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There has been very little empirical analysis
of any real production database workloads.
Although the Transaction Processing
Performance Council benchmarks C (TPC-CTM)
and D (TPC-DTM) have become the standard
benchmarks for on-line transaction processing
and decision support systems, respectively, there
has not been any major effort to systematically
analyze their workload characteristics, especially
in relation to those of real production database
workloads. In this paper, we examine the
characteristics of the production database
workloads of ten of the world’s largest
corporations, and we also compare them to
TPC-C and TPC-D. We find that the production
workloads exhibit a wide range of behavior.
In general, the two TPC benchmarks complement
one another in reflecting the characteristics of
the production workloads, but some aspects of
real workloads are still not represented by either
of the benchmarks. Specifically, our analysis
suggests that the TPC benchmarks tend to
exercise the following aspects of the system
differently than the production workloads:
concurrency control mechanism, workload-
adaptive techniques, scheduling and resource
allocation policies, and I/O optimizations for
temporary and index files. We also re-examine
Amdahl’s rule of thumb for a typical data
processing system and discover that both the
TPC benchmarks and the production workloads
generate on the order of 0.5 to 1.0 bit of logical
I/O per instruction, surprisingly close to the
much earlier figure.

The Transaction Processing Performance Coun-
cil (TPC) benchmarks C (TPC-C**)1 and D

(TPC-D**)2 have emerged as the de facto standard
benchmarks for on-line transaction processing
(OLTP) systems and decision support systems (DSS),

respectively. By establishing objectives that are eas-
ily measurable and repeatable, such standard bench-
marks define a transparent playing field and focus
attention on what the benchmarks consider to be im-
portant. However, the real utility of the benchmarks
is determined by whether they represent the work-
loads of interest. To effectively make use of a bench-
mark, therefore, we have to carefully evaluate its
characteristics against those of the target workloads
to understand how closely they correspond. Although
the TPC-C and TPC-D benchmarks have become widely
accepted and, as a result, are heavily used for both
systems design and marketing, there has not been
any major effort to empirically determine their work-
load characteristics, let alone to establish how rep-
resentative their characteristics are of real work-
loads.

In fact, there has been very little empirical analysis
of any real production database workloads. This re-
flects the fact that production systems are by def-
inition critical to the proper functioning of an or-
ganization, so that it is very difficult to get access to
them for the purpose of conducting a scientific study,
especially if the study requires any software changes
or if data are to be collected and removed from the
system. Therefore, although the hallmark of a good
benchmark is that it should capture all the essential
characteristics of the workload of interest without
undue complexity, we often do not have a clear pic-
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ture of the characteristics of the target workload. This
lack of information is highly undesirable because a
poorly designed benchmark may impede real pro-
gress in the field if it is not realistic and end up fo-
cusing energy and attention on issues that do not of-
ten arise in production environments.

In this research, we use trace-driven simulations3,4

to empirically examine the characteristics of the peak
production database workloads of ten of the world’s
largest corporations as well as workloads similar to
the TPC-C and TPC-D benchmarks. Our main focus
in this paper is on what we call descriptive system-
level characteristics. These characteristics are the log-
ical properties of a workload that a user or system
administrator can readily understand and relate to
without requiring detailed knowledge of the inter-
nals of the system. We compare and contrast such
characteristics of the production workloads with
those of the TPC benchmarks, paying special atten-
tion to any performance implications. In a compan-
ion paper,5 we examine in detail the I/O reference
behavior of the workloads.

The traces used in this study were collected on sys-
tems running IBM’s industrial-strength DATABASE 2*
(DB2*) relational database management system
(DBMS) and, to the best of our knowledge, represent
by far the most complete and diverse set of produc-
tion workloads ever reported in the literature. We
cannot overemphasize the amount of time, effort,
and cost that these traces represent. This research
would not have been possible without the support
and help of many. Note that because our TPC bench-
mark setups have not been audited per the bench-
mark specifications, our benchmark workloads
should only be referred to as TPC-like. In the rest of
this paper, when the terms TPC-C and TPC-D are used
to refer to our benchmark workloads, they should
be taken to mean TPC-C-like and TPC-D-like, respec-
tively.

Our analysis indicates that in some cases, the TPC
benchmarks fall reasonably within the range of real
workload behavior, and in other cases, they are not
representative of real workloads. Some of our find-
ings are (1) TPC-C tends to have longer transactions
and fewer read-only transactions than the produc-
tion workloads, whereas some of the transactions
done by TPC-D are much longer but are read-only
and are run serially, (2) the production workloads
have I/O demands that are much more bursty than
the TPC benchmarks, (3) unlike TPC-C, which has very
regular transactions, and TPC-D, which has long que-

ries that are run serially, the production workloads
tend to have many concurrent and diverse transac-
tions, and (4) TPC-C has no I/O activity involving tem-
porary objects, whereas most of the references for
TPC-D are directed at index objects.

The next section of this paper contains a brief over-
view of previous work in the area of workload char-
acterization and analysis. The third section discusses
our methodology and describes the traces that we
use. The characteristics of our workloads are pre-
sented in the fourth section. Concluding remarks are
then given. Because of space constraints, we can only
highlight some of the results of our analysis in this
paper. More detailed graphs and data are available
from our Web site6 and in References 5 and 7.

Related work

There have been several published studies of the ref-
erence behavior of database workloads, but mostly
for hierarchical and network databases. See, for in-
stance, References 8 through 16. For a more com-
plete bibliography, the reader is referred to Refer-
ence 5. Unfortunately, most of these studies rely on
data collected at one or two installations. Furthermore,
they do not provide descriptive characteristics of the
workloads being analyzed, even though the reference
behavior clearly depends on the workload imposed on
the database. Without knowing the kinds of workload
that are being examined, interpreting the results of the
studies is very difficult. Consequently, there seem to
be conflicting conclusions as to whether locality or
sequentiality is present in the database reference
stream. The work reported by Zivkov and Smith,16

which investigated design issues in disk caches us-
ing data from commercial installations, is one of the
notable exceptions that provides some characteris-
tics of the workloads analyzed. In addition, a recent
study of lock contention in database systems con-
tains some transaction statistics from commercial DB2
installations.17

Though the TPC-C and TPC-D2 benchmarks have
clearly been extensively studied and optimized by
both database and system vendors, there has not
been any systematic attempt to characterize these
workloads empirically and to compare their charac-
teristics with those of production database work-
loads. On the basis of static analysis of accesses to
tables, Leutenegger and Dias18 looked at the data
access skew of TPC-C. The paper by Tsuei et al.19 con-
tains an empirical study of how the database size,
buffer size, and the number of CPUs affect the

HSU, SMITH, AND YOUNG IBM SYSTEMS JOURNAL, VOL 40, NO 3, 2001782



throughput and buffer hit rate of TPC-C on symmet-
ric multiprocessors (SMPs). Given that business ap-
plications are increasingly developed on standard
business application systems commonly known as
Enterprise Resource Planning (ERP) systems, Dop-
pelhammer et al.20 examined the performance of
TPC-D queries when implemented on such systems.
Recently, Hsu et al.21 analyzed the query plans taken
from certified TPC-D setups and considered the po-
tential benefit of off-loading TPC-D operations to stor-
age systems with embedded processors.

File usage characteristics in commercial computing
environments are studied in the paper by Ramakrish-
nan et al., 22 but most of the work in this area has
focused on academic environments (e.g., see Ref-
erences 23–27). Several other studies have focused
on the effectiveness of caching in the file system.28,29

There has also been a large body of work on char-
acterizing scientific workloads in parallel and super-
computing environments. Again, we refer the inter-
ested reader to Reference 5 for a more detailed
bibliography.

Methodology

The methodology used in this paper is trace-driven
simulation.3,4 In trace-driven simulation, relevant in-
formation about a system is collected while the sys-
tem is handling the workload of interest. This is re-
ferred to as tracing the system and is usually achieved
either by using hardware probes or by instrument-
ing the software. In the second phase, the resulting
trace of the system is played back to drive a model
of the system under study. In other words, trace-
driven simulation is a form of event-driven simula-
tion where the events are taken from a real system
operating under conditions similar to the ones be-
ing simulated. More comprehensive discussions of
this technique and its strengths and weaknesses can
be found in References 3 and 4.

The traces used in this study were collected by in-
strumenting commercial DBMSs. Instrumenting a
DBMS allows the trace information to be collected
at a logical level. This method reduces dependen-
cies on the system being traced and allows the trace
to be used in a wider variety of studies, including sim-
ulations of systems different from the original sys-
tem. The traces contain references to all database
objects (base tables, indexes, temporary spaces, cat-
alogs, views, and plans) except the log. Some of the
traces contain references to large pages, i.e., those
with sizes that are multiples of the 4KB base page

size. For consistency, we converted these traces to
refer to 4KB pages.

In this study, we examined a total of 14 traces rep-
resenting both industry-standard benchmarks (TPC-C
and TPC-D1,2) and the production workloads of ten
of the world’s largest corporations. The TPC bench-
mark traces were collected on a multiprocessor per-
sonal computer (PC) server running DB2 Universal
Database* (DB2/UDB) v530 on Windows NT** 4.0. The
production traces were collected on IBM mainframe
computers running various versions of DB2/Multiple
Virtual Storage (DB2/MVS), now known as DB2/390.31

In order to make our characterization more useful
for subsequent mathematical analyses and model-
ing by others, we fitted our data to various functional
forms through nonlinear regression, which we solved
by using the Levenberg-Marquardt method.32 When
appropriate, we also fitted standard probability dis-
tributions to our data by using the method of max-
imum likelihood to obtain parameter estimates and
then optimizing those estimates by the Levenberg-
Marquardt algorithm.32

Trace collection. We instrumented DB2/UDB at the
source level to collect relevant trace information for
the TPC benchmarks. Because the act of tracing a
system may affect its behavior, we paid special at-
tention to minimizing any such disturbances. For in-
stance, our tracing facility collects the trace records
in shared memory before batch writing them asyn-
chronously to disk. The shared memory buffer is dou-
ble-buffered so that trace collection is not blocked
during write-backs. Each trace record is time-
stamped with minimal overhead by directly access-
ing the processor cycle counter. At certain trace
points, it is expensive to collate all the interesting
information. In such cases, enough data are written
to the trace so that an off-line postprocessing step
can be used to reconstruct the information. We col-
lected trace records for both logical and physical
reads and writes, prefetch requests initiated by DB2,
references to the database log, and transaction starts
and ends. By comparing the TPC-C throughput re-
sults when trace collection is enabled and disabled,
we estimate that this tracing mechanism imposes an
overhead of less than 5 percent. This figure is dra-
matically lower than tracing overheads that have
been previously observed; GTF (Generalized Trace
Utility) tracing can require over 50 percent of the
CPU time.

IBM SYSTEMS JOURNAL, VOL 40, NO 3, 2001 HSU, SMITH, AND YOUNG 783



The production traces were collected using a cus-
tom DB2/390 tracing package developed at the IBM
Almaden Research Center. This tracing package was
designed to collect trace data with a minimum
amount of overhead so that it can be run on cus-
tomer production systems with little throughput im-
pact. It was built upon the existing DB2 Instrumen-
tation Facility and its performance trace.33 The basic
approach is to use a DB2 exit routine to collect the
required data from a specially instrumented DB2
build. The collected data are assembled into trace
records and stored in large memory buffers that are
written out by a separate task operating asynchro-
nously in another address space. This tracing pack-
age collects trace records for buffer manager re-
quests, transaction boundaries, and locking events.
In tests conducted on an IBM 4381-T92 when han-
dling a DB2 transaction-oriented workload at 70 per-
cent CPU utilization, the trace collection added only
about 4 percent to the CPU utilization.

The buffer pool interface in both DB2/UDB and
DB2/390 allows pages to be “fixed,” or pinned, in mem-
ory.34,35 Once a page is fixed, the buffer pool inter-
face can be bypassed so that data within the page
can be directly manipulated by the various DBMS
components. Such bypassing allows the DBMS com-
ponents to use the buffer pool as working storage,
thereby eliminating the need for the components to
make local copies of the data. Consequently, there
are references within the pinned pages that result
from direct manipulations by the DBMS components
that are using the buffer pool as working storage.
Since our traces were collected at the level of the
buffer pool interface, they do not contain such ref-
erences that reflect the direct use of buffer pool stor-
age as working storage.

Workload description. The TPC-C benchmark mod-
els the operational end of the business environment
where real-time transactions are processed.1 It is set
in the context of a wholesale supplier and is centered
around its order-processing operations consisting of
business transactions that enter new orders, query
the status of existing orders, deliver outstanding or-
ders, enter payments from customers, and monitor
warehouse stock levels. The TPC-C performance met-
ric is the number of orders processed per minute.
The benchmark specifies a method for scaling the
database based on an assumed business expansion
path of the supplier. Our particular trace was col-
lected on a benchmark set up with a scale of 800
warehouses.

The TPC-D benchmark models the analysis end of the
business environment where trends are analyzed and
refined to support sound business decisions.2 The
TPC-D database is a decision support database that
tracks, possibly with some delay, the OLTP database
through batch updates. The benchmark consists of
17 read-only queries that are far more complex than
most OLTP transactions and that typically examine
large volumes of data using a rich set of operators
and selectivity constraints. To exercise the update
functionality of the DBMS, the benchmark includes
two update functions that modify a small percent-
age of the database. The TPC-D benchmark defines
both a power test to measure the raw query execu-
tion power of a system with a single active user and
a throughput test that may be omitted. Our trace cap-
tures the entire run of a power test. This test starts
off with the first update function (UF1). Next, the 17
queries are processed in a sequence specified by the
benchmark. Finally, the second update function
(UF2) is executed.

As with TPC-C, the TPC-D benchmark specifies a
method for scaling the database. Our trace was col-
lected on a system with a scale factor of 30, which
means that the two largest tables, ORDER and
LINEITEM, contained 45 million and 180 million
tuples, respectively. In general, the actual workload
imposed on the system varies with the scale factor
and could lead to very different strategies or plans
for performing the queries. Although the analysis
presented in this paper is specifically for a scale fac-
tor of 30, we believe that most of the qualitative re-
sults apply to other scale factors as well.

More details about the benchmarks can be found in
Reference 7 and in the benchmark specifications.1,2

Note that the TPC benchmark rules prohibit publicly
disclosing TPC performance figures that have not
been independently audited. Therefore, we withhold
from this paper any data that may be used to derive
our TPC metrics. This omission of absolute TPC per-
formance numbers should not compromise our
understanding of the logical characteristics of the
benchmarks.

Our other traces were collected in the day-to-day
production environments of a diverse group of very
large corporations. The industries represented in-
clude aerospace, banking, consumer goods, direct
mail marketing, financial services, insurance, retail,
telecommunications, and utilities. In all cases, our
traces include the peak production database work-
load as identified by the system managers. This work-
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load is typically a combination of transaction pro-
cessing and long-running queries. The trace referred
to as Telecom in Zivkov and Smith16 and Phone in
Singhal and Smith17 is the first 30 minutes of the trace
we call TelecomB1.

Trace description. Table 1 summarizes the charac-
teristics of the various traces that are used in this
paper. Because of the large number of production
workloads, we often also present the arithmetic mean
of their results, denoted as “Prod. Ave.” In the ta-
ble, the term object refers to a logical collection of
data, such as a database table or an index, that is
managed as an entity in much the same way as a file.
Data size represents the total size of all the objects
in the system and was obtained from the catalog
dumps that were taken when the systems were traced.
The footprint of a trace is defined as the amount of
data referenced at least once in the trace. The traces
record information from the perspective of the DBMS.
Therefore, the object count includes DBMS system
objects such as catalogs, views, and query plans. In
addition, the transactions recorded are database
transactions, several of which may be needed to per-
form a single business transaction.

The production traces were taken from the primary
systems in use at some of the world’s largest corpo-
rations in the early 1990s. These installations had
some of the highest-end IBM mainframe systems
available at the time. Unfortunately, we do not have
information regarding their exact system configura-
tions. Note that the mainframe platform is very dif-
ferent from the PC platform on which our benchmark
traces were collected. MVS has its roots in the IBM
System/360* architecture and was originally designed
to provide full support for large-scale batch process-
ing in production environments. Windows NT, in con-

trast, is a recent operating system with a built-in
graphical interface that is designed to support inter-
active use on both workstations and servers. In ad-
dition, DB2/MVS and DB2/UDB are two distinct imple-
mentations of relational DBMSs. The focus of this
paper is on the logical characteristics of the work-
loads, which should be relatively independent of the
physical attributes of the systems. Nevertheless, some
dependencies are unavoidable at times, and we note
them where appropriate.

By analyzing what is by far the largest set of produc-
tion traces ever reported in the literature, we believe
that our results are illustrative of the actual produc-
tion workloads in very large corporations in the early
1990s; nevertheless, neither the individual traces nor
the averages can be assumed to be typical or rep-
resentative of any other system. Our data represent
only a sample. In addition, given the rapid progress
in database technology and applications, especially
in the decision support area, workloads from the
early 1990s are likely to be different from workloads
and benchmarks several years later. For instance,
companies are increasingly building their mission-
critical applications on standard business application
systems rather than directly on database systems. De-
spite these disclaimers, we believe that most of the
characteristics observed in these production work-
loads are common to many database systems today
and that valuable insights are gained by comparing
them to the TPC benchmarks.

Figure 1 plots the trace footprint as a function of
the number of references, which is a measure of the
trace length. Because there is a wide variation in the
footprint of our traces, we plot the footprint as a per-
centage of the total data size of the workload and
use two different scales in Figures 1A and 1B to fa-

Table 1 Summary of trace characteristics

Trace Aerospace Bank ConsGds DirMktg1 DirMktg2 FinSvcs Insurance Retail TelecomA TelecomB1 TelecomB2 Utility Prod. Ave. TPC-C TPC-D

Source Aerospace
company

Banking
corp.

Consumer
goods

company

Direct mail
marketing

firm

Direct mail
marketing

firm

Financial
services

firm

Insurance
company

Discount
store

Telecom.
company A

Telecom.
company B

Telecom.
company B

Utility
company

— TPC
benchmark

C

TPC
benchmark

D

Platform MVS on
IBM S/370

MVS on
IBM S/370

MVS on
IBM S/370

MVS on
IBM S/370

MVS on
IBM S/370

MVS on
IBM S/370

MVS on
IBM S/370

MVS on
IBM S/370

MVS on
IBM S/370

MVS on
IBM S/370

MVS on
IBM S/370

MVS on
IBM S/370

MVS on
IBM S/370

WinNT on
Intel X86

WinNT on
Intel X86

DBMS DB2/MVS DB2/MVS DB2/MVS DB2/MVS DB2/MVS DB2/MVS DB2/MVS DB2/MVS DB2/MVS DB2/MVS DB2/MVS DB2/MVS DB2/MVS DB2/UDB DB2/UDB

Date Collected 2/3/1992 5/13/1991 9/8/1992 9/18/1991 9/19/1991 6/6/1991 10/7/1992 7/1/1992 4/15/1992 10/8/1990 10/9/1990 5/14/1991 — 2/10/1998 3/8/1998

Duration (h:m) 2:29 22:57 1:59 1:03 2:02 3:54 2:41 4:52 1:40 2:27 1:42 3:16 4:15 (withheld) (withheld)

# Objects 2203 1281 626 1446 1446 3124 1953 434 521 255 255 1139 1224 101 192

Data Size (MB) 33558 53079 3423 18191 18191 10064 38095 72188 197422 15114 15114 39070 42792 70246 77824

Footprint (MB) 1397 9600 726 1137 1362 2127 1732 6769 2986 947 976 5727 2957 13267 51580

# References 7779007 35916414 7133845 6401880 14396125 15664004 20648874 38646360 13072916 11531195 13757374 37653369 18550114 196067649 218130354

# Xacts 98931 85173 66102 11892 14906 20956 70242 797637 84378 36508 25899 118191 119235 890885 230

Read Ratio (%) 93.8 90.6 86.9 95.4 95.6 90.9 84.8 86.9 85.9 93.0 98.1 89.3 90.9 87.4 97.8
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cilitate comparison among the workloads. From the
two parts of the figure, only a few of the traces (e.g.,
TPC-D, Bank, ConsGds, FinSvcs, TelecomA) approach
steady state in the sense that they do not appear to be
actively referencing new data. Though the artificial na-
ture of TPC-C is apparent in the smoothness of its foot-
print profile, the rate at which it references new pages
is within the spectrum defined by the other traces.
The write footprint profiles are presented in Figure
2. These profiles show how the percentage of pages
written increases with the number of references.
Compared to most of the production traces, the TPC
traces generate modified pages at a much higher rate.
We examine the write behavior of the various work-
loads in greater detail in Reference 5.

An important issue in using trace-driven simulations
to study memory hierarchy design is that the traces
must have a sufficiently large footprint for the mem-
ory configurations of interest. However, estimating
the length of trace required is difficult because the
relationship between the trace length and footprint
is not well understood. In this paper, we empirically
determine this relationship by looking at the aver-
age footprint of our production traces. Because the
traces are of different lengths, the number of traces
being averaged will decrease with the trace length

so that the resulting curve will contain discontinui-
ties if we simply average the footprints. Therefore,
we take the average of the rate of increase of the
footprint and then integrate the resulting expression.
More formally, we define the average footprint af-
ter X references as

E
0

X d
dx

~ fi~ x!! dx

where f i( x) denotes the footprint of trace i after x
references. This expression is plotted as the lines la-
beled “Prod. Ave.” in Figures 1 and 2. Note that we
omit “Bank” in plotting the average because its foot-
print profile is distinct from any of the other pro-
duction workloads.

We find that the relationship between trace length
and footprint can be accurately described by the Hill
equation that was originally proposed for modeling
the absorption of oxygen by hemoglobin.36 The Hill
model, Hill( fmax, k, n), represents a family of sig-
moidal saturation curves defined by

f~ x! 5
fmax z x n

k 1 x n

Figure 1 Reference footprint of the traces as a function of trace length—default warm-start points for the simulations in  
 Reference 5 are circled.
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where fmax is the asymptotic value of f( x) and k and
n are parameters that determine the shape and slope
of the curve. In our current context, the value of fmax

represents the percentage of data that is predicted
to be in active use. For instance, from Figure 1, the
model predicts that 23.2 percent of the data will be
referenced if the trace is infinitely long. From Fig-
ure 2, the model predicts that only 9.84 percent of
the data will be written to.

Workload characteristics

In this section we describe the various characteris-
tics of our workloads.

Transaction characteristics. Transactions are the
building blocks of a database workload. The char-
acteristics of transactions are therefore good reflec-
tions of the nature of the workload. Table 2
summarizes the transaction characteristics of our
workloads. In this table, we consider the logical read
ratio that is defined in terms of references to per-
manent objects only. Table 2 also contains data on
the page reuse of transactions. Page reuse is defined
as the ratio of the number of references to the num-
ber of pages referenced and is an indication of the
locality of reference exhibited by the transactions.

The table shows that the production workloads are
very diverse in their transaction characteristics. In
certain cases, however, TPC-C and TPC-D still fall out-
side the broad range of behavior exhibited by the
production workloads. For instance, the proportion
of read-only transactions in the production work-
loads varies from 19 percent in TelecomA to 90 per-
cent in Utility with an average of about 60 percent.
In contrast, only 8 percent of the transactions of
TPC-C are read-only. Since read-only transactions are
easier to isolate from one another, these percent-
ages suggest that TPC-C stresses the concurrency con-
trol mechanism more than the production workloads.
Notice also that the TPC-D transactions have a lot
more references than those of the production work-
loads, but they involve fewer objects and have much
better locality.

Figure 3 plots the distribution of transaction size,
which is the number of references in a transaction.
The distribution in Figure 3B is weighted in the sense
that a transaction of size s is counted s times. Notice
that the transactions in the TPC benchmarks, espe-
cially those in TPC-D, tend to be larger than those of
the production workloads. In addition, the transac-
tions of TPC-D have a wide range of sizes. When two-
phase locking is used to ensure that transactions are

Figure 2 Write footprint of the traces as a function of trace length—default warm-start points for the simulations in  
 Reference 5 are circled.
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serializable,37 locks tend to be released only when
transactions end so that long transactions typically
imply long lock waits. Therefore, the transaction size,
which can be considered the virtual transaction
length or duration, is a very important factor in an-
alyzing concurrency control mechanisms. To make
our data more useful for mathematical modeling, we
fitted the data with standard probability distributions.
As shown in Figure 3, the lognormal distribution (de-
noted LogNorm(m,s), where m is the mean and s
is the standard deviation), turns out to be a good fit.

Since short transactions can be blocked for long pe-
riods by long transactions holding the necessary
locks, system performance is sensitive to the second
and third moments of the transaction size.38 In ad-

dition, the distribution of transaction size affects not
only the absolute but also the relative performance
of different concurrency control schemes.17 There-
fore, we also present the average and higher mo-
ments of the transaction size for our various work-
loads in Table 3.

In Figure 4, we plot the distribution of the transac-
tion footprint, or the number of pages referenced by
a transaction. The lognormal distribution is again a
good fit. Figures 3 and 4 show that most of the trans-
actions are small, but large transactions account for
most of the references and most of the pages ref-
erenced. In contrast to TPC-C, the production work-
loads are made up of transactions with a wide range
of sizes and footprints. Such a mixture of large and

Table 2 Transaction characteristics—%-tile denotes the percentile at which the average value occurs

Trace Aerospace Bank ConsGds DirMktg1 DirMktg2 FinSvcs Insurance Retail TelecomA TelecomB1 TelecomB2 Utility Prod. Ave. TPC-C TPC-D

X
ac

ts # 98931 85173 66102 11892 14906 20956 70242 797637 84378 36508 25899 118191 119235 890885 230

% Read-only 76.4 43.4 27.6 74.3 78.2 71.2 81.2 32.3 19.3 60.8 59.7 89.8 59.5 7.96 37.4

R
ea

d
R

at
io

(%
)

Ave. 95.6 86.0 90.3 96.2 97.0 94.7 96.9 93.1 88.3 95.3 95.1 98.8 93.9 86.5 89.1

(%-tile) (22.9) (48.7) (54.7) (21.9) (19.3) (24.8) (15.6) (39.0) (38.5) (36.1) (35.5) (10.1) (30.6) (54.5) (59.1)

Median 100 92.3 88.3 100 100 100 100 94.5 92.6 100 100 100 97.3 84.6 82.2

Std. Dev. 8.74 13.97 7.99 7.82 7.04 10.1 9.47 7.06 14.6 8.25 8.45 4.59 9.01 4.84 8.74

90%-tile 100 100 100 100 100 100 100 100 100 100 100 100 100 91.4 100

10%-tile 80 69.2 80 82.3 85.7 78.0 90.2 83.3 50 85.7 85.2 98.3 80.7 82.8 82.1

#
R

ef
er

en
ce

s

Ave. 78.6 422 108 538 966 747 294 48.5 155 316 531 319 376.9 220 948393

(%-tile) (90.6) (96.1) (78.4) (91.1) (90.3) (97.0) (90.7) (86.0) (95.2) (88.2) (90.7) (93.8) (90.7) (58.1) (92.2)

Median 4 29 39 24 29 25 32 19 51 49 51 28 31.7 153 63892

Std. Dev. 4306 15739 381 8889 15968 17602 11708 7951 5439 8948 28885 24724 12545 247 6273027

90%-tile 68 162 197 433 895 319 257 63 115 400 459 232 300 492 117929

10%-tile 2 6 7 3 3 4 3 13 4 8 8 3 5.3 26 10

#
P

ag
es

R
ef

’d

Ave. 22.3 119 61.6 120 144 152 56.4 16.6 56.6 83.4 74.5 57.7 80.3 73.0 87509

(%-tile) (84.6) (96.3) (77.2) (89.7) (88.5) (89.8) (78.9) (64.7) (90.7) (82.5) (80.0) (80.6) (83.6) (57.9) (90.9)

Median 3 28 21 14 15 14 21 13 26 35 36 18 20.3 61 12501.5

Std. Dev. 439 2715 351 903 1123 1833 366 328 1350 547 743 1517 1018 81.3 484698

90%-tile 33 90 90 124 242 159 114 29 53 115 117 76 104 161 24776

10%-tile 2 3 6 3 3 3 3 5 2 7 7 3 3.9 12 4

#
P

ag
es

W
ri

tt
en

Ave. 1.81 12.4 5.93 3.77 6.98 16.0 6.37 2.11 9.88 5.45 4.79 5.66 6.76 16.5 14068

(%-tile) (81.5) (87.6) (63.4) (79.7) (90.0) (94.0) (82.8) (65.5) (84.8) (72.5) (64.8) (82.1) (79.1) (51.0) (92.6)

Median 0 3 2 0 0 0 0 1 4 0 0 3 1.1 4 6003

Std. Dev. 16.2 454 8.77 63.0 178 290 178 141 938 86.5 18.7 306 223 14.7 59347

90%-tile 3 16 13 6 7 10 13 4 13 8 8 8 9.1 36 6298

10%-tile 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0

#
O

bj
s.

R
ef

’d

Ave. 4.76 11.8 15.6 8.19 8.70 8.40 13.0 7.14 11.4 11.8 12.0 12.9 10.5 10.0 4.6

(%-tile) (69.9) (56.4) (65.9) (65.1) (62.4) (66.6) (62.9) (60.8) (46.8) (51.7) (56.5) (61.9) (60.6) (55.0) (80.4)

Median 2 8 8 6 7 6 7 6 12 11 11 7 7.6 7 4

Std. Dev. 5.43 10.9 14.0 7.29 7.88 8.21 16.2 4.55 7.73 8.42 8.60 12.9 9.34 3.65 3.43

90%-tile 13 35 37 17 18 18 31 14 21 22 26 29 23.4 14 6

10%-tile 1 2 2 2 2 2 1 2 2 4 4 2 2.2 7 2.1

P
ag

e
R

eu
se

Ave. 1.55 2.12 1.85 2.62 3.18 2.38 1.88 1.73 2.97 3.01 3.26 2.04 2.38 2.75 5.79

(%-tile) (74.4) (80.2) (60.8) (74.9) (77.5) (73.2) (70.0) (60.3) (92.3) (87.2) (87.3) (65.8) (75.3) (63.3) (86.1)

Median 1 1.47 1.71 1.45 1.53 1.55 1.36 1.58 2 1.34 1.4 1.79 1.52 2.5 5.11

Std. Dev. 2.43 5.75 1.08 5.04 9.56 11.6 2.68 1.09 211 5.57 6.09 1.76 22.0 1.17 5.14

90%-tile 2.05 3.33 2.33 4.6 5.55 3.21 3.34 2.47 2.67 3.81 4.12 3 3.37 3.43 9.17

10%-tile 1 1 1 1 1 1 1 1 1.25 1 1 1 1.02 1.94 2.75
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small transactions complicates the task of schedul-
ing and allocating resources to satisfy the different
performance requirements of the transactions. For
instance, a suitable balance has to be found between
allowing large transactions to make good forward
progress and preventing them from monopolizing the
buffer pool. Regrettably, this issue is beyond the
scope of the current study, which only considers the
characteristics of workloads as they have been sched-
uled and tuned in production environments.

Degree of concurrency. In order to effectively uti-
lize system resources, database systems allow the
concurrent execution of multiple transactions
through concurrency control mechanisms, such as
locking, that provide each transaction with an iso-
lated view of the system. The degree of concurrency,
i.e., the number of concurrently active transactions,

in a workload directly affects issues such as lock con-
tention and deadlocks. Furthermore, for each active
transaction in the system, the DBMS has to maintain
a database agent and its associated context, which
is nontrivial and includes various control blocks and
private memory. The time-averaged number of trans-
actions that are active in the various workloads at
any one time is summarized in the last row of Table
4. The production workloads again exhibit very di-
verse characteristics with the time-averaged degree
of concurrency ranging from slightly below 5 in
ConsGds to nearly 80 in Aerospace.

Dynamically creating a database agent can be a sig-
nificant part of the cost in short- and medium-size
transactions. In situations where the degree of con-
currency is rather constant, the agents and private
resources can be held and reused. Figure 5 shows

Figure 3 Number of references per transaction
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The circled point indicates that 21% of TPC-D’s 
references are caused by transactions that contain 
fewer than 6300000 references. 

Table 3 First, second, and third moments of the number of references in a transaction (S)

Aerospace Bank ConsGds DirMktg1 DirMktg2 FinSvcs Insurance Retail TelecomA TelecomB1 TelecomB2 Utility Prod. Ave. TPC-C TPC-D

E[S] 78.6 422 108 538 966 747 294 48.5 155 316 531 319 377 220 9.48 3 105

E[S2] 1.85 3 107 2.48 3 108 1.57 3 105 7.93 3 107 2.56 3 108 3.10 3 108 1.37 3 108 6.32 3 107 2.96 3 107 8.02 3 107 8.35 3 108 6.11 3 108 2.22 3 108 1.09 3 105 4.03 3 1013

E[S3] 1.65 3 1013 5.23 3 1014 5.46 3 109 3.85 3 1013 1.79 3 1014 3.98 3 1014 1.97 3 1014 3.93 3 1014 2.12 3 1013 8.04 3 1013 2.69 3 1015 2.48 3 1015 5.85 3 1014 7.51 3 107 3.04 3 1021
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how the degree of concurrency in the various work-
loads varies over time. The very static profiles for
both TPC-C and TPC-D stand in stark contrast to those
of the production workloads and imply that the TPC
benchmarks will not exercise the agent creation pro-
cess of the DBMS. For a more quantitative charac-
terization of the extent to which the degree of con-
currency fluctuates over time, we time-averaged the
degree of concurrency over intervals ranging from
100 milliseconds to the trace length. The maximum
values observed for each of these interval sizes are
presented in Table 4. We also plot the distribution
of the degree of concurrency time-averaged over
one-second periods in Figure 6. As shown in the fig-

ure, the lognormal distribution is a reasonably good
fit for the average of the production workloads.

Object characteristics. For performance reasons,
most DBMSs offer an option to bypass the file system
provided by the operating system to directly access
the raw storage devices. In this case, the DBMS pro-
vides its own basic file system functionality such as
allocating storage and tracking free space. In this sub-
section, we look at the characteristics of the objects
in the various workloads to better understand what
is required of the underlying file system, whether it
is provided by the operating system or the DBMS.

Table 4 Degree of concurrency averaged over various time intervals showing the peak or maximum value observed for each
interval size

Trace Aerospace Bank ConsGds DirMktg1 DirMktg2 FinSvcs Insurance Retail TelecomA TelecomB1 TelecomB2 Utility Prod. Ave. TPC-C TPC-D

100-ms 131 27.0 15.0 25.0 23.0 48.0 26.0 137 17.0 19.6 16.0 38.9 43.6 60.0 8.00

1-s 128 27.0 12.8 24.3 22.6 48.0 26.0 134 15.4 19.1 16.0 36.0 42.4 60.0 8.00

10-s 125 26.8 11.0 20.9 20.4 47.5 24.3 130 13.8 18.2 14.2 27.7 40.0 60.0 8.00

1-min 124 25.7 8.8 19.7 18.1 33.9 20.7 122 11.6 15.5 12.3 15.9 35.7 60.0 8.00

10-min 119 21.2 7.3 14.0 13.4 29.6 17.2 79.1 8.9 9.4 8.0 13.2 28.4 60.0 8.00

100-min 108 11.0 5.0 12.2 11.9 25.9 13.2 53.5 5.7 6.4 6.4 12.3 22.7 60.0 5.59

Trace Len. 77.7 5.39 4.91 12.1 11.6 20.5 12.8 42.7 6.50 5.06 6.32 11.3 18.1 60.0 3.07
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The total number of objects and the fraction of them
that are referenced or modified are presented in Ta-
ble 5. The total object count was obtained from the
catalog dumps that were taken when the systems
were traced. Notice that the production workloads
have significantly more objects than the two bench-
marks. This observation is not surprising because the
benchmarks are supposed to be distillations of real

environments and should therefore contain only the
core portions of real workloads. Furthermore, the
benchmark traces were collected on DB2/UDB, which
considers the various indices of a table as a single
object instead of individual objects. Figure 7 pre-
sents the distribution of object size. Observe that the
object size, like the transaction size, tends to approx-
imately follow a lognormal distribution. In addition,

Figure 5 Profile of degree of concurrency over time—data show rates averaged over one-minute intervals, not instantaneous  
 rates.
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Table 5 Reference activity on object and page bases

Trace Aerospace Bank ConsGds DirMktg1 DirMktg2 FinSvcs Insurance Retail TelecomA TelecomB1 TelecomB2 Utility Prod. Ave. TPC-C TPC-D

O
bj

ec
ts

Total # 2203 1281 626 1446 1446 3124 1953 434 521 255 255 1139 1224 101 192

% Ref’d 42.9 79.5 39.6 32.3 36.3 35.2 39.7 43.8 48.6 60 62.0 54.3 47.9 15.8 37.5

% Modified 22.0 37.9 20.6 15.3 16.0 14.5 21.3 24.4 26.9 36.1 38.4 36.3 25.8 11.9 22.9

P
ag

es

Total # 8590909 13588236 876401 4656812 4656812 2576270 9752447 18480252 50539937 3869199 3869199 10002028 10954875 17982935 19922913

% Ref’d 4.16 18.1 21.2 6.25 7.49 21.1 4.55 9.38 1.51 6.27 6.46 14.7 10.1 18.9 66.3

% Modified 0.45 2.32 7.78 0.34 0.57 2.83 1.50 2.33 0.882 0.864 0.310 2.38 1.88 14.6 9.93
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most of the objects are small, but the very large ob-
jects account for most of the bytes. This behavior
is similar to what has been observed in a general
UNIX** file system, although the scale there is much
smaller.39 Interestingly, the distribution of file sizes
in PCs running Microsoft Windows** in an office
environment has also been recently reported to fol-
low a lognormal distribution, but the files are again
much smaller than the objects in the database work-
loads.27

Notice from Table 5 that, for most of the workloads,
less than half of the objects are referenced for the
duration of the trace. In general, a common approach
to improving computer system performance is to
place the items that are likely to be used in faster
storage. At the system level or, in other words, ex-
ternal to the DBMS, we can statically allocate to faster
storage (e.g., solid-state disks) the hottest objects,
i.e., those with the highest density (rate per byte) of
reference. This approach reflects what has been re-
ferred to as the “l i, j” model40 in which a transaction
stream i references object j as a Poisson process with
rate l i, j . Under such a model, an optimal static al-
location should give nonlookahead optimal results,

Figure 6 Distribution of degree of concurrency time-
 averaged over one-second intervals—distribution
 for one-minute intervals is virtually identical.
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Figure 7 Size of the objects in the various workloads
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as with the Ao algorithm for the independent ref-
erence model for program behavior.41 We consider
the performance potential of such an approach in
Figure 8.

Figure 8A shows that a small number of objects ac-
count for most of the references. This skew in the
access pattern is common in computer systems and
has been expressed as the “90/10” or “80/20” local-
ity rule. For instance, in 1971, Knuth observed that
the nth most important statement in a set of
FORTRAN programs accounts for (a 2 1)a 2n of run-
ning time, where a is a parameter.42 We refer to this
model of reference skew as the Knuth(a) model. As
shown in Figure 8A, we fitted the data for our pro-
duction workloads with this function. Since the fit
is not very good, we also experimented with more
complicated functions. It turned out that the Hill
equation36 discussed earlier is a much better fit.

Since the objects are of different sizes, we need to
account for their sizes to fully understand the po-
tential benefit of allocating hot objects to faster stor-
age. This accounting is done in Figure 8B where an
object of size s is considered to be s objects. Notice

that the production workloads on average have a
much higher reference skew than the two TPC bench-
marks. This difference suggests that the production
workloads will generally be more amenable to strat-
egies that attempt to statically optimize data place-
ment on an object basis. In Reference 5, we further
consider the static management of faster storage on
a page basis, and the results indicate that dynamic
management offers a dramatically better hit ratio.
This outcome is in line with conclusions in Smith40

and indicates that reference probabilities are clearly
time-varying and that the l i, j model, like the inde-
pendent reference model for programs, is not valid.

The write skew for our workloads is plotted in Fig-
ure 9. As is the case for the reference skew, we find
that the write skew can be accurately described by
the Hill equation. From Figure 9B, we see that the
write skew taking into account the size of the ob-
jects is generally less pronounced than the reference
skew but is still very significant for the production
workloads. Again, the two TPC benchmarks show
much less skew at the object level than do the pro-
duction workloads.

Figure 8 Reference skew on an object basis

The circled point indicates that for TPC-C, 6% of 
the hottest objects account for 82% of the references.  

The circled point shows that for TPC-C, 80% of 
the references are directed at objects that constitute 
18% of the total data size. 
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In Table 6, we break down the objects into data ob-
jects, index objects, and temporary or work file ob-
jects. Because of space constraints, we omit the re-
sults for the individual production workloads; these
results are available in References 6 and 7. Observe
that although the data pages account for the major-
ity of pages in most of the workloads, index objects
account for the largest chunk of references. This ob-
servation suggests that studies that do not consider
index references, such as the one by Leutenegger
and Dias,18 may not give the complete picture. No-
tice further that most of the objects in the produc-
tion workloads are index objects, but this is not the
case in the TPC benchmarks. Part of the reason is
that, as mentioned above, the various indices of a
table are considered to be a single object in DB2/UDB.
Another observation from Table 6 is that the tem-
porary objects may account for up to 80 percent of
the write traffic and must therefore be considered
when characterizing the write behavior of the work-
loads. Furthermore, except for TPC-C, which has no
activity to temporary objects, the temporary objects
account for a very significant portion of the mod-
ified pages.

Note that TPC-D tends to stand out among the work-
loads. In particular, the ratio of index references to
data references in TPC-D is a high 17. Part of the rea-
son is that in the Update Function 1 (UF1) of TPC-D
we append the records to be inserted so that it is pos-
sible to insert one whole page of records with only
one data reference. Perhaps the bigger reason is that
so much effort has gone into optimizing TPC-D that
we can create indices that contain all the data needed
by the queries. This allows “index-only” access where
there is no need to probe the base table after an in-
dex lookup. In some sense, data are replicated in the
indices, which partly explains why our TPC-D setup
contains more index pages than data pages. Notice
also that less than 1 percent of the modified pages
in TPC-D are data pages and that less than 10 per-
cent of the writes update data pages. Instead, most
of the updates of TPC-D are directed at index and
temporary objects. Such behavior is a reflection of
the fact that TPC-D is a query-processing workload
that is predominantly read-only and that has been
well-tuned to use indices effectively. It implies that
optimizations for handling index and temporary ob-
jects are disproportionately important for TPC-D.

Figure 9 Write skew on an object basis

The circled point shows that for TPC-C, 4% of the 
hottest objects account for 78% of the writes.

The circled point indicates that for TPC-C, 80% of 
the writes are directed at objects that constitute 36%
of the total data size. 
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I/O intensity and burstiness. A major consideration
in designing a computer system is that it should
be able to sustain I/O activity that is commensurate
with its processing power. When designing the
System/360, Amdahl observed that the amount of
I/O activity generated per instruction tends to be rel-
atively constant.43 More specifically, Amdahl’s rule
of thumb states that a typical data processing sys-
tem generates approximately 1 Mb/s of I/O bandwidth
for every MIPS (million instructions per second) of
processing power.44 This rule of thumb dates back
to the 1960s, and major changes in both hardware
and software have since occurred. Therefore, in this
section, we revalidate it by empirically estimating the
ratio of I/O activity to processing power required for
our workloads. Note that our trace data reflect only
I/O activity generated by the database and not system-
generated I/O activity, which may constitute a signif-
icant portion of the total I/O activity in certain en-
vironments.40

We use the term bPI (bits per instruction) to denote
the number of bits of I/O activity generated per in-
struction. We emphasize the logical bPI, which is de-
fined in terms of the logical I/O activity generated
per instruction. This number is an intrinsic charac-
teristic of the workload and is relatively independent
of system configuration such as memory size. Note,
however, that dramatic differences in memory size
can result in algorithmic changes that affect the log-
ical bPI. For instance, the amount of memory avail-
able for sorting determines whether external sort-
ing techniques are required and, if so, the number
of merge phases needed.45 Similarly, as more mem-
ory is available, fewer passes are needed to perform
hash joins,46 and this translates into less I/O activity
and therefore lower bPI. Conversely, with larger and
cheaper memories, previously advantageous trade-
offs of additional computation for less memory use
no longer apply.

Unfortunately, we do not have information regard-
ing the system configurations for our production
workloads. We do know, however, that the instal-
lations from which our traces were taken tend to have
some of the highest-end systems available at the time.
So we assume that these systems had about 100 MIPS
of processing power, which is roughly half the pro-
cessing power of the most powerful mainframe sys-
tems that IBM began shipping in late 1992. For the
TPC benchmarks, the processing power of the sys-
tems is determined by the following formula:

MIPS 5
# processors z processor clock speed

estimated CPI

We estimate that the CPI (cycles per instruction) is
about 3.5 for TPC-C and 1.5 for TPC-D, in view of the
results presented in References 47 and 48.

The average amount of logical I/O activity generated
per instruction for the various workloads is summa-
rized in the last row of Table 7. The corresponding
numbers for the write I/O activity are shown in Ta-
ble 8. On average, the production workloads have
a logical bPI of about 0.6, approximately one tenth
of which is due to writes. The bPI of TPC-C is about
three times higher, whereas the bPI of TPC-D is about
twice as high. Note, however, that mainframe and
x86 processor MIPS are not equivalent and cannot
be directly compared. Our primary interest in this
exercise is merely to determine an order-of-magni-
tude estimate for bPI. We find the number of 0.6 to

Table 6 Relative significance of data, index, and
temporary objects

Trace Prod. Ave. TPC-C TPC-D

O
bj

ec
ts

Total # 1224 101 192

% Data 42.7 50.5 60.4

% Index 55.9 49.5 26.0

% Temp 1.4 0 12.5

R
ef

’d
.O

bj
s. Total # 538 16 72

% Data 42.2 50 44.4

% Index 56.5 50 19.4

% Temp 1.2 0 33.3

M
od

ifi
ed

O
bj

s. Total # 272 12 44

% Data 42.0 66.7 40.9

% Index 55.8 33.3 4.5

% Temp 2.2 0 54.5

P
ag

es

Total # 10954879 17982935 19922913

% Data 72.9 84.1 45.2

% Index 26.7 15.9 50.8

% Temp 0.4 0 4.1
R

ef
’d

.P
ag

es Total # 757025 3396262 13204481

% Data 72.4 74.0 50.8

% Index 24.9 26.0 43.1

% Temp 2.7 0 6.1

M
od

ifi
ed

P
gs

. Total # 153749 2627637 1979231

% Data 44.6 83.5 0.8

% Index 31.9 16.5 58.4

% Temp 23.5 0 40.9

R
ef

er
en

ce
s Total # 18550114 1.96E 1 08 2.18E 1 08

% Data 32.7 28.9 5.4

% Index 54.8 71.1 92.7

% Temp 12.5 0 1.8

W
ri

te
s

Total # 1858947 24723791 4737739

% Data 28.9 61.7 9.7

% Index 23.5 38.3 48.8

% Temp 47.6 0 41.5
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be surprisingly high—almost as high as the earlier
noted number of 1.0, based on systems of the 1960s,
despite all of the changes suggesting much lower I/O
rates.

The physical bPI for a given system configuration
can be obtained from the logical bPI by multiplica-
tion with the buffer pool miss ratio. Results presented
in Reference 5 show that a buffer pool that is 1 per-
cent of the total data size can achieve an average hit
ratio of about 90 percent for the production work-
loads. With such a hit ratio, the average physical bPI
value for the production workloads appears to be
around 0.06, which is much lower than Amdahl’s rule
of thumb. In the 1960s, of course, physical and log-
ical I/O activity were the same thing. The correspond-
ing hit ratio for the TPC benchmarks is around 95
percent, meaning that the physical bPI for TPC-C and
TPC-D is comparable to the average of the produc-
tion workloads (0.09 for TPC-C and 0.05 for TPC-D).

The burstiness of the I/O traffic is a very important
characteristic of a workload and has implications on
the techniques that can be applied to improve I/O
performance. For instance, a bursty traffic pattern
suggests that buffering mechanisms that smooth out
the traffic will be useful. More generally, it indicates
that there are opportunities to use the relatively idle
periods to do some useful work. One common ap-
proach is to defer or off-load some work from the
busy periods to the relative lulls. Write buffering with
subsequent destage and logging disk arrays49 can be

viewed as examples of such an approach. Another
frequently used approach is to eagerly or specula-
tively perform some work in the hope that such work
will help improve performance during the next busy
period. Examples of such techniques include pre-
fetching, reorganizing data based on access pat-
terns, and garbage collection. A bursty traffic pat-
tern may also be more amenable to techniques that
adjust and adapt to the traffic. For instance, if the
write traffic is bursty, setting aside a fixed portion of
the buffer pool as the write cache will probably not
perform as well as letting the write cache grow and
dynamically deciding when and what pages to de-
stage.

In this paper, we briefly consider how the workloads
vary in the burstiness of their I/O traffic. Readers who
are interested in the detection of idle periods and
the prediction of their lengths are referred to Gold-
ing et al.50 Figure 10 shows the profile of logical bPI
over time. Observe that the I/O traffic of the produc-
tion workloads tends to be rather bursty in nature.
Because of time-of-day effects, the fluctuation in bPI
is especially pronounced for Bank, which was ob-
served for 23 hours. The I/O traffic for TPC-D is also
very bursty. In contrast, the I/O traffic of TPC-C stands
out as being very regular, suggesting that TPC-C, un-
like the production workloads, will not discriminate
against systems that do not exploit the idle periods.

For a more quantitative characterization of the
burstiness, we time-averaged the logical bPI for the

Table 8 Number of logical I/O bits written per instruction averaged over various time intervals, showing the peak or
maximum value observed for each interval size

Trace Aerospace Bank ConsGds DirMktg1 DirMktg2 FinSvcs Insurance Retail TelecomA TelecomB1 TelecomB2 Utility Prod. Ave. TPC-C TPC-D

100-ms 1.14 1.06 0.492 0.963 0.796 2.01 1.25 0.816 1.41 0.800 0.731 2.22 1.14 0.789 1.16

1-s 0.559 0.664 0.193 0.583 0.494 1.15 0.820 0.623 1.05 0.684 0.634 1.83 0.774 0.415 0.767

10-s 0.311 0.383 0.109 0.305 0.307 0.394 0.592 0.270 0.499 0.146 0.143 1.38 0.403 0.305 0.208

1-min 0.0821 0.332 0.0785 0.128 0.157 0.277 0.409 0.196 0.305 0.110 0.0562 0.726 0.238 0.262 0.173

10-min 0.0289 0.189 0.0525 0.0386 0.0468 0.0648 0.299 0.154 0.192 0.0743 0.0248 0.233 0.117 0.250 0.0578

100-min 0.0212 0.051 0.0421 0.0261 0.0358 0.0554 0.154 0.0985 0.0548 0.0444 0.0146 0.137 0.0612 0.248 0.0301

Trace Len. 0.0178 0.0134 0.0430 0.0260 0.0282 0.0333 0.106 0.0951 0.101 0.0303 0.0141 0.112 0.0517 0.239 0.0215

Table 7 Number of logical I/O bits per instruction averaged over various time intervals, showing the peak or maximum value
observed for each interval size

Trace Aerospace Bank ConsGds DirMktg1 DirMktg2 FinSvcs Insurance Retail TelecomA TelecomB1 TelecomB2 Utility Prod. Ave. TPC-C TPC-D

100-ms 2.51 3.46 2.23 3.20 3.73 3.28 5.37 3.72 5.27 3.74 3.97 3.66 3.68 7.11 7.54

1-s 1.76 2.85 1.16 2.09 2.45 2.65 3.19 2.60 3.23 1.89 2.16 2.87 2.41 3.11 6.95

10-s 1.40 1.92 0.632 1.69 1.67 1.65 2.12 1.91 2.81 1.09 1.59 2.40 1.74 2.36 5.66

1-min 0.976 0.878 0.464 1.21 1.42 1.14 1.69 1.29 2.14 0.854 1.32 2.18 1.30 2.05 5.59

10-min 0.575 0.586 0.365 0.848 0.945 0.528 1.25 1.05 1.14 0.683 0.989 1.44 0.867 1.98 3.94

100-min 0.333 0.412 0.335 0.566 0.751 0.437 0.837 0.799 0.540 0.478 0.747 1.08 0.609 1.97 2.22

Trace Len. 0.285 0.142 0.328 0.559 0.643 0.365 0.700 0.724 0.715 0.430 0.739 1.047 0.556 1.89 0.991
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Figure 10 Profile of number of logical I/O bits per instruction over time—data have been smoothed by averaging over 
 one-minute intervals.
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various workloads over intervals ranging from 100
milliseconds to the trace length. The maximum val-
ues observed for each of these intervals are presented
in Tables 7 and 8. The fact that the bPI drops sig-
nificantly when averaged over longer time periods
indicates that the I/O traffic of the workloads tends
to be very bursty in nature. When designing systems,
we have to take this burstiness into consideration and
design not just for the average case. Notice further
that writes account for a larger fraction of the bPI
for smaller interval sizes, suggesting that write ac-
tivity is more bursty than read activity.

Figure 11 plots the distribution of the number of log-
ical I/O bits per instruction averaged over one-sec-
ond and one-minute periods. As shown in the fig-
ure, the data can be modeled reasonably well by the
beta distribution (denoted Beta(a1, a2), where a1
and a2 are the standard parameters) and the expo-
nential distribution (denoted Exp(m), where m is the
mean). For instance, the distribution of bPI aver-
aged over one-second periods tends to follow the
beta distribution with parameters 1.69 and 38.7 that
is scaled by 10.3 and translated by 0.000259. This dis-
tribution is denoted as Beta(1.69, 38.7) 3 10.3 1
0.000259 in Figure 11.

Conclusions

In this paper, we empirically examine the workload
characteristics of the peak production database work-
loads of ten of the world’s largest corporations as
well as those of the industry-standard benchmarks
for on-line transaction processing and decision sup-
port systems, namely TPC-C and TPC-D. Even though
the production workloads were run on similar sys-
tems at around the same point in time, they turned
out to be very diverse. Nevertheless, in certain cases,
TPC-C and TPC-D still fall outside the broad spectrum
of behavior exhibited by the production workloads.
In general, the two TPC benchmarks tend to com-
plement one another in the sense that they are rep-
resentative of different aspects of the production
workloads. However, there are still some character-
istics of the real workloads that are not reflected by
either of the benchmarks.

Specifically, we find that the production workloads
are dynamic in that their characteristics are time-
varying. For instance, their I/O demands are very
bursty, suggesting that adaptive techniques for
smoothening the load and for intelligently exploit-
ing idle periods will be useful in a production set-
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Figure 11   Distribution of number of logical I/O bits per instruction averaged over one-second and one-minute time intervals
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ting. In stark contrast, TPC-C is very static and pre-
dictable, implying that TPC-C primarily evaluates peak
performance, which though definitely important,
does not translate exactly into effective performance
in a production environment with bursty workload
characteristics. TPC-D is better in this regard, but it
shares with TPC-C the characteristic of having a rather
stable degree of concurrency. As a result, these
benchmarks will tend not to measure the overheads
for setting up and destroying database agents, which
can be significant in production environments.

Another aspect of the regularity of TPC-C is mani-
fested in the size of its transactions. Unlike the pro-
duction workloads that contain transactions with a
wide variety of sizes, the transactions of TPC-C are
very uniform in size. In other words, TPC-C will not
test techniques for scheduling and allocating re-
sources among transactions with different resource
and performance requirements even though these
techniques are important in the production environ-
ments. TPC-D appears to be similar to the produc-
tion workloads in that it contains transactions with
a wide variety of sizes. However, the very long trans-
actions in TPC-D are caused by the read-only queries
that are run serially in the power test. Therefore, it
too does not evaluate scheduling and resource al-
location among diverse transactions.

When two-phase locking is used to ensure that trans-
actions are serializable,37 locks tend to be released
only when transactions end. Therefore, the distri-
bution of transaction size is a very important factor
in determining lock contention. As we have seen, the
transactions of TPC-C are rather uniform in size. Fur-
thermore, when compared to the production work-
loads, TPC-C tends to have longer transactions and
relatively few read-only transactions. All these sug-
gest that TPC-C stresses the concurrency control
mechanism differently than the production work-
loads analyzed in this paper. Some of the transac-
tions of TPC-D are much longer than those of the pro-
duction workloads, but since they are read-only, they
can be run at a lower isolation level, i.e., under more
relaxed consistency requirements.51 Furthermore, in
the TPC-D power test, the long transactions are run
serially so that TPC-D tends not to load the concur-
rency control mechanism.

Although temporary objects account for a significant
portion of the write traffic in the production work-
loads, TPC-C does not have any activity to temporary
objects. TPC-D is more in line with the production
workloads in this regard, but it stands out in having

practically all of its references directed at the index
objects. All these factors indicate that TPC-C does not
assess the handling of temporary objects, whereas
TPC-D disproportionately rewards index optimiza-
tions. Our analysis also suggests that on an object
basis, the production workloads exhibit significantly
higher reference and write skew than do the two
benchmarks. In other words, statically allocating hot-
ter objects to faster storage will be more beneficial
to the production workloads than to the TPC bench-
marks.

As part of our analysis, we also re-examine Amdahl’s
rule of thumb from the 1960s, which states that a
typical data processing system generates about 1
Mb/s of I/O bandwidth for every 1 MIPS of process-
ing power. We discover that both the TPC bench-
marks and the production workloads generate log-
ical I/O rates within a factor of two of the earlier
figure, despite the passage of 20 to 30 years. Phys-
ical I/O rates, of course, are about 90 percent lower
due to the use of buffering and caching techniques
not used in the earlier period.

Acknowledgments

Hsu gratefully acknowledges the support of IBM dur-
ing this research. This work was initiated as a joint
project through an IBM Fellowship. Hsu is now sup-
ported by IBM Research. Smith’s research in this and
related areas is also funded by the State of Califor-
nia under the MICRO program, IBM, Cisco Corpo-
ration, Fujitsu Microelectronics, Intel Corporation,
Microsoft Corporation, Veritas Software, Maxtor
Corporation, Quantum Corporation, Sun Microsys-
tems, Inc., and Toshiba Corporation.

Collecting traces and getting them into a form suit-
able for analysis constitutes a very long and involved
process. This research would not have been possi-
ble without the help of many. In particular, the au-
thors would like to thank Jyh-Herng Chow, Alex
Hazlitt, Eric Louie, Amit Somani, and Surrendra
Verma for their guidance in designing the trace fa-
cility and in setting up the TPC benchmarks. The au-
thors would also like to express their gratitude to the
many people who contributed to obtaining the pro-
duction traces. Special mention is made of Ted Mes-
singer, James Teng, Barbara Tockey, and Chuck Tri-
bolet. Finally, the authors would like to recognize
Jim Gray and Joseph M. Hellerstein for helpful com-
ments on versions of this paper.

IBM SYSTEMS JOURNAL, VOL 40, NO 3, 2001 HSU, SMITH, AND YOUNG 799



*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Transaction Process-
ing Performance Council, Microsoft Corporation, or X/Open
Company Ltd.

Cited references

1. TPC Benchmark C Standard Specification Revision 3.3.2,
Transaction Processing Performance Council (June 1997).

2. TPC Benchmark D Standard Specification Revision 1.3.1,
Transaction Processing Performance Council (December
1997).

3. A. J. Smith, “Trace-Driven Simulation in Research on Com-
puter Architecture and Operating Systems,” Proceedings of
the Conference on New Directions in Simulation for Manufac-
turing and Communications, Tokyo, Japan (August 1994), pp.
43–49.

4. R. A. Uhlig and T. N. Mudge, “Trace-Driven Memory Sim-
ulation: A Survey,” ACM Computing Surveys 29, 128–170
(June 1997).

5. W. W. Hsu, A. J. Smith, and H. C. Young, I/O Reference Be-
havior of Production Database Workloads and the TPC Bench-
marks—An Analysis at the Logical Level, Technical Report
CSD-99-1071, Computer Science Division, University of Cal-
ifornia, Berkeley, CA (November 1999). Also available as Re-
search Report RJ 10166, IBM Almaden Research Center,
San Jose, CA (November 1999). To appear in ACM Trans-
actions on Database Systems.

6. W. W. Hsu, A. J. Smith, and H. C. Young, “Results and Data
for ‘Analysis of the I/O Characteristics of Production Data-
base Workloads and the TPC Benchmarks’ ” (1999), see
http://www.cs.berkeley.edu/˜windsorh/DBChar.

7. W. W. Hsu, A. J. Smith, and H. C. Young, Analysis of the
Characteristics of Production Database Workloads and Com-
parison with the TPC Benchmarks, Technical Report CSD-
99-1070, Computer Science Division, University of Califor-
nia, Berkeley, CA (November 1999). Also available as
Research Report RJ 10165, IBM Almaden Research Cen-
ter, San Jose, CA (November 1999).

8. J. Rodriguez-Rosell, “Empirical Data Reference Behavior
in Data Base Systems,” Computer 9, No. 11, 9 –13 (Novem-
ber 1976).

9. A. J. Smith, “Sequentiality and Prefetching in Database Sys-
tems,” ACM Transactions on Database Systems 3, 223–247
(September 1978).

10. P. Hawthorn and M. Stonebraker, “Performance Analysis of
a Relational Data Base Management System,” Proceedings
of the ACM SIGMOD International Conference on Manage-
ment of Data, Boston, MA (May 1979), pp. 1–12.

11. J. P. Kearns and S. DeFazio, “Locality of Reference in Hi-
erarchical Database Systems,” IEEE Transactions on Software
Engineering 19, 128–134 (March 1983).

12. W. Effelsberg and M. E. S. Loomis, “Logical, Internal, and
Physical Reference Behavior in CODASYL Database Sys-
tems,” ACM Transactions on Database Systems 9, 187–213
(June 1984).

13. A. I. Verkamo, “Empirical Results on Locality in Database
Referencing,” Proceedings of the ACM SIGMETRICS Inter-
national Conference on Measurement and Modeling of Com-
puter Systems, Austin, TX (August 1985), pp. 49–58.

14. I. R. Casas and K. C. Sevcik, “A Buffer Management Model
for Use in Predicting Overall Database System Performance,”

Proceedings of the IEEE International Conference on Data En-
gineering, Los Angeles, CA (February 1989), pp. 463–469.

15. J. P. Kearns and S. DeFazio, “Diversity in Database Refer-
ence Behavior,” Performance Evaluation Review 17, 11–19
(May 1989).

16. B. T. Zivkov and A. J. Smith, “Disk Cache Design and Per-
formance as Evaluated in Large Timesharing and Database
Systems,” Proceedings of the CMG (Computer Measurement
Group) Conference, Orlando, FL (December 1997), pp. 639–
658. Abridged version published as “Disk Caching in Large
Database and Timeshared Systems,” Proceedings of the 5th
International Symposium on Modeling, Analysis, and Simula-
tion of Computer and Telecommunication Systems, Haifa, Is-
rael (January 1997), pp. 184–195. Extended version available
as Technical Report CSD-96-913, Computer Science Divi-
sion, University of California, Berkeley, CA (September
1996).

17. V. Singhal and A. J. Smith, “Analysis of Locking Behavior
in Three Real Database Systems,” The VLDB Journal 6, 40–52
(January 1997). Extended version available as Technical Re-
port CSD-94-801, Computer Science Division, University of
California, Berkeley, CA (April 1994).

18. S. T. Leutenegger and D. M. Dias, “A Modeling Study of the
TPC-C Benchmark,” Proceedings of the ACM SIGMOD In-
ternational Conference on Management of Data, Washington,
DC (May 1993), pp. 22–31.

19. T.-F. Tsuei, A. N. Packer, and K.-T. Ko, “Database Buffer
Size Investigation for OLTP Workloads,” Proceedings of the
ACM SIGMOD International Conference on Management of
Data, Tucson, AZ (May 1997), pp. 112–122.
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