also an original member of IBM’s corporate-
wide Software Test Community Leaders (STCL) group. Most re-
cently, he has been working as the chief test architect for the z/OS
Solution and Integration Test organization.

Richard Prewitt IBM Server Group, 2455 South Road, Pough-
keepsie, New York 12601-5400 (electronic mail: prewitt@us.
ibm.com). Mr. Prewitt, a senior software engineer in the z/OS
development laboratory, joined IBM in 1984 after graduating with
a B.S. degree in computer science from Pennsylvania State Uni-
versity. He has worked in test over his entire career within IBM.
He spent a number of years working as a function component
tester on MVS/XATM, MVS/ESATM, and OS/390. His area of ex-
pertise includes base components of the operating system, Par-
allel Sysplex, and coupling technology. He spent a significant
amount of time in designing and developing test-tool technol-
ogy, and was one of the original creators and authors of the Com-
ponent Test Tool (CTT), which is discussed in this paper. After
leading in many of these areas, he took on a leadership role in
the area of integrated testing. He was the overall leader for the
OS/390 COMBAT (OS/390 Community Build and Test) team.
This is a worldwide team of product packagers and testers who
built and tested an integrated testing platform for each release
of z/OS. Most recently, Mr. Prewitt has been working as the test
project manager in the IBM License Manager area.

Michael Shannon IBM Server Group, 2455 South Road, Pough-
keepsie, New York 12601-5400 (electronic mail: mshannon@
us.ibm.com). Mr. Shannon is a senior software engineer in the
z/OS development laboratory. He joined IBM at Essex Junction,
Vermont, in 1969. From 1969 until 1993 he was an MVS system
programmer at an internal data center. In 1993 he transferred
to the OS/390 System Test group in Poughkeepsie as a software
debugger. From 1993 to the present time he has worked as both
a software debugger and z/OS system programmer in the z/OS
System Test group.

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 LOVELAND ET AL. 73

