Using a model-based
test generator to
test for standard
conformance

In this paper we describe two experiments in the
verification of software standard conformance. In
our experiments, we use a model-based test
generator to create a test suite for parts of the
POSIX™ standard and another test suite for the
specification of Java™ exception handling. We
demonstrate that models derived from
specifications produce better test suites than the
suites specified by standards. In particular, our
test suites achieved higher levels of code
coverage with complete test requirements
coverage. Moreover, the test suite for the Java
study found code defects that were not exposed
by other benchmark test suites. The effort
involved in producing these models and test
suites was comparable to the effort involved in
developing a test suite by more conventional
methods. We avoid the state space explosion
problem by modeling only the external behavior
of a specific feature of the standard, without
modeling the details of any particular
implementation.

In recent years, software modeling has enjoyed
great popularity through the widespread adoption
of object-oriented models as an aid to software de-
sign." The use of software models for the genera-
tion of test suites has also been reported in both ac-
ademic settings>™ and in practical experiments.®~’
However, the specification-based modeling strategy
for generating test suites has yet to reach widespread
deployment in the software industry.

Software standards and language specifications are
defined in natural language. Although they are usu-
ally supported by compliance test suites, each test
suite is manually derived from the natural language
description. As such, it is hard to determine if the
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compliance test suite is complete. Moreover, despite
the huge investment of resources devoted to the
preparation of such standards, they are still inher-
ently ambiguous due to the use of natural language.
We pose the following questions: Could a less am-
biguous formal description be used instead of nat-
ural language? Can the conformance test suite that
tests a standard implementation be derived automat-
ically from the model specification?

The communications industry has used models writ-
ten in SDL (Specification and Description Language),
Estelle, PROMELA, UML (Unified Modeling Lan-
guage), and others to investigate standards conform-
ance.'!* These models are typically used for the
verification of individual properties of the implemen-
tation and less frequently to generate conformance
test suites. When they are used to generate test suites,
several notions of coverage are applied.

In this paper, we show how certain complex aspects
of software standards can be described using finite
state machine (FSM) models. We investigate the
POSIX** (Portable Operating System Interface)
fent1 byte range locking feature and the Java™* lan-
guage exception handling feature as described in the
standards. We also show that the test suites produced
by these models are stronger than the conformance
tests required by the standards. A larger case study
is required to determine if the definition of commer-
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cial software standards using formal languages is
practical.

In our approach, we developed an FSM model to sub-
stitute for the natural language description. The test
suite is automatically obtained from the model us-
ing an FSM model-based test generator named
GOTCHA-TCBeans.” GOTCHA-TCBeans is built on
top of the Mure model checker.

The FSM models can be reused to test different im-
plementations of the specification. In addition, as the
standard evolves, the model can be modified. As a
result, the test suite evolves automatically with the
standard. This innovation has the potential to change
the entire process of standard development, imple-
mentation, and maintenance, which leads to im-
proved quality of standard implementation. Finally,
the GOTCHA model resembles a light implementa-
tion of the standard and is easily understood by de-
velopers. This approach to standard implementation
enhances communication between testers and de-
velopers.

Previous work on test generation did not focus ex-
clusively on the use of state machine models. Other
techniques for test generation include reducing in-
finite domains to finite ones, data refinement, and
syntactic coverage of the specification model. ">
Syntactic coverage of the specification model is anal-
ogous to code-based coverage of the implementa-
tion.>® Our approach to coverage relates to the
functionality and not to the syntax of the specifica-
tion. Thus, the coverage criteria defined in our case
studies are directly related to the semantics of the
test objectives (e.g., test all types of lock collisions)
and fit better with Marick’s notion of test develop-
ment. !’

Automatic generation of test suites for protocol con-
formance is characterized by the existence of a for-
mal specification for the protocol (typically in the
SDL specification language '). Similarly, UML-based
test generation assumes the existence of a UML spec-
ification that is used in the test generation process.?
In contrast, we assume in our studies that software
specifications use natural language, a situation typ-
ical for industrial software. Our studies indicate that
the development of partial formal models focused
on a specific feature or component of the software
under test, for the sole purpose of test generation,
is feasible and can provide good results in a realistic
industrial setting.
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We chose two very different case studies. The first
study tested a subset of the POSIX'® byte range lock-
ing standard API (application programming inter-
face). The test cases are sequences of API invoca-
tions. In the second study, we tested the Java
language exception handling feature. The test cases
are programs in the Java language. In both case stud-
ies, the test cases are generated automatically from
the FSM model.

The IEEE (Institute of Electrical and Electronics En-
gineers) POSIX Certification Authority and the Na-
tional Institute of Technology Standards and Con-
formance Testing Group (SCTG) " offer a validation
service and conformance test suites for POSIX. The
use of the SCTG test suite is the accepted practice
for testing conformance to the POSIX standard. We
are not aware of any test suites produced for the
POSIX standard that use FSM modeling.

In the second study, faults are hard to observe even
when a defect occurs. This is due to the nature of
the software under test. The component under test
is a part of the garbage collector that analyzes the
program control flow. This analysis is difficult when
the program includes exception handling.?** A se-
rious fault in the garbage collector occurs whenever
it collects live objects. If a defect occurs in the com-
ponent (the map generator), the fault may not man-
ifest itself. This depends on the specific program be-
havior. As a result, a combination of black box and
white box testing strategies is required. Furthermore,
complete code coverage is needed in order to fully
exercise the map generator. Hence, the second study
combines FSM modeling and automatic measurement
of code-based coverage.

In the section “Strategies for software testing” that
follows, we place our research within the state-of-
the-art of software testing. Then, in the next two sec-
tions, “FSM modeling background” and “Modeling
and test generation framework,” we introduce the
tools and techniques we used in our studies—
FSM-based modeling and coverage-directed test gen-
eration. Next we describe our two case studies in
“The POSIX byte range locking study” and “The Java
exception handling study” sections. The last section,
“Conclusions,” contains our final comments.

Strategies for software testing

Two basic approaches to software testing are spec-
ification-based testing (black box) and program-
based testing (white box). The black box approach
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to testing®* focuses on the externally observable
behavior of a program under test, whereas white box
testing utilizes internal knowledge of the program
under test, such as the program control flow or the
program data flow.?* Research on software testing
indicates that both approaches are useful in the effec-
tive detection of faults.” This paper focuses on spec-
ification-based, black box testing.

Two strategies for the generation of tests are risk
analysis and coverage analysis. Under risk analysis,
we include statistical-based testing and manual, risk-
based, test generation. Under the heading of cov-
erage analysis we include combinatorial design tech-
niques and state machine enumeration techniques.

Risk analysis test generation. In statistics-based soft-
ware testing,? a test suite is chosen using some prob-
ability distribution. The probability distribution at-
tempts to capture usage patterns of the program
under test. The probability distribution can be de-
fined over the space of possible program inputs. Al-
ternatively, a state of a program that accepts inputs
is defined by the values of its internal variables. Each
program state determines a different probability dis-
tribution over the set of program inputs, which yield
a Markov chain. For example, if a file is opened for
aread operation, a subsequent write operation is il-
legal, whereas a subsequent read operation is legal.
In this case, the program state is determined by the
way the file is opened. The history of the test results
can be used to derive reliability measures, such as
mean time to failure (MTTF) and test stopping cri-
teria.

On the one hand, statistics-based software testing is
good at producing formal estimates of program re-
liability. On the other hand, it is often hard to es-
timate the typical usage of the software and thus
provide an accurate probability distribution.? Fur-
thermore, the usage pattern of the software may
change, thus requiring the software reliability mea-
sures to be re-estimated. Finally, if the cost of a fault
is high, as in safety critical software, the testing pro-
cess must guarantee that the software has no defects
even under test scenarios that have very low prob-
ability in the usage model.

Strategies have been suggested in References 27 and
28 for the manual selection of test cases from a model
in order to minimize the risk of defects escaping to
the field. These strategies are applied to a UML model
specification in Reference 27 and a version of a
statechart model in Reference 28. These approaches
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are especially relevant as a supplement to automatic
test generation.

Coverage-based test generation. Exhaustive black
box testing of commercial software systems is imprac-
tical due to the size of the input space. Coverage tech-
niques define a set of subdomains whose union con-

Because the test designer
specifies an entire test suite,
instead of a single test,
our approach requires less manual
work than explicit test generation.

tains the input space. The size of this set is usually
much smaller than the size of the original input space.
Only a representative of each subdomain is chosen
in order to cover the input space. The choice of the
subdomains is usually guided by some fault model.
Test generation techniques have focused on cover-
age of the input space to meet the testing objectives.

Combinatorial design strategies are used to obtain
coverage. For example, the AETG** tool from Bell-
core implements a test generation coverage tech-
nique based on combinatorial design.? In contrast
to the state machine enumeration techniques dis-
cussed below, combinatorial-based testing techniques
are scalable, but do not deal with the selection of stim-
uli sequences to test the implementation. Recent at-
tempts to deal with this problem are reported for
UML specifications using UCBT™ (use case-based test-
ing) and API testing using SALT."

In state machine enumeration, different techniques
such as state exploration have been used to gener-
ate the tests. All of these test generation techniques
have worst-case exponential run time as a result of
the reachability state space enumeration. Compared
to the combinatorial design strategies, these tech-
niques deal well with the selection of complex stim-
uli sequences. When using state machines, or any
other automated test generation technique, the cov-
erage criteria may be provided implicitly, by stating
a general feature of the model, or explicitly by pro-
viding a list of all features to be covered.

Explicit test generation requires that the test designer
choose what to test through the choice of an explicit
test purpose (or goal) for each test case generated.
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Automating the selection of individual stimuli in each
test case requires user intervention and considerable
manual input for each test case.* Test generation
tools that support explicit test generation include:
TGV, SAMSTAG, TVEDA, Verilog’s ObjectGeode™*,
and Telelogic’s Tau (see Reference 32 for references
to these tools). All of these tools are SDL-based and
have been applied primarily to telecommunication
systems.

The test selection criteria used in implicit test gen-
eration are discussed by Horgan et al.** An example
of implicit test generation is the extended message
flow graph (EMFG) state exploration used in Refer-
ence 32 to automatically obtain a test suite. A data-
flow-oriented criterion is used during state explora-
tion to select the tests. This paper demonstrates the
method with the all-use criterion. Others use cov-
erage of the state machine structure as a test selec-
tion criterion. For example, ObjectGeode and Tau
support structural coverage test generation of the
specification.* Implicit test generation requires less
manual effort compared to the explicit approach, but
has less flexibility in the choice of test criteria.

In this paper, we present a different approach to test
generation. A projection graph is derived from the
specification state machine by the test designer based
on some intuitive concern or fault model. During
state exploration of the specification state machine,
structural coverage of the projection graph is ob-
tained. Thus, the test designer specifies an entire test
suite instead of a single test as performed in explicit
test generation. In view of the above, our approach
requires less manual work than explicit test gener-
ation. In addition, the expressive power of the pro-
jection graph for specifying selection criteria is stron-
ger than the selection criteria used in the implicit
method and may be simpler and more natural than
the explicit method. For example, given that the spec-
ification describes several processes and their inter-
action, a projection graph can easily be used to ob-
tain the coverage of the transactions of a single
process. This coverage requirement cannot be de-
scribed by the implicit method and is not easily de-
scribed by the explicit method, since a goal for each
process transaction must be specified.

We apply our approach to the testing of the stan-
dard conformance of nontelecommunication soft-
ware. We use an extension of the Mur¢ description
language, 1> which is suitable for software modeling.
Others have applied implicit and explicit state ma-
chine test generation methods to the testing of non-
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telecommunication software. The Unified Modeling
Language (UML) is used for software specification.
The UML statecharts were used in References 35 and
36 for implicit UML-based test generation. Prototypes
UMLTest? and Tn'T* were integrated with the Ra-
tional Rose CASE (computer-aided software engi-
neering) tool.*® In Reference 37 the SCR (software
cost reduction) requirement method was used to
specify the software and derive implicit and explicit
tests that structurally cover the state machine or ver-
ify that system properties are met. As explained in
the previous paragraph, the use of state machine pro-
jection for test selection criteria differentiates our
work from the explicit and implicit approaches.

FSM modeling background

Most software units can be viewed as reactive sys-
tems that receive stimuli from their environment and
respond by emitting observable output signals and
changing their internal state. A system is initialized
in one of a known subset of states and its responses
to stimuli depend only on its initial state and the se-
quence of stimuli it received. The system’s behavior
is specified in a specification document or a standard
that describes the valid input stimuli in a given state
and the set of acceptable responses to a given se-
quence of valid stimuli. As such, it is natural to model
such systems by state machines. We provide an ex-
ample of such a model in the following section.

FSM models of software behavior. A state machine
is defined to be a 5-tuple (S, I, A, T, R) where S
is a set called the state set, I is a subset of the states
called the initial state set, A is a set called the input
alphabet, R is a set called the response alphabet, and
T is asubset of § X 4 X § X R called the transition
relation. The state set and the input alphabet are fi-
nite sets. The interpretation given to the transition
relation is that (s, a, t, r) € T, if and only if the
system, when in state s, reacts to input a by moving
to state ¢ and outputs response ». We say that input
a isvalid in state s if there exist t and r such that (s,
a, t,r) € T. We say that the software behaves de-
terministically if (s, a, t,r) € T and (s, a, q, v) €
T implyt = g andr = v.

When testing a software unit, it is important to val-
idate the responses to a sequence of stimuli, as well
as the internal state of the software after each stim-
ulus is processed. Although this is not always pos-
sible, certain aspects of the internal state may be ob-
servable. It is common practice to view the state set
S as a subset of the Cartesian product of sets D,
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D,, ...,D,,wherethe D, are referred to as the do-
mains of the i-th state variable x;, where some, but
not all, of the x; are observable. Our test generation
tools require the domains and the input alphabet to
be finite sets.

An abstract test case for a state machine consists of
a sequence of input stimuli followed by the expected
response and the values of the observable state var-
iables expected to occur following the stimulus. An
abstract test suite is a set of abstract test cases.

In this paper we represent a state machine by the
labeled directed graph of the associated Mealy ma-
chine,* which is defined as follows: each node is la-
beled by an (n + 1)-tuple that contains the values
of the state variables and an output response. Each
arc is labeled by a member of the input alphabet.
For each response r, a directed arc with label a con-
nects from node (s, r) to the node (g, v), if and only
if (s, a, q, v) €T, (ie., (s, a, g, v) is in the tran-
sition relation). An abstract test case is then just a
directed path in this labeled directed graph whose
initial node is an initial state.

Coverage criteria. The quality of a test suite for a
software unit is often measured in terms of its cov-
erage properties. The most commonly used cover-
age properties refer to aspects of the source code,
such as statement coverage, branch coverage, or de-
fine-use coverage. For a catalog of software cover-
age models, see Reference 24. In the context of mod-
el-based testing, the most common coverage criteria
are state coverage and transition coverage. For the
models we use in testing standards compliance, the
number of states and transitions is too large to make
state or transition coverage a practical measure of
the quality of any reasonably sized test suite. The
coverage criteria we introduce in this paper are re-
lated to the coverage of the projection state machine
model.

Let G = (V, A) be the digraph of a state machine
with node set I and arc set 4. Further, let £ be an
equivalence relation on V, with [v] denoting the
equivalence class that contains v. We define the pro-
jection state machine graph G[E] = (V[E], A[E])
as follows: the nodes of the graph are the equiva-
lence classes under E, so that V[E] = {[v] : v €
V'} and there is a directed arc from [ v] to [w] if there
exists an arc in G from some member of [ v] to some
member of [w]. When the vertices are labeled by
tuples, it is natural to consider the projection onto
some subset of values in the tuple as the equivalence
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relation. For example, if the nodes are labeled by
triples (x, y, z) we can project onto the first two var-
iables using the equivalence relation defined by (x,
Y1, 21) ~ (X3, ¥2, 22), if and only if, x;, = x, and
Yi = Yo

A coverage task is an abstract concept that is either
validated by an abstract test case or not, i.e., there
exists a simple decision procedure to decide whether
or not a particular task is validated by a particular
test case. A test case that validates a coverage task
is said to cover the task. A coverage criterion is a set
of coverage tasks. An example of a coverage task is
a node in the projection state machine graph. An
abstract test case (path in the state machine) covers
this task, if and only if a representative of the pro-
jected state lies on the path.

A natural criterion for the coverage of a standard
is that every requirement of the standard is tested
by some test case in the suite. We translate these re-
quirements, in a natural way, to various projections
of the state machine model. When we use projection
state coverage, each coverage task is defined by an
equivalence class of states. A test case covers such
a task, if and only if it passes through a member of
the equivalence class of states. We say that a mem-
ber of the equivalence class is a representative of the
task.

An abstract test case is always a path in the state ma-
chine graph. The paths in the state machine graph
are always paths in the projection graph, but the con-
verse is not true. It is possible to find a path in the
projection graph that does not have a representative
path in the state machine. Figure 1A presents a sim-
ple state machine with four states, S = {s, a, b, t},
and three transitions. The equivalence relation E =
{{a,b}, {s}, {t}} defines a projection graph (see
Figure 1B). In the projection graph, there exists a
path of length two from s to ¢, whereas in the state
machine the only path from s to ¢ has length three.

Test translation. Test cases produced from a state
machine model are phrased in the abstract terms of
the model. In order to generate executable test
scripts these abstract test cases must be translated
into concrete form. This involves creating a trans-
lation of the stimuli into execution statements and
translating the expected responses and observable
state variables into executable verification state-
ments. The tools described in the following section
include a framework for performing this translation.
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Figure 1  (A) State machine graph; (B) projection state machine graph

Figure 2 GOTCHA architecture
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Modeling and test generation framework

In this section, we describe the GOTCHA-TCBeans
modeling and test generation framework.

System architecture and methodology. We assume
that the software under test is specified in some form,
probably in a combination of natural language and
diagrams or tables, that specifies the valid stimuli and
the software’s expected responses.

Q4 FARCHI, HARTMAN, AND PINTER
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The first step in using our methodology to test the
software is to create a state machine model of the
specifications in the GOTCHA Definition Language
(GDL). This language, described in further detail in
the section “Modeling language,” is a text-based lan-
guage that extends the Mur¢ Description Lan-
guage.'? The user also uses GDL to write a set of cov-
erage criteria and test constraints to direct the test
generation. This is the process 1 (modeling) shown
in Figure 2.
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In process 2, the GOTCHA tool automatically gen-
erates an abstract test suite that satisfies the test con-
straints and covers each of the tasks specified by the
coverage criteria.

The abstract test suite and a translation table writ-
ten by the tester are the input to processes 3 and 5.
The translation table for the TCTranslator tool can
be written either in Java or in XML (Extensible
Markup Language). A test execution engine executes
this suite. In many practical situations the software
under test has already been through a testing phase
and a test execution framework already exists (pro-
cess 4 in Figure 2). However, for a new product or
one without an execution framework, TCBeans pro-
vides a tool, TCExecutor, that performs both trans-
lation and execution in a single step and creates a
test execution log (see process 5 in Figure 2). The
advantage of using TCExecutor is that the test log
is in a format compatible with the abstract test suite
and the faults detected are clearly mapped to the
behavior that conflicts with the specifications.

Stack example. Here, we introduce the specification
of a stack. The stack class public interface has five
methods:

* push(unsigned int i)—pushes the element i onto
the top of the stack. Returns 0K if the stack is not
full, otherwise returns the string IMFULL

* pop( )—returns the top element of the stack and
oK if the stack is not empty, otherwise returns —1
and the string IMEMPTY

* undo( )—undoes the effect of the previous method
call; returns 0K if successful or otherwise the string
CANTREMEMBER; two successive undo( ) operations
are considered unsuccessful.

e delete( )—destroys the stack and returns the
memory allocated back to the system

® stack(unsigned int i)—creates a stack of size i.
Returns 0K if space successfully allocated

In the following example we specify a test suite that
focuses on the three methods: push (i), pop( ), and
undo( ). We assume that the allocation of space and
its return to the system are beyond the scope of the
test plan.

Modeling language. GDL is used to describe the ab-
stract notion of a state machine and projection graph.
GDL consists of three parts: a section that declares
the state variables and other global data, a section
of procedures and functions, and a section that de-
scribes the valid stimuli and the software response
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to these stimuli. The syntax and semantics of GDL
are taken from the Murge description language
(MDL), which is defined in Reference 12. In the fol-
lowing paragraphs we make the differences between
GDL and MDL explicit.

The first section of the model description contains
declarations of constants, types, and global variables.
The global variables in the model are the state var-
iables and result alphabet, which label the nodes of
the state machine digraph. In the stack model we
define:

* Constants for the maximum integer to be used in
testing and the size of the stack to be tested:

Const MAXINT : 2;
Const STACKSIZE : 4;

* Type definitions for the return code, parameter for
the push method, and result of the pop ( ) method.
We have made a conscious modeling decision to
create six return codes rather than using the 0K
code, for the successful response to push( ), pop( )
and undo( ). This decision reflects our desire to
know which method is called and to use this in-
formation in the coverage criteria specification.

Type returnCode_t : enum {OK_UNDO, OK_PUSH,
OK_POP, IMFULL, IMEMPTY, CANTREMEMBER};

Type unsignedInt_t : 0..MAXINT;

Type popResult_t : —1..MAXINT;

¢ Global state variables for the stack, its current size,
and the output response:

Var Stack : array[l..STACKSIZE] of
unsignedInt_t;
Var CurrentSize : 0..STACKSIZE;

Var Result : Record
code : returnCode_t;
popResult : popResult_t;

EndRecord;

The state variables define the labels on the nodes in
the state machine graph. In this example, each node
is labeled by a seven-tuple of values, (Stack[1],
Stack[2], Stack[3], Stack[4], CurrentSize, Result.
code, Result.popResult). Figure 3 shows a partial
derivation of the stack machine state space. Each
rectangle represents a possible state of the model
state space. The stack is represented by a table

FARCHI, HARTMAN, AND PINTER 9§



Figure 3 The state space of the stack model (partial view)
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(Stack[1,2,3,4]) with an arrowhead that indicates
its size (CurrentSize). The Result fields (Result.
code, Result.popResult) are written below the table.
An arrow between two rectangles is labeled by the
stack operation that changes one state to the other.

In GDL, as in MDL, all the variables must be com-
posed of either finite subranges of the integers or
explicitly enumerated strings. This is to guarantee
that the state machine specified is a finite structure
that permits state enumeration.

The second section of the model contains declara-
tions and descriptions of functions and procedures
(possibly including local variables), used in succeed-
ing sections of the model. These functions and pro-
cedures aid readability; they are not essential to the
modeling process. For the stack model we define two
procedures: PushAction (i) and PopAction( ), which
encapsulate the behavior of pushing and popping,
respectively, and enable their use by the undo()
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—>
OK_PUSH
OK_PUSH
1 -

method. In a real implementation of the stack class,
these procedures are private class methods.

procedure PushAction(i : unsignedInt_t);

begin
if CurrentSize = STACKSIZE
then
Result.code := IMFULL;
else
Result.code := OK_PUSH;
for j := CurrentSize to 1 by -1 do
Stack[j+1]1 := Stack[j]1;
endfor;
Stack[1] := 1;
CurrentSize := CurrentSize + 1;
endif;
clear Result.popResult;
end;

The clear macro sets every member of a data struc-
ture to its minimum value.

The procedure PopAction( ) is similar. If the stack
is empty, the procedure returns IMEMPTY; otherwise,
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itsetsResult.popResultto Stack[1] and updates the
stack and its size accordingly.

The third section of the model contains valid stim-
uli specifications and the responses to these stimuli.
These are transition rules that label the arcs (see Fig-
ure 3). Each transition rule is a command with a
name, a precondition (a Boolean expression in the
global and local variables), and an action (a block
of statements that modifies the values of the vari-
ables). If the precondition evaluates to TRUE at a par-
ticular state, the method and its inputs are valid in
that state. The action can be an arbitrarily complex
statement block that contains loops, conditionals,
procedure, and function calls. Sets of transition rules
may be defined, where the rule’s precondition and
action receive one or more parameters. These
rulesets are shorthand for writing a separate copy
of the rule with each of the possible values of the
input parameters. In the stack example we have a
ruleset for the push(i) method and a rule for each
of the methods pop( ) and undo( ) to be tested.

Rule pop()
TRUE
==>
Begin
PopAction( );
End;
Ruleset i:unsignedInt_t Do
Rule “push(i)”
TRUE
==>
Begin
PushAction(i);
End;
EndRuleset;
Rule “undo()”
TRUE
==>
Begin
switch Result.code
case OK_UNDO, IMFULL, IMEMPTY,
CANTREMEMBER:
Result.code := CANTREMEMBER;
clear Result.popResult;
case OK_PUSH:
PopAction( );
Result.code := 0K_UNDO;
case OK_POP:
PushAction(Result.popResult);
Result.code := O0K_UNDO;
endswitch;
End;
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In this example, all the rules and all input param-
eters are valid in all states, so the precondition on
each of the rules is simply TRUE. In more complex
testing situations, it is often necessary to restrict the
parameter values in order to avoid over-enthusias-
tic testing with illegal input values and impossible
sequences of method calls.

Rules as defined above can only be used for deter-
ministic models of software, since there is only one
possible outcome state and result on the application
of any given stimulus.

Coverage criteria and test constraints. The MDL has
a syntax for describing the initial states of the state
machine—it is simply a rule with no precondition.
The initial state of the stack example is coded as fol-
lows (where TC_StartTestCase has been defined as
a synonym for Mur¢’s StartState):

TC_StartTestCase *“stack(STACKSIZE)- create
Initial state”
Begin
clear Result;
clear Stack;
clear CurrentSize;
End;

GDL defines other testing constraints, including a
condition for ending a test case. In the stack exam-
ple we use constraints to insist that each test case
end with an empty stack as follows:

TC_EndTestCase “delete()”
CurrentSize = 0;

This is a Boolean condition (not an assignment) that
instructs the test generator that each test case should
end at a state where this condition is TRUE.

GDL also contains a variety of test constraint syntax
constructs other than the TC_StartTestCase and
TC_EndTestCase. These include means for specify-
ing forbidden states, forbidden subpaths, and other
forbidden configurations to constrain the test cases
generated. Since only TC_StartTestCase and
TC_EndTestCase were used in modeling the standards
described in this paper, we omit any detailed discus-
sion of the other testing constraints.

The definition of four different coverage criteria in
GDL is a major innovation that can be used to direct
the test generator in its choice of test cases. These
four coverage criteria direct the test generator to cre-
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ate test cases according to the syntax and semantics
described below.

Some state coverage is an explicit criterion that de-
scribes a single coverage task. The task representa-
tives are states that satisfy a Boolean expression in
the state variables. For example, specifying:

CC_Some_State “Failed Undo with full stack”
CurrentSize = STACKSIZE & Result.code =

CANTREMEMBER;

instructs the test generator to create a single test case
passing through some state where the Boolean con-
dition is true.

Some transition coverage is also an explicit test cri-
terion that describes a single coverage task. The task
representatives are transitions that pass from a state
where the first Boolean expression is true to a state
where the second Boolean expression is true. For
example, specifying:

CC_Some_Transition “Empty the stack with an
Undo command”
From Result.code=0K_UNDO To Result.Code=
IMEMPTY ;

instructs the test generator to produce a test case
with a transition from any state with Result.code=
OK_UNDO to any other state with Result.code=
IMEMPTY.

Projection state coverage describes a set of coverage
tasks and not a single task. Each task is a state in a
projection of the state machine. The projection var-
iables are given in a list of expressions that follow
the keyword 0n. A Boolean expression may also be
used to further partition the projected state space.
For example, specifying:

CC_State_Projection “Test that each value
reaches the top of the stack”
CurrentSize > 0 On Stack[1];

instructs the test generator to generate a set of tests,
one for each possible value of the variable Stack[1]
and furthermore ensuring that the CurrentSize is
strictly positive at each representative state. This is
shorthand for three (0..MAXINT) separate cover-
age tasks. The first coverage task is the equivalence
class of all states with CurrentSize > 0 and
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Stack[1]=0, the second task is represented by any
state with CurrentSize > 0 and Stack[1]=1, etc.

The strength of the notation lies in its ability to spec-
ify a set of test cases, without knowing a priori how
many tasks will be generated. For example:

CC_State_Projection “Check all possible
result combinations”
TRUE On Result;

instructs the test generator to generate a test case
for each different value of the record Result observed
in test. An upper bound for the number of possible
Result records is 24, since there are 6 possible val-
ues of the code and 4 possible values of the
popResult. Most of these combinations, however, are
never encountered. A test case is generated for
each projected state that is reachable from a
TC_StartTestCase state. In the stack model, 11 of
the 24 possibilities are observed (4 with 0K_UNDO, 3
with 0k_PoP, and 1 with each of the other 4 return
codes).

Projection transition coverage describes a set of cov-
erage tasks. The syntax includes two Boolean expres-
sions and two lists of expressions, one for the first
state of the transition and one for the second state,
so that:

CC_Transition_Projection “Check all
transitions of the Result.code”
From_Condition TRUE From Result.code;
To_Condition TRUE To Result.code;

instructs the test generator to generate up to 36 test
cases including a transition from each return code
to each other. One such transition is the one from
0K_UNDO to IMEMPTY specified above in the some tran-
sition coverage criterion. In the stack model, 24 of
the 36 combinations are reachable.

Abstract test generation. The process of test gen-
eration is automated by GOTCHA, which explores the
state space described by the GDL model. The user
has several alternative test generation strategies, in-
cluding breadth-first search, coverage-directed
search, and on-the-fly test generation. Breadth-first
search and on-the-fly test generation algorithms are
well known. Coverage-first search involves giving pri-
ority to exploring states that lead to new coverage
tasks before those that lead to areas of the projec-
tion state space that have already been encountered.
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The principle that underlies GOTCHA’s test gener-
ation strategy is the construction of a search tree that
explores the entire state space. This is done by tra-
versing all the reachable states of the state machine.
The set of coverage tasks is constructed by observ-
ing each instance of a projection state or transition
that satisfies a coverage criterion. An on-line ran-
domization algorithm chooses a reachable repre-
sentative of each coverage task encountered.
GOTCHA performs a further reachability analysis,
starting from the randomly chosen representative,
to determine if a TC_EndTestCase condition can be
reached from the specific instance of the coverage
task. If a test that satisfies all the test constraints ex-
ists in the state machine graph, then the test case or
path is output to a file in an XML format for describ-
ing paths.

Ifno TC_EndTestCase condition can be reached from
a particular instance of a coverage task, another rep-
resentative of the task is chosen. If no TC_EndTest-
Case condition is reachable from any reachable rep-
resentative of a coverage task, then the user is
notified of the fact that a reachable task has been
identified with no test cases satisfying the test con-
straints through any of its representatives.

The abstract XML test suite comprises the following
elements:

* The name of the model, for example,

modelname = “stack”

* A list of the state variables and their ranges, for
example,

<StateVar name = “CurrentSize” range =
“0..4” />
<StateVar name = “Result.code” range =

“OK_UNDO, OK_PUSH, OK_POP,
CANTREMEMBER, IMFULL, IMEMPTY”

/>
<StateVar name = “Stack[1]” range =
“0..27 />

* A list of the rules or transition actions, for example,

<RuleDesc name = “push(unsignedint i)”>
<Param name = “i” range = “0..27 />

</RuleDesc>

<RuleDesc name

<RuleDesc name

“pop()” />
“undo( )” />
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¢ A set of test cases. Each test case consists of a se-
quence of rules, for example,

<Rule>

<MethodPattern> push(unsignedint 1)
</MethodPattern>

</DatalnputPattern> i=1
</DatalnputPattern>

</Rule>

followed by the state attained after the rule has
been applied, for example,

<State>
CurrentSize = 1
Stack[1] =1

Result.code = 0OK_PUSH
Result.popResult = -1
</State>

The final element of atest caseisa TC_EndTestCase
rule name, for example,

<Rule>

<MethodPattern> delete( )</MethodPattern>
<DatalnputPattern> </DatalnputPattern>
</Rule>

Concrete test generation and execution. In both of
the case studies reported here, TCTranslator is used
to translate the abstract test suite into concrete test
scripts. The translation table may be written in sim-
ple XML markup language or in Java. TCBeans cre-
ates a template for the translation table based on
the abstract test suite so that the user is only required
to fill in a few fields in the table in order to create
the interface. Each element of the XML format in
the abstract test case is given a translation template
with simple substitution rules. For example, the
push(i), i=2rulein the stack example may be trans-
lated as rc = MyStack.push(2); every time it appears
in an abstract test.

The State elements of the abstract test can be cus-
tomized to compare rc with the abstract test vari-
able Result.code and to output failure of the tran-
sition if they are not equal.

In general, the Rules are translated as stimuli to the
system under test. The state elements are translated
into verification statements to check that the re-
sponse of the unit under test matches the expected
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results predicted by the model. The TC_StartTest-
Caserules are translated into code that initializes the
test case. The TC_EndTestCase rules are translated
into clean-up code at the end of each test case. Us-
ing TCTranslator, the tester can supply a prologue
and epilogue at the beginning and end of the test
suite, respectively. In addition, if the state verifica-
tion needs to be supplemented with additional
checks, additional verification code at the end of each
transition may be supplied.

A GOTCHA model for a subset
of the POSIX standard helped
generate a test suite of the
interface that exceeds the
standards testing requirements
for compliance.

Both the abstract test suite and the suite execution
trace can be conveniently viewed through the
TCBeans browser. The browser displays the suite as
a color-coded tree structure with panels for viewing
the state variables and transitions in a test suite. The
colors are used to indicate transitions that failed or
succeeded during test execution.

The POSIX byte range locking study

The purpose of the Portable Operating System In-
terface (POSIX) standard is to define an operating
system interface and environment based on the
UNIX** operating system. This interface supports ap-
plication portability at the C language source level.

The POSIX standard and its System Application Pro-
gram Interface'® are English-language documents.
In this section we show that an aspect of the POSIX
standard, the fcnt1 byte range locking APIs, can be
described using a GOTCHA model. The model and
its testing directives are constructed specifically to
generate a test suite of the interface that exceeds all
the standards compliance testing requirements.

In 1999, the 1BM Poughkeepsie Laboratory con-
ducted a function test case generation study using
GOTCHA. Certain parts of a POSIX-compliant sub-
system™ were tested again using GOTCHA; these parts
included file 1/0 testing and stress testing. The re-
sources used by the Poughkeepsie team for this test-
ing pilot amounted to 10 person months, including
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the GOTCHA learning curve. This time is less than
the time used to originally test the subsystem (12 per-
son months). The test effort revealed two defects that
led to documentation changes. In addition, postmor-
tem analysis showed that 15 of the 18 defects found
by the original function test effort would also have
been found by this pilot test effort.*

The fcnt1 byte range locking test model described
below is an expansion of one of the models used in
the Poughkeepsie pilot. We have enlarged the model
to ensure that all the POSIX standard compliance test-
ing requirements are met.

Derivation of the byte range locking model. We be-
gin by focusing on the data structures and their re-
lationship to the standard.

When two or more processes are accessing a file, they
can interfere with each other. The fcnt1 byte range
locking interface provides control over open files so
that interference between processes is regulated.

The standard states that a request for a shared lock
should fail if the file was not opened with read ac-
cess. We model the ways in which this file can be
opened using the standard macros and an additional
macro for modeling failure in opening a file.

/*

* 0_RDONLY, O_RDWR, O_WRONLY are the

* standard macros used when a file is

* opened for read, read/write, and write

* respectively

*/

Type open_t: enum { O_RDONLY, O_RDWR,
O_WRONLY, BAD_FILE_DESCRIPTOR};

The standard defines a file as a range of bytes. A lock
is associated with a subrange of bytes in the file.
There are two types of locks, shared locks (F_RDLCK)
and exclusive locks (F_WRLCK). We chose to model
the file as a two-dimensional array. The array is in-
dexed by the byte offset in the file and the process
accessing the file. The process also indexes an array
that describes how the file was opened. A further
Boolean flag is included in the file data structure to
indicate whether or not the file was extended beyond
its original size. In our model, we only allow a file
to be extended once, although there is no such re-
striction in the POSIX standard. This restriction was
introduced both to reduce the size of the state space
and because defects that involve more than one ex-
tension of the file are beyond the scope of this model.
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/* F_UNLCK, F_RDLCK and F_WRLCK are the
* POSIX standard macros for Unlocked,

* Shared, and Exclusive locks, respectively
*/
Type TockType: enum {F_UNLCK, F_RDLCK,

F_WRLCK };
Type fileRange: 0..fileSize—-1;
Type processRange: 1..numberOfProcess;

var file :

record
open : array [processRange] of open_t;
lockArray :

/* lockArray is a two dimensional array
* which reflects the Tock type on every
* byte of the file held by every process.
*/
record fileOffset :array[fileRange]
of record processNumber
:array[processRange] of lockType;
end;
end;
extended :
end;

Boolean;

These entities are the important aspects of the FSM
state.

Having defined the data model, we then derive the
FSM transitions from the standard. The model’s tran-
sitions consist of operations on the file and opera-
tions on the processes. The file operations are the
fent1() byte range locking operations and opera-
tions to open and close the file. The operations on
the processes are signal, wake, and put to sleep.

The POSIX API standard states:

When a shared lock has been set on a segment of
a file, other processes shall be able to set shared
locks on that segment or a portion of it. A shared
lock prevents any other process from setting an
exclusive lock on any portion of the protected area.
A request for a shared lock shall fail if the file de-
scriptor was not opened with read access.

The portion of the standard cited above is translated
into a GOTCHA rule (or transition) that models the
fent1() byte range operation. We assume that a
transition is caused by calling the fcnt1( ) byte range
lock command with parameters 1_type, 1_start,
1_whence, and 1_len. The names of these parame-
ters are taken from the POSIX standard. The 1_type
parameter determines if the file was opened for a
read operation, a write operation, or both. The
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1_start parameter determines the offset of the be-
ginning of the byte range to be locked while the 1_Ten
parameter determines the length of the byte range
to be locked. The 1_start offset is calculated rela-
tive to the beginning of the file, the current file off-
set, or the end of the file. This is determined by the
1_whence parameter.

if ((file.open = 0_RDONLY) &

(1_type = F_WRLCK)) then

/* If the file is opened using O_RDONLY you
cannot satisfy a write lock request */

return false;

endif;

/* Check if locking the Tock segment is
legal */

i := 1_whence;

while ((l_start + 1)

< (l_start + 1_whence + 1_len)) do

j = 1l_start + 1;

/*cannot set an exclusive lock if another

* process is holding a read Tock

*/

if ((file.lockArray.fileOffset[j].

processNumber[otherPid] = F_RDLCK) &

(1_type = F_WRLCK)) then

/* Locking is forbidden: fcntl fails an
error code is returned by a result
variable*x/

endif;

In this model, state machine transitions are mapped
to POSIX API invocations such as the fent1( ) APIin-
vocation described above. As a result, an abstract
test represents a sequence of POSIX APIs invocations.
In addition, as each transition rule models the re-
turn value of the corresponding API, GOTCHA gen-
erates the abstract tests in which the POSIX API in-
vocation’s expected result are provided. When an
abstract test is run, TCBeans compares the expected
result of each POSIX API invocation against the ac-
tual result of the API invocation of the system under
test. In this particular case, TCTranslator is used to
produce an input to an execution framework of the
system under test that actually runs the test.

The semantics of a GOTCHA rule is that code describ-

ing a transition is executed atomically. This means
that the model is much simpler than the actual im-
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plementation that must deal with the concurrent pro-
cess execution. We derive the rest of the model in
a similar way.

Using coverage models to focus the abstract test
suite. Five coverage criteria guide the test genera-
tor. Each of the criteria focuses on a different as-
pect of the standard. The three main criteria use state
and transition projection to create sets of coverage
tasks that include those required by the standard.
Two further criteria ensure the coverage of two ad-
ditional test requirements.

The first coverage criterion is directed at lock col-
lisions. Two locks have a collision if their byte ranges
overlap. The standard specifies when a shared lock
or an exclusive lock can overlap. For example, the
byte ranges of a shared lock can overlap the byte
ranges of another shared lock, but cannot overlap
the byte range of an exclusive lock. Our objective is
to create tests that exercise all possible collisions. As
aresult, our coverage criterion requires that a shared
lock and an exclusive lock be attempted whether or
not there is an overlap with an existing lock. When
there is an overlap with an existing lock, the overlap
can occur either with a shared lock or with an ex-
clusive lock. This coverage criterion includes the fol-
lowing six coverage tasks:

* (shared, noOverlap)

* (exclusive, noOverlap)

* (shared, overlap, shared)

* (shared, overlap, exclusive)

* (exclusive, overlap, shared)

* (exclusive, overlap, exclusive)

The coverage criterion is implemented by creating
aspecial return code for each of these situations and
specifying a coverage criterion that automatically
guarantees that each return code occurs in some test.
The GOTCHA code that specifies this coverage cri-
terion is presented below.

CC_State_Projection /* A GOTCHA keyword */
ON
result: return_code_t;

GOTCHA generated tests that satisfy this criterion.
As a result, 20 requirements of the POSIX test stan-
dard were met.

The second coverage criterion deals with waking up
processes that wait on a lock. The requirements in
the standard that deal with this case are modeled by
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a transition from pid_state = ASLEEP to pid_state =
AWAKE. When such a transition occurs, the standard
requires that three different collision types be ob-
served. The result variable of the GOTCHA rule that
models the fcnt1( ) operation tracks the occurrence
of collisions of these types. Thus, we create a tran-
sition projection criterion, which projects the target
state of the transition onto this variable as follows:

CC_Transition_Projection

FROM_CONDITION pid_state[l].state = ASLEEP
FROM TRUE;

TO_CONDITION pid_state[1].state = AWAKE
TO result: return_code_t;

The interpretation of this criterion is that a process
transfers from a sleep (ASLEEP) state to a running
AWAKE state while the values of the return_code_t
are returned. The different values of the
return_code_t represent different collision types.

This criterion resulted in the satisfaction of five ad-
ditional requirements in the POSIX test standard.

Each of the standard testing requirements® is
mapped to a coverage criterion, which ensures that
the test generator creates a test suite that covers all
these requirements. We covered 31 requirements us-
ing only five distinct coverage criteria. Our test suite
covers additional situations not mentioned in the
standard for measuring POSIX conformance. The test
suite contained nine test cases, with an average of
15 API calls per test case.

There are five testing requirements in the standard
that are not necessarily covered by our test suite.
Three of these (D04, 51c, and 52d) are related to
deadlock detection and are optional test require-
ments since they are implementation-dependent.
The other two (33a and 50b) are related to lock in-
heritance when fork( ) is invoked and to the system
limit for total number of locks. To avoid state ex-
plosion and to improve readability, a different model
should be written for the fork( ) operation. It is our
practice to avoid writing a complete model to meet
one test requirement. As a result, these two test re-
quirements are better covered using a hand-gener-
ated test.

The Java exception handling study

Java supports an exception handling facility that
makes programs robust and simplifies the task of er-
ror handling. Error conditions are caught using the

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002



try,catch,and finally constructs. However, the ex-
ception handling mechanism complicates control
flow analysis and type analysis.

The Java Language Specification*! describes the op-
erational behavior of the exception handling mech-
anism and specifies which exception value should be
returned in each case. The description includes 17
conditional statements nested up to four levels deep.
This permits code with very complex execution flow,
making flow analysis extremely complicated. In ad-
dition, the scopes of variables across exception
boundaries complicate both data flow and type anal-
ysis. Efforts were made to formalize the exception
handling specification for the purpose of verifica-
tion.*

Control flow analysis of a program is useful for code-
coverage analysis; for example, structural testing
techniques,® regression testing (e.g., Reference 14),
data flow testing (e.g., References 44, 45), program
slicing, type analysis, precise garbage collection, pro-
gram optimization, and verification. One such type
analysis determines if the value of a variable or an
operand stack entry has a reference or not.

In this case study, we tested the type map generator
component of a type-accurate garbage collector.*
For each Java method, this component generates the
program control flow graph from the byte-code and
analyzes the types of all the possible computed val-
ues (values of each local variable and each entry in
the Java operand stack). For each possible garbage
collection point in the code, the component gener-
ates a map that specifies the type of each variable
and entry in the Java stack. The garbage collector
uses the type information in the map to locate all
the references on the program stack that point to
objects on the heap at each execution point.

The most complicated part of this component is the
generation and analysis of the exception handling
control flow graph, sometimes referred to as the jsr
problem.?*! The map generation algorithm is com-
plex and the effect of a defective map on the pro-
gram behavior is remote and indirect, thus making
it hard to relate to the incorrect map. Some other
prototype-based systems that use maps are the
Jalapefo virtual machine *’ and Stichnoth et al.*® Java
garbage collector. There are no reports in the lit-
erature on the testing of these systems.

To tackle the complexity of the testing, we chose to
model the exception handling feature of the Java lan-
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guage using GOTCHA, thus generating stronger test
suites. The tests generated from the model are Java
programs with complex combinations of the try,
catch, and finally constructs. These programs ex-
ercise the exception handling mechanism and in-
crease the code coverage of the component com-
pared to the code coverage obtained by the standard
JCK1.3 tests and the standard SpecJVM tests. In ad-
dition, these tests revealed four new defects in the
component under test.

Java language exception handling feature. A Java
method can throw two types of exceptions:

1. An unchecked exception is caused by a run-time
error (e.g., division by zero) that can occur at any
place in the method.

2. A checked exception is generated explicitly by a
throw statement at a given point in the method.

A checked exception may be caught by some han-
dler or can propagate to the calling method.

The try {block} catch {handler} finally {handler}
statement catches an exception. The code within the
try block is executed until either an exception is thrown
or the end of the block is reached. If an exception
is thrown, the catch clauses (when they exist) are ex-
amined to find the first clause that can handle the
exception object. If the exception is not caught it will
percolate back to the calling method. The rules that
define when to propagate the exception object, what
needs to be finalized before the propagation, and
which environment to pass with the exception ob-
ject (e.g., values of local variables) are very intricate.

The following code is a simple example of try state-
ment use:

/* The handler class */

public class exceptionExample extends
Exception{
public exceptionExample () {
super( );

/* code for handling the exception */
System.out.printin(“exception Handler”);
}

}

/* Example class */

public class Examplef

public void Mlexam( ) throws
exceptionExample( ){
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int value = someValue( );
tryd

/* check condition for the exception */
if (value == 0){
/* throwing an exception */

throw new exceptionExample ();
}

}

catch(exceptionExample) {

/* do specific actions when the
exception is caught */

}

finally{

/* do specific actions when the Tast of
try or catch ends */

The try statement is implemented like a subroutine
and is translated to byte code using the jsr (jump
subroutine) and ret (return) opcodes. The jsr and
ret opcodes provide the return address. Unlike sub-
routines, the return address points to the end of the
try statement rather than the code that follows the
place of the exception invocation. In addition, a new
frame is not generated on the stack when the excep-
tion handler is invoked. These two features compli-
cate control flow analysis and break the Gosling
property.* The Gosling property is important for
type analysis because it ensures that, if some instruc-
tion can be reached via multiple paths on which a
local variable contains incompatible values (the type
of values cannot be unified), then this local variable
isunusable. The result of the Gosling property is the
ability to obtain locally the type value of each vari-
able and each entry on the operand stack for any
code location.

Exception handling model derivation. We developed
two GOTCHA models to test the correctness of the
type analysis component. Both models were derived
from the Java Language Specification.*!

The first model corresponds to an FSM in which the
legal transitions are explicitly given at each state and
the transition rules follow the operational seman-
tics provided by the language specification. The value
of currentStmt determines the model state (see
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model description below). The currentStmt is used
in the precondition of each rule that results in a
model that mimics the language specification pre-
cisely. We illustrate the tight relation between the
model and the language specification by providing
parts of the try statement specification and its FSM
model below:

* Ifthe execution of a try block completes normally,
then the final1ly block (if it exists) is executed and
the choices (which are modeled by the finally state)
are:

The finally block completes normally . . .
The finally block completes abruptly . . .

e If the execution of a try block completes abruptly
because of a throw of a value V, then the choices
are:

There is a proper catch statement for V...

Several options exist for the catch when it com-
pletes normally or abruptly (modeled by the
catch state), with or without a finally state-
ment. ..

There is no proper catch for V.. ..

There are different options for the finally state-
ment . . . (modeled by the finally state)

e If the execution of a try block completes abruptly
for any other reason R, then the choice is:

Different options for the finally statement
... (modeled by the finally state)

The above standard specification fragment is used
to create the segment of the GOTCHA model that pro-
duces try statements. The possible exception types
are defined as an enumerated type (eit_t), which
can take the values: no_exception, catchable,
not_catchable, and system_exception.

/* set of transition rules
(parametrized on exception_type)
applicable within a try state */
Ruleset exception_type: eit_t
Do
Rule “create_try_block”
currentStmt = try &
(numCatches = 0 —> exception_typel!=
catchable)
==>
begin
/* try block completes normally */
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if (exception_type = no_exception)
then
/* finally block is executed */
if (numFinallys = 0)

then
currentStmt := end_test;
else
currentStmt := finally;
endif;
else

/* the try statements completes
abruptly throwing V,
with a catchable exception,
not_catchable exception, or
system exception */
if (exception_type = catchable)
then
currentStmt := catch;
else /* system_exception or
not_catchable */
if (numFinallys = 0)

then
currentStmt := end_test;
else
currentStmt := finally;
endif;
endif;
endif;
End;

End; /* end ruleset exception_type
(in a try block) */

GOTCHA generates an abstract test by firing in se-
cession rules, such as the try rule described above.
This translates directly to a Java program (see the
subsection, “Abstract and concrete test cases,” be-
low).

The second model is based on the Backus-Naur
Form (BNF) definition of the try, catch,and finally
statements. We have five states: try_s, catch_s,
finally_s, end_block, and end_test. A set of pre-
conditions is associated with each state. Rather than
specifying the rules to be followed at a given state,
the preconditions are checked in order to find all the
possible transition rules applicable. The test gener-
ator applies all the possible combinations when gen-
erating the tests.

The model has a set of transition rules for gener-
ating and throwing different exceptions (including
unchecked exceptions), a rule for generating a try
statement, a set of transition rules for generating
catch statements, and a rule for generatinga finally
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statement. Each rule may be used whenever its pre-
conditions are met. A rule changes the current state
of the FSM whose initial state is try_s. A test is gen-
erated by collecting a sequence of rules fired from
the initial state and ending at the end_test state.

In the model fragment below we see that a try_s
state can be entered if we are in any state other than
the end_b1ock state (used for closing a nesting level)
and the end_test state. The currentDepth, numTry,
and numThrows variables are used for controlling the
type of tests that will be generated.

/* The try fragment of the BNF based model */
Rule “make_try()”
(currentStmtLcurrentDepth] != end_block)
& (currentStmtlcurrentDepth] != end_test)

& (currentDepth < MAX_DEPTH)

& (numTry < MAX_TRY)

& (numThrows[currentDepth] = 0) /* do not

generate a try after a throw (>= 1)*/

==>

Begin
numThrows[currentDepth] := 0;
currentDepth := currentDepth + 1;
currentStmtlcurrentDepth] := try_s;
numTry := numlry + 1;

End;

GOTCHA generates all possible sequences of states
and rules (abstract tests), which the TCTranslator
translates to the corresponding Java programs (see
the subsection “Abstract and concrete test cases,”
below).

The resulting model differs from the first model in
that the body of the transition rule does not contain
a control flow. Instead, preconditions are used to re-
strict the firing of transitions in the model. This
model generates far more interesting test cases, but
seems more remote from the original standard def-
inition. One of the reasons this model generates bet-
ter test cases is that its structure enables deeper lev-
els of recursion in the test cases before state explosion
is encountered. The state explosion problem is mit-
igated in this model by the use of seven testing con-
straints that forbid certain kinds of test cases and,
thus, limit the reachable state space. For example,
we limited the generation of exceptions in the try
clause at the highest level of nesting using the test
constraint statement given below. The statement for-
bids the generation of a system_exception whenever
a try statement occurs at nesting level 0 in the Java
program generated as a test case.
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TC_Forbidden_State ExceptionTypel[0][try_s] =
system_exception;

Abstract and concrete test cases. GOTCHA generates
abstract tests from the model by giving concrete val-
ues to the state variables and creating sequences of
rules that are later interpreted as the statements in
aJava program thatuses the try, catch,and finally
constructs.

An abstract test consists of a sequence of rule in-
vocations and the resulting state entered. A sample
abstract test and the resulting test (Java program)
are given below:

* init()—generates a new method (test) and
opens the outer try block

* make_try( )—opens an inner try block

* make_catch(Exceptionl)—closes the inner try
block and inserts a catch clause for the inner try
block catching Exceptionl

* make_sys_throw( )—throws a system exception in-
side this catch clause

* make_end( )—closes the catch clause

* make_finally( )—closes the outer try and inserts
a finally clause for the outer try block

* make_throw(Exceptionl)—throws Exceptionl in-
side the finally clause

e make_end( )—closes the finally clause

* make_done( )—ends the test case method

Each transition rule is responsible for generating part
of the test case. For example, both init() and
make_try( ) generate a try statement and openatry
block.

The abstract test is then translated by the TCTrans-
lator to a Java test program. The Java code gener-
ated for the above abstract test is:

public static void TRY121( ) throws
Exception{

tryl

System.out.printIn(*TRY121( ): Try
statement”);

if(false) throw new Exceptionl();

tryf

System.out.printin(*TRY121( ): Try
statement”);

if(false) throw new Exceptionl();

}

catch(Exceptionl e){

System.out.printin(“TRY121( ):
Exceptionl™);

catching
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System.out.printin(“TRY121( ): system
exception ”);

int a=1, b=0, c=a/b;

a=c+5;

}

}

finally{

System.out.printin(“TRY121(): Finally
statement™);

System.out.printin(*“TRY121( ): Throwing
exception Exceptionl”);

if(true) throw new Exceptionl();

}

}//end of TRY121()

TCTranslator uses XML markup language to describe
the translation from abstract test case elements to
concrete test case elements. The <RuleDesc> tag de-
scribes the text to be substituted in the concrete test
case for each transition rule in the abstract test case.
When the transition rule init( ) occurs in an abstract
test, it is translated into the header and the first try
statement of the Java program, which is the concrete
test case. The XML code for this translation is pre-
sented below (_a2c_ftest is a run-time variable that
is replaced by the abstract test case identifier):

<RuleDesc desc="init()”>

public static void TRY_a2c_fftest( ) throws
Exception{

tryf

System.out.printin(“TRY_a2c_f#test(): Try
statement”);

if(false) throw new Exceptionl();

</RuleDesc>

The TCBeans markup language also contains clauses
for generating validation code in the concrete test
suite, using the abstract test as an oracle for com-
parison with the output of the application under test.
The validation tags were not used in this case study.

Verifying the test results. In this study, we do not
use the model for the automated generation of ex-
pected test results. Instead we built a system that gen-
erates type information at run time and checks the
correctness of the corresponding type maps. This
check is necessary since faulty type maps may not
cause a program failure. Erroneous maps may iden-
tify a slot on the stack as a reference when it is not
or miss a reference, which may cause the collection
of a live object. In the second case the program may
not fail if there is another reference to the object or
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if the garbage collection starts after the last use of
the object.

The above system was implemented by instrument-
ing the JVM (Java virtual machine) interpreter to per-
form direct verification of the data contained in each
type map. The instrumentation generates type in-
formation for operands and local variables during
run time. To minimize the changes to the original
JVM code we stored this information on a “shadow”
stack manipulated in parallel to the JVM interpreter
stack. Upon entry to a method, the information of
the shadow stack is initialized with the types of the
method arguments. The type information on the
shadow stack is updated following the execution of
each bytecode that affects the stack.

Whenever the execution of a method reaches a point
for which a type map exists (the maps are generated
when the method is first loaded), the map is retrieved
from the repository and compared with the type in-
formation on the shadow stack. The instrumented
code reports an error whenever there is a mismatch
between the information on the shadow stack and
the type map values.

Experimental results and the strength of the excep-
tion handling model. We used the test suite gener-
ated by our model as a stress test for the type map
generator component of a new type-accurate garbage
collector.* The map generator package contains four
files, written in C, which include 6914 lines of code
distributed over 2681 basic blocks.

We used ATAC™ to measure statement coverage.
Each defect was repaired before testing continued.
We first tested the map generator component by run-
ning the JCK 1.3 (Java Compatibility Kit) compliance
and SpecJVM tests. These test suites exposed 16 de-
fects (3 design defects and 13 implementation de-
fects) and reached 78 percent statement coverage.
We then ran all test cases generated by our second
abstract model. Four new defects (2 design and 2
implementation defects) in the corrected map gen-
eration code were found and the statement cover-
age rose to 83 percent. Our final testing activities
involved manually creating specific test cases aimed
at a level of abstraction lower than that exposed in
the model (bytecode, rather than Java source code).
These hand-generated test cases exposed one fur-
ther design defect.

The defects found using the automatically generated
test suite are characterized by the complex nature
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of the jumps and returns from the blocks of code
generated from a try catch finally combination.
A representative defect of this type occurred when
two blocks of code, A and B, jumped to the same catch
block. The local variable x is a reference in A and it
occurs in B, but not as a reference. The variable x
is not referenced in the catch block, so the catch
block could be consistently executed. However, at
the exit from the catch block, the type of x had to
be retrieved from a map dependent on whether the
catch block was entered from A or B. To perform
this correctly, the map generator should have gen-
erated and stored two distinct maps, but in the de-
fective code only one map was generated and stored.

Conclusion

In this paper we demonstrated that behavioral mod-
els can be derived from software specifications and
used for the creation of test suites for standard com-
pliance. In the first study, the automatically gener-
ated test suite covered the POSIX standard testing
requirements.” In addition, we demonstrated in
each case study that the test suite is of high quality
by running it against an implementation of the spec-
ification and locating defects that were not found by
more traditional test suites. We also demonstrated
in the Java exception handling case study that the
test suite considerably improves the code coverage
attained by more traditionally generated test suites.

In each study the effort involved in creating the test
suite was surprisingly low. The human resources re-
quired for the first study, including the one-time in-
vestment of learning new tools and methodologies,
was 17 percent less than the time spent testing the
file system by conventional methods. In future use
of the techniques, one could reasonably expect ad-
ditional resource savings. In the second case study,
the time spent on modeling and testing was three to
four person months, approximately half the time
spent on similar systems (see, for example, Somer-
ville’s book?").

The skills required for the use of our techniques are
not usually found in existing testing organizations.
Testers with some programming knowledge can ac-
quire these skills quickly. In the first case study, the
testers received an intensive four-day course on the
tools and methodology; in the second study, the
testers studied the manuals and had a two-day course.

A well-known drawback of FSM modeling is the ten-
dency for models to suffer from a combinatorial ex-
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plosion. We have two strategies for dealing with this
problem. Our modeling language has testing con-
straints that enable the state exploration algorithm
to prune the search tree. We also use on-the-fly test
generation to create test cases in the exploration of
extremely large state spaces. The drawback of the
on-the-fly approach is the loss of a functional cov-
erage guarantee. On-the-fly generation was not nec-
essary in either of the case studies.

A further issue with automatic test generation is the
tendency of test suites to grow out of control. We
treated this issue by using coverage criteria to shape
and limit the size of the test suite. Our projection
state and projection transition coverage criteria can
be used to create a focused test suite with the ap-
propriate randomization of nonessential variables
that increase the likelihood of fault discovery.

A more general conclusion concerns the applicabil-
ity of our results to the creation and maintenance
of software standards. We have shown that a model
of some specification of a standard can be efficiently
used to both specify the standard and later generate
conformance tests of high quality. This leads us to
recommend that the standards themselves be writ-
ten as a set of formal models. This increases the
maintainability and accuracy of the specification and
enables both formal verification and automatic test
generation as well as possibly performance model-
ing and simulation experiments. This approach is al-
ready in use in the telecommunications industry,
where there are ITU (International Telecommuni-
cations Union) standards for modeling languages
(e.g., SDL) and test suites (e.g., TTCN, or Testing and
Test Control Notation).

A possible objection to this approach is the difficulty
of handling a massive standard such as POSIX in a
single finite state machine model that captures all
of its interesting external behavior. The POSIX stan-
dard consists of a series of component-level func-
tionalities, each of which can be modeled separately
with limited interactions between the components.
The standard’s test requirements are also decom-
posed along these lines. For example, it is possible
to separate the process primitives from the file and
directory operations. This makes a component-by-
component modeling approach feasible.

A further conclusion relates to the use of these tech-
niques in general software development processes
and not just in the testing of standards conformance.
When the software has a well-defined specification
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document and the quality demands of the product
justify a significant testing effort, then these meth-
ods have proved their efficiency in the case studies.
In both case studies, we found it necessary to aug-
ment the automatically generated test suites with a
few well-chosen manual tests. The use of model-
based strategy and automatic test generation is not
asilver bullet to solve all testing problems; however,
the evidence presented here indicates that it is a valu-
able weapon in the developer’s armory and has clear
advantages over the more traditional approaches.
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