An architecture
for the Internet Key
Exchange Protocol

In this paper we present the design, rationale,
and implementation of the Internet Key
Exchange (IKE) Protocol. This protocol is used to
create and maintain Internet Protocol Security
(IPSec) associations and secure tunnels in the IP
layer. Secure tunnels are used to construct
virtual private networks (VPNs) over the Internet.
The implementation is done in the application
layer. The design includes four components:

(1) an IKE protocol engine to execute the IKE
protocol, (2) a tunnel manager to create and
manage secure tunnels—it generates requests to
the IKE protocol engine to establish security
associations, (3) VPN policy administration tools
to manage VPN policies that guide the actions of
the IKE protocol engine and the tunnel manager,
and (4) a certificate proxy server to acquire and
verify public key certificates that are used for
authentication of messages and identities in the
IKE protocol. The implementation was done on
the Advanced Interactive Executive® (AIX®)
operating system at IBM Research and has been
transferred to IBM’s AIX, Application
System/400°, and System/390® products.

his paper is a follow-on to an earlier paper' and

describes a design and its implementation of the
Internet Key Exchange, or IKE, Protocol specified
in the report by Harkins and Carrel.? The work was
done from 1995 to 1999, during which period the IKE
protocol was defined and then evolved in the Inter-
net Engineering Task Force (IETF) Internet Proto-
col Security (IPSec) working group.? Although the
protocol is still evolving, it has become stable enough
for participants of the working group to build inde-
pendent and interoperable implementations. This
paper describes IBM’s implementation. The work was
done on the 1BM Advanced Interactive Executive*
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(AIX*) version 4 operating system at IBM Research,
and the core technology has been transferred to IBM
product divisions producing AIX, AS/400* (Applica-
tion System/400*), and $/390* (System/390*), which
have since augmented the core technology and made
it part of the product offerings.

IKE is the primary protocol to generate and main-
tain IPSec'* security associations, which are the ba-
sic building blocks of virtual private networks (VPNs)
over the Internet. IKE uses cryptography>® exten-
sively, and this paper assumes that readers have a
basic knowledge of cryptography. Readers should
be familiar with concepts such as symmetric key cryp-
tography, public key cryptography, encryption,
hash, Diffie-Hellman Key Agreement, public key
signature/encryption, public key certificates, certif-
icate authority, and public key infrastructure.

IKE is a complex protocol, and a detailed descrip-
tion of it is outside the scope of this paper. We only
introduce it with enough details to put the descrip-
tion of our design and implementation in context.
The introduction is nonetheless lengthy because of
the complexity of the protocol.

In the remainder of the paper, the next section is an
introduction to the protocol, the subsequent section
describes our architecture and implementation of the
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royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
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protocol, and the last section gives a brief descrip-
tion of the performance of our implementation.

The protocols

The Internet Key Exchange Protocol is fairly com-
plex, and interested readers should refer to Refer-
ences 2, 7, and 8 for details.

IKE is specified by the Internet Society RFC (Request
for Comments) 24092 that references the Internet
Security Association and Key Management Proto-
col (1sAKMP)7 and The Internet IP Security Domain
of Interpretation (DOI) for ISAKMP.* ISAKMP spec-
ifies the high-level, abstract syntax and semantics for
certain types of key management protocols. Thus,
while the letter “P” in the abbreviation “ISAKMP”
means “protocol,” ISAKMP specifies only a framework
for key management protocols but not any imple-
mentable protocol since the specification lacks suf-
ficient low-level details. IKE and DOI fill in the de-
tails and specify a set of implementable protocols
that fit into the framework. Whereas IKE focuses
mainly on the detailed protocol semantics, DOI fo-
cuses mainly on the detailed syntax and semantics
of the information carried by the messages of the
protocol. In ISAKMP terminology, a protocol fitting
into its framework is called a key exchange protocol.
A protocol under the ISAKMP framework should use
User Datagram Protocol (UDP)? port 500 to send
and receive messages.

Note that one can design an IKE-like protocol with-
out referring to a framework. So one has to ask why
ISAKMP is needed and what it provides. In the rest
of this section we first discuss ISAKMP and DOI in
more detail and then discuss IKE in more detail.

ISAKMP. ISAKMP is a definition of a high-level, ab-
stract framework for point-to-point, two-party, asym-
metric key management protocols. Being asymmet-
ric means the two parties have different roles. One
role is called the initiator, which begins the exchange
of protocol messages by sending the first message;
the other role is called the responder, which replies
to the first message from the initiator.

Why ISAKMP? ISAKMP makes a distinction between
“key exchange” and “key management” and consid-
ers the latter to be a superset of the former.

Key exchange is mainly concerned with exchanging
information to generate secret keys shared between
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two parties. ISAKMP requires a key exchange proto-
col to:

* Generate a set of secret key(s) shared exclusively
between the two parties

 Authenticate the identity of each party to the other.
Here, “authenticating identity” means authenticat-
ing the binding between a party’s claimed identity
and the pieces of information the party claims to
have sent and received. In particular, a successful
authentication should prove the freshness of the
information to defeat replay.

* Ensure the set of secret keys generated by one pro-
tocol message exchange is independent of key sets
generated by other protocol message exchanges.
This means compromise of one key set does not
lead to compromise of other sets. This property
is usually known as perfect forward secrecy (PFS)."

* Be scalable. Here scalability means that a key ex-
change protocol can be executed between any two
parties within a very large population, even if the
two parties do not share any secret a priori. This
requirement, coupled with the requirement for au-
thentication, implies the use of public key cryp-
tography>*!! and dependency on the public key in-
frastructure (PKIX),'>" a very complex topic in
itself. The process of acquiring and verifying pub-
lic key certificates is outside the scope of ISAKMP
and IKE specification, although an ISAKMP/IKE im-
plementation must have the means to do so. More
discussion on PKIX and ISAKMP is given in the next
subsection.

A shared set of secret keys would be of little value
unless the two parties also agree on some meta pa-
rameters. This agreement should include informa-
tion on:

* How to use the keys:
—Cryptographic algorithm(s) to be used with the
keys
—Parameters for the cryptographic algorithm(s),
such as key size and initial synchronization
—How and to what the cryptographic algorithm(s)
and the keys should be applied
* Key lifetime and key refreshment policy’
* Anidentifier for the meta parameters and the keys.
The identifier should be unique with respect to the
two parties.

These meta parameters, the shared keys, the iden-
tities, and the IP addresses of the two parties form
a security association, or SA,* and ISAKMP key man-
agement is concerned with creating and managing
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security associations exclusively shared between two
parties. Therefore, a key management protocol that
fits into the ISAKMP framework is logically divided
into the following two steps:

1. Parameter negotiation: To agree on the meta pa-
rameters and a key exchange protocol and its pa-
rameters

To carry out this step, the initiator sends a list of
proposals to the responder in the first message.
The responder either chooses one and only one
proposal from the list and sends its choice to the
initiator or rejects the entire list and sends back
an error in the second message.

What to propose and what to choose depends on
the two parties’ security policies. A more detailed
description of an ISAKMP proposal and the param-
eter negotiation is given in a later subsection.

2. Key exchange: To execute the agreed-upon key
exchange protocol to generate keys and to authen-
ticate each party to the other

In ISAKMP terminology, the two parties execute the
two steps to negotiate SAs. An instance of the ex-
ecution of the two steps is called a negotiation. From
now on, the word “negotiation” refers to such an in-
stance unless “parameter negotiation” is used.

This two-step division allows ISAKMP to separate key
generation, which depends heavily on a specific key
exchange protocol, from security association man-
agement, which could be conducted in a generic way
independent of the key exchange protocol. It also
allows more than one key exchange protocol to fit
into the framework.

ISAKMP has a well-defined encoding format for the
list of proposals. In theory, the ISAKMP framework
specification could stop here and allow any key
exchange protocol meeting its requirements to fit
into the framework. However, researchers have
shown %1416 that designing and analyzing a key ex-
change protocol is very difficult. Subtle mistakes can
render a key exchange protocol vulnerable to attacks
even if the protocol uses only strong cryptography
primitives. For this reason, ISAKMP specification in-
cludes a few rigid templates, called exchanges, for
key exchange protocols. The belief is that a key ex-
change protocol that fits into a template should meet
the ISAKMP requirements and thus be “secure.” A
template specifies: the number of messages sent by
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Figure 1 ISAKMP identity-protection exchange

Initiator Responder

) HDR, [SA] proposal

HDR, [SA] choice
@
Parameter negotiation is completed; an agreement
is reached.

HDR, [KE];, INONCE],

HDR, [KE] g, INONCE] g

Key-exchange payloads [KEs] and nonces are
generated and exchanged. An exclusively shared
secret is derived from the KEs by both the
initiator and the responder. Nonces must have
been exchanged at this point to defeat replay.

HDR*, [ID];, [AUTH],

HDRY, [ID] g, [AUTH]g

IDs have been exchanged. Each party computed
the authentication data (AUTHS) on its own ID
and other exchanged information and sent the
AUTH to the other. Each AUTH is verified by its
receiver. The IDs and AUTHSs are encrypted by

a key derived from the shared secret. The
algorithms used for encryption and for computing
AUTHSs were agreed upon during the parameter
negotiation. The protocol exchange is complete.

each party, the ordering of messages, the types of
information a message should carry (ISAKMP defines
different types of payloads to carry different types of
information), and the actions, together with their ef-
fects, a party should take when sending or receiving
a particular message.

Thus, a template specification allows a message-by-
message check against a protocol. Figure 1 depicts
the ISAKMP identity-protection exchange. Messages
1 and 2 carry out the parameter negotiation; mes-
sages 3 to 6 carry out the key exchange. HDR is the
ISAKMP message header, which contains anticlogging
cookies (see later subsection), protocol version, mes-
sage length, etc. Each ISAKMP payload is shown in
square brackets. The SA payloads contain the initi-
ator’s proposals and the responder’s choice. The
[KE]s are the key exchange payloads used to derive
a shared secret. [NONCE]s are nonces, large and
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Figure 2 ISAKMP aggressive exchange

Initiator Responder
HDR, [SAlproposals [KE];, INONCE],, [ID];

The initiator collapses parameter negotiation and
key exchange into one step. The proposals are
constrained by the semantics of [KE], and [/D],.

HDR, [SAlchoice: [KE] g, [NONCE]R, [ID]g, [AUTH]R

Key-exchange payloads [KEs] and nonces are
generated and exchanged. The responder
computes authentication data over its ID and other
information exchanged and sends its ID and
authentication data to the initiator. Nonces must
have been exchanged at this point to defeat replay.

HDR, [AUTH],

The initiator verifies the responder's authentication
data and then computes its authentication data
over its ID and other information exchanged and
sends the authentication data to the responder.
The responder verifies the initiator's authentication
data. Both parties derive an exclusively shared
secret from the KEs. The protocol exchange is
complete.

Figure 3 Two-phase approach to key management

PHASE | KEY MANAGEMENT PROTOCOLS

MANUAL PUBLIC KEY KDC

PHASE | SA (ISAKMP SA)

PROTECT

PHASE Il KEY MANAGEMENT PROTOCOLS

SK, SK, SK,

PHASE Il SAS (IPSec SAS)
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never-used-before random numbers, used to defeat
replay. The terms [/D]; and [ID ] are the identities
of the initiator and the responder, respectively. In
messages 5 and 6, there is a “*” symbol following
HDR, meaning that all payloads following the mes-
sage header are encrypted. Therefore, the identities
are encrypted, and thus the name “identity-protec-
tion.” [AUTH]s contain data used for authentication.

Figure 2 depicts the ISAKMP aggressive exchange.
The aggressive exchange collapses the identity-pro-
tection exchange into three messages by conducting
the parameter negotiation and the key exchange at
the same time. The price paid for fewer messages
is that identities generally cannot be encrypted and
the room for negotiation is constrained. For exam-
ple, the key exchange protocol cannot be negotiated,
so the initiator chooses a key exchange protocol and
indicates the choice in all the proposals. The re-
sponder can only accept a proposal or reject all pro-
posals. More details on constraints on proposals
will be discussed in the subsection on IKE Phase I
protocols.

The two-phase approach. Another important concept
in ISAKMP is the two-phase approach, which is or-
thogonal to other concepts discussed so far. This con-
cept was first discussed in References 17 and 18 and
then in Reference 7 and Reference 1. Figure 3 de-
picts this concept. This concept is not strictly needed
to create security associations, but it can be argued
that for most application scenarios this concept has
significant methodological and design value.! The
two-phase approach is meant to address the following
two problems faced by key management protocols:

1. How to share authenticated information (SAs), in-
cluding secrets, identities, etc., between two par-
ties when no secret is shared a priori

2. How to efficiently refresh the shared information
to defeat cryptography analysis

The first problem is solved by public key cryptog-
raphy; IKE is a good example of such a solution. The
second problem emphasizes efficiency and thus con-
flicts with the use of public key cryptography because
its computation cost is usually very high. The two-
phase approach resolves the conflict as follows.

In Phase I, use public key cryptography and run a
key management protocol infrequently to generate
the “first” shared security association. This SA is
called an “ISAKMP SA” or a “Phase I SA.” The secret
keys in this SA are associated with symmetric key
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cryptographic algorithms that are much more effi-
cient than those of public key cryptography. These
keys and algorithms are used to protect Phase II pro-
tocols.

In Phase II, under the protection of an ISAKMP SA,
run a key management protocol frequently to gen-
erate many more SAs. These Phase II SAs are used
to protect data (i.e., not key management) traffic be-
tween the two parties. Experience!® has shown that
protocols used in Phase II can be very efficient.

In theory, protocols fitting the ISAKMP “exchanges”
can be used in both phases. But since Phase II ne-
gotiations are protected by ISAKMP SAs, more effi-
cient protocols can usually be designed for Phase 11
negotiations. This is the case for the IKE Phase 11
protocol described in more detail later.

ISAKMP proxy negotiation. ISAKMP proxy negotiation
means an initiator and a responder, already sharing
a Phase I ISAKMP SA, use this ISAKMP SA to nego-
tiate Phase I1 SAs for protecting traffic between other
systems. This situation is best illustrated by the ex-
ample in Figure 4.

In Figure 4, two firewalls, FW-1 and FW-2, share an
ISAKMP SA and use this ISAKMP SA to negotiate
IPSec SAs to protect communication between A and
B. Note that in this case the end points of these
IPSec SAs are still FW-1 and FW-2, but they will be des-
ignated to protect the communication between A and
B only. This designation happens when the identi-
ties of A and B, instead of those of FW-1 and Fw-2,
are exchanged during a Phase II negotiation. The
identities of A and B are called ID,; and ID,,.”

Either A or B can be a single system or a group of
systems (see the subsection on DOI). It is also pos-
sible that a single system A coincides with FW-1, in
which case FW-1 disappears and A acts as a proxy of
itself.

The ISAKMP proposal and parameter negotiation. Fig-
ure 5 shows the logical structure of an ISAKMP pro-
posal. It is a three-layer hierarchy consisting of:

1. Security protocols—the functionality of the to-
be-generated SAs. For example, the security pro-
tocol for ISAKMP Phase I negotiation is always
“ISAKMP,” which indicates the Phase I SA is to pro-
tect Phase II messages. For Phase II protocols
generating IPSec SAs, the security protocol can be
ESP" or AH.”
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Figure 4  Firewalls as ISAKMP proxies for systems behind
them

ISAKMP SA

FW-1 IPSec SA FW-2

Figure 5  Structure of an ISAKMP proposal

SET OF SECURITY PROTOCOLS:
CLASSIFIED BY FUNCTIONALITY

PHASE [: ISAKMP
PHASE II: ESP, AH

TRANSFORM: THE ACTUAL MECHANISM

PHASE [: IKE
PHASE II: DES-CBC, HMAC-MDS, ...

ATTRIBUTES: PARAMETERS OF A TRANSFORM
EXAMPLE: KEY LIFETIME
ESP AUTHENTICATION ALGORITHM, ...

Each security protocol proposes meta parameters
of a to-be-generated SA. If more than one pro-
tocol is in a proposal, then all these to-be-gen-
erated SAs should be used and managed together.
For example, if both ESP and AH appear in a pro-
posal, the resulting ESP SA and AH SA must be
placed in an SA bundle.’

2. Transform—indicate the actual mechanism to
provide the functionality indicated by the secur-
ity protocol. A security protocol proposed by the
initiator can have a list of transforms arranged in
descending order of preference. The responder
must either choose one and only one transform
or reject the entire list.

In a Phase I negotiation, a transform names a key
exchange protocol such as IKE. In a Phase II ne-
gotiation generating IPSec SAs, transform names
the actual cryptographic algorithm to achieve the
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Figure 6  Phil Karn’s anticlogging cookie

Initiator Responder

cookie-|
cookie-I, cookie-R

cookie-I, cookie-R, ...

functionality. For example, a transform under
ESP can be DES (Data Encryption Standard),
triple-DES, or other encryption algorithms; a
transform under AH is usually HMAC-SHA?! or
HMAC-MD5.*

3. Transform attributes—include in each transform
a set of attributes from the initiator. For a Phase
I negotiation, these attributes can be applied to
the key exchange protocol or to the to-be-gen-
erated ISAKMP SA, such as the lifetime of the SA,
or to both. For a Phase II negotiation generating
IPSec SAs, these attributes can be SA lifetime, au-
thentication algorithm for ESP, key size for cryp-
tographic algorithms with variable-size keys, etc.

In general, a proposal from the initiator can be thought
of as a product-of-sums Boolean formula, with each
sum being an ordered list of transforms of a security
protocol in descending order of preference. For exam-
ple, the following formula (“ - ”: AND, “|”: OR) rep-
resents a proposal for an ESP/AH SA bundle:

ESP

(Triple-DES|DES) - (HMAC-SHA|HMAC-MD?5)

AH

(1

Expanding Expression 1, we get the sum-of-prod-
ucts form:

Triple-DES - HMAC-SHA|

Triple-DES - HMAC-MD?5|
DES - HMAC-SHA|

DES - HMAC-MD5 (2)
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The responder must either accept the proposal by
choosing one and only one item from Expression 2
or reject the entire proposal.

Each proposal is encoded in a set of ISAKMP
PROPOSAL payloads; each PROPOSAL payload is for
one security protocol in the proposal and contains
the identifier of the security protocol and the encod-
ing of the list of transforms for the security proto-
col. Each transform and its attributes are encoded
in an ISAKMP TRANSFORM payload. Payloads of the
same proposal but different security protocols share
the same proposal number in the header of the
PROPOSAL payloads. A proposal list from the initi-
ator is an array of sets of PROPOSAL payloads; the
sets are arranged in descending order of preference
and are placed in an SA payload. The responder’s
choice is encoded as one set of PROPOSAL payloads;
each such payload corresponds to a security proto-
col and contains exactly one TRANSFORM payload.

In the case of IKE, a Phase II negotiation actually
generates two unidirectional sAs™* for each (secur-
ity protocol, transform) chosen by the responder.
One SA is to protect data communication from the
initiator to the responder, and the other is to pro-
tect data communication from the responder to the
initiator. For each PROPOSAL payload sent by the ini-
tiator in a Phase II negotiation, the initiator generates
an identifier for the to-be-generated responder-
to-initiator SA (see earlier subsection on the two-
phase approach), called a security parameter index
(sp1),* and places the SPI inside the header of the
PROPOSAL payload. Likewise, the responder gener-
ates an SPI for each PROPOSAL payload it sends back.
Aresponder’s SPT identifies an initiator-to-responder
SA.

The ISAKMP anticlogging cookies. Anticlogging cook-
ies were first proposed by Phil Karn® to counter de-
nial-of-service (DOS) attacks when the adversary is
not a man-in-the-middle, active attacker. In the case
of ISAKMP, an attacker starts a DOS attack by imper-
sonating many different initiators to start many ne-
gotiations with a responder. The goal of the attack
is to force the responder to waste valuable comput-
ing and network resources on useless negotiations.

Since it is generally impossible to prevent an attacker
on the Internet from mounting such an attack, the
goal of the anticlogging cookie is not to prevent DOS
attacks from happening, but to reduce the amount
of resources consumed by the attacks. The basicidea
is that the responder will demand confirmation of
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the genuineness of a negotiation from the supposed
initiator before committing any significant amount
of resources. Karn’s original design is sketched in
Figure 6, which shows the following actions:

1. The initiator generates a random number, cook-
ie-I, such that (responder, cookie-I) is unique with
respect to the initiator, and sends the cookie-I in
the first message to the responder. Usually, cook-
ie-I is generated from some local secret, some
unique information about the responder (e.g., IP
address), and possibly other local state information.

2. The responder generates a request for confirma-
tion, (cookie-I, cookie-R), and sends the request
to the supposed initiator. The cookie-R is a ran-
dom number generated from cookie-I, some lo-
cal secret, some unique information about the ini-
tiator (e.g., IP address), and possibly other local
state information. The cookie-R must have the
following properties:

* The mapping from (initiator, cookie-I) to cook-
ie-R is one-to-one with respect to the responder.
This property implies that the responder always
generates the same cookie-R from the same
(initiator, cookie-I).

* Only the responder can generate the cookie-R.
This property comes from using a local secret
in generating the cookie-R.

These properties eliminate the need for the re-
sponder to remember cookie-I or cookie-R;
therefore, the responder does not keep any state
information on the first and second messages.

3. The initiator includes {cookie-I, cookie-R) as the
requested confirmation in the third message. The
responder can compute a new cookie-R from (ini-
tiator, cookie-I) and compare this new cookie-R
with the one in the third message. If these two
cookie-Rs match, then the responder can have
some assurance that it is the supposed initiator,
not an attacker, who sent the first message. If the
supposed initiator did not send the first message,
then it simply drops the second message; there
is no need for the responder to do anything in
this case since it does not keep state information
on the first and second messages.

The generation of cookies must be efficient. Effi-
ciency can usually be achieved with keyed-hash?
or pseudorandom functions.” Therefore, the re-
sponder can efficiently recompute and verify the
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cookie-R in the third message without doing much
computation.

The anticlogging cookie is only effective when the
attacker is not an active man-in-the-middle. Other-
wise, an active man-in-the-middle can always inter-
cept the second message and sends (cookie-I, cook-
ie-R) in the third message.

In ISAKMP, cookies are eight bytes long and are
placed in the first two fields of an ISAKMP message
header. In a Phase I negotiation, cookie-I is sent in
the first message, and the responder sends back
(cookie-I, cookie-R) in the second message; all fol-
lowing messages will contain this cookie pair. Thus,
the responder in an ISAKMP negotiation does demand
confirmation from the initiator; however, since the
responder has to perform the parameter negotiation
and has to maintain the negotiation result, the an-
ticlogging effect is reduced.

Because of the uniqueness of the cookies, (cookie-I,
cookie-R) generated during a particular ISAKMP
Phase I negotiation is used as the identifier of the
ISAKMP SA generated by the negotiation. The cookie
pair can also be used to identify messages of a par-
ticular Phase I negotiation.

For messages of a Phase II negotiation under the
protection of an ISAKMP SA, the message headers al-
ways carry the (cookie-I, cookie-R) of the SA. An-
other field in the message header, called message ID,
is used to identify messages of a particular Phase II
negotiation; this field is zero for messages in a Phase
I negotiation. The initiator of a Phase Il negotiation
will assign a unique random number to the message
ID field, and all messages of the negotiation will carry
this random number in the field.

DOIL. In ISAKMP, a domain of interpretation (DOI)
for ISAKMP is the context in which a key manage-
ment protocol operates. It defines the syntax and se-
mantics of all information that is relevant to the op-
eration of the protocol. ISAKMP allows more than one
DOI, but a key management protocol must indicate
the DOI in which it is operating by filling the DOI field
in the SA payload.

In practice, a DOI defines the syntax and semantics
of the following:

» Everything being put in a proposal—These are
identifiers for security protocols, transforms and
attributes of each transform, and key exchange pro-
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tocols. Valid values and encoding formats for each
transform attribute are also defined. Parameters
of a key exchange protocol are defined by the spec-
ification of that protocol.

Identity types—Each type is assigned an identifier.
Valid values and encoding formats for each type
are also defined. Twelve identity types are defined
in Reference 8, including a reserved NULL type.
The types are listed below; values in parentheses
are the identifiers of the types.

-RESERVED (0)

—-ID_IPV4_ADDR (1): Four-byte Internet Proto-
col version 4 (IPv4, the version of Internet Pro-
tocol being used today)® address

—ID_FQDN (2): Fully qualified Internet domain
names,?’ such as foo.ibm.com

-ID_USER_FQDN (3): Fully qualified Internet
user domain names, that is, an e-mail address,
such as joe@us.ibm.com

-ID_IPV4_ADDR_SUBNET (4): An IPv4 ad-
dress subnet,” encoded as a four-byte IPv4 ad-
dress prefix followed by a four-byte mask

-ID_IPV6_ADDR (5): A 16-byte Internet Pro-
tocol version 6 (IPv6, the version of Internet Pro-
tocol which is supposed to replace IPv4)* address

-ID_IPV6_ADDR_SUBNET (6): An IPv6 ad-
dress subnet, encoded as a 16-byte IPv6 address
prefix followed by a 16-byte mask

-ID_IPV4_ADDR_RANGE (7): A range of IPv4
addresses, encoded as two IPv4 addresses treated
asunsigned integers, interpreted as the beginning
and end of the range

-ID_IPV6_ADDR_RANGE (8): A range of IPv6
addresses, encoded as two IPv6 addresses treated
as unsigned integers, interpreted as the beginning
and end of the range

-ID_DER_ASNI_DN (9): 1S0/1TU (Internation-
al Organization for Standardization/International
Telecommunication Union) X.500% distinguished
name

-ID_DER_ASNI_GN (10): X.500 General-
Name.'? The X.500 GeneralName is for represent-
ing Internet identities, such as 1P addresses, do-
main names, e-mail addresses, URIs,>! etc., in an
X.500 context.

-ID_KEY_ID (11): An opaque byte stream iden-
tifying a secret key preshared between the initi-
ator and the responder. This type of identity may
be used when IKE is using an exclusively preshared
key for authentication (see subsection on IKE
Phase I protocols). The exact format of this type
is vendor-specific.
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Among these identity types, subnets and address
ranges identify a group of systems and should only
be used in Phase II proxy negotiations. Other types
identify individual systems (IP addresses and
FQDNs, or fully qualified domain names), a user
(USER_FQDN), or either (X.500 names), and can be
used in both Phase I and Phase II negotiations. In
a Phase II negotiation, if an identity used by one
party cannot be resolved to an 1P address, a sub-
net, or an address range, then it is assumed that
the party is acting as a proxy of itself.

An identity can be augmented by an Internet trans-
port protocol number and an optional port num-
ber. Such augmentation can only be used in Phase
II proxy negotiation. For example, using “9.2.253.6:
TCP” means that the to-be-generated SAs are to
protect TCP* traffic to and from the system with
IP address 9.2.253.6; using “9.2.253.6:TCP:23”
means to protect TELNET? traffic to and from the
system with 1P address 9.2.253.6. “23” is the well-
known port number for the TELNET protocol.
Therefore, with specific transport protocol and port
number, an identity used in Phase II negotiation
can identify a specific service on a system or on a
group of systems.

* A special piece of information, called a situation
in ISAKMP—Conceptually, a situation describes the
characteristics of the specific communication a par-
ticular ISAKMP negotiation aims to protect. An SA
payload has a field to hold these characteristics.
“Situation” is supposed to aid the responder in de-
ciding which proposal to pick. ISAKMP does not de-
fine any details for a situation but leaves the def-
inition to the DOI.

The Internet Security DOI® defines three kinds of
“situation.” One is “IDENTITY_ONLY.” It is basi-
cally a null definition. It means a responder should
use the supposed identities of both parties to make
decisions during a parameter negotiation. The oth-
ersare “SECRECY” and “INTEGRITY.” They are de-
fined according to the multilevel security concept
in Reference 34. They are optional and are not im-
plemented in our code.

IKE. IKE is a family of key exchange protocols de-
fined according to the ISAKMP framework. The de-
sign of IKE is influenced by STS (Station-to-Station)
Protocol, '’ SKEME, '* and OAKLEY.* We discuss the
IKE Phase I protocols first and then the IKE Phase
II protocol.
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IKE Phase I protocols. The Phase I protocols of IKE
are based on the ISAKMP identity-protection and ag-
gressive exchanges. The Internet Society RFC 2409
uses the word “mode” instead of “exchange”; IKE
main mode refers to the identity-protection ex-
change, and IKE aggressive mode refers to the aggres-
sive exchange. They all use Diffie-Hellman Key
Agreement technique (DH)>® to generate shared se-
crets. RFC 2409 defines four different authentication
methods for Phase I protocols: preshared key, pub-
lic key signature, public key encryption, and revised
public key encryption. Which method to use is de-
termined by the parameter negotiation. We first dis-
cuss the IKE features that are independent of any
authentication methods and then the authentication
methods.

Common features of IKE. The DH public components
generated by the initiator (denoted g*') and the re-
sponder (denoted ¢g*) will be put into the key ex-
change (KE) payloads.

The computation of the authentication data
([AUTH] in Figure 1) depends on the particular au-
thentication method used. But regardless of the au-
thentication method, the authentication data are
always computed over the following hashes of infor-
mation:

* HASH, = prf(SKEYID, g*|g*|cookie-I|cookie-
R|SA|ID,). HASH, is sent by the initiator.

* HASHy = prf(SKEYID, g*|g*|cookie-R|cookie-
I|SA|IDR). HASH is sent by the responder.

The symbol “|” means concatenation. “SA” in HASH,
and HASHy, is the SA payload sent by the initiator.
“Prf” is a pseudorandom function® usually imple-
mented by a keyed-hash such as HMAC;?**® the ex-
act mathematical transformation is determined dur-
ing the parameter negotiation. SKEYID is the key
to prf, it is different for each authentication method.
Note that the positions of DH public components and
cookies are swapped in HASH; and HASHR. This
gives the two hashes a sense of direction. This idea
was first proposed in References 15 and 16 to defeat
reflective attacks.

The final output of an IKE Phase I negotiation is an
ISAKMP SA with three secret keys shared exclusively
between the initiator and the responder. The three
keys are:
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Figure 7 IKE main mode using preshared key

Initiator Responder

@ HDR, SA proposal

HDR, SA choice
@

HDR, gXi, NONCE,

HDR, gX7, NONCE

HDR*, ID;, HASH,

HDR*, IDp, HASHR

e SKEYID, = prf(SKEYID, g**|cookie-I|cookie-
R|0). SKEYID, is used for deriving other keys in
IKE Phases I and II.

* SKEYID, = prf(SKEYID, SKEYID,,|g**|cookie-
I|cookie-R|1). SKEYID, is used for authenticat-
ing IKE Phase II messages.

e SKEYID, = prf(SKEYID, SKEYID,|g**|cookie-
I|cookie-R|2). SKEYID, is used for encrypting
messages 5 and 6 in IKE main mode and all IKE
Phase II messages.

The DH shared secret, g**, is the main source of en-
tropy (randomness) in deriving these three keys.
(Enough entropy is needed to make these keys ran-
dom and unpredictable.)

IKE defines its own parameters to be used during pa-
rameter negotiation. These parameters include au-
thentication methods, hash algorithms, encryption
algorithms, pseudorandom functions, and Diffie-
Hellman algebraic groups.

We now discuss the four authentication methods. Of
these methods, preshared key is the basic form and
is discussed first. The other three can be considered
variants of the preshared key method.

IKE using preshared key. Figure 7 depicts the IKE main
mode using a preshared key. A secret key must be
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Figure 8 IKE main mode using public key signature

Initiator Responder

) HDR, SA proposal

HDR, SA choice
@

HDR, gXi, NONCE,

HDR, gX7, NONCER

HDR*, ID}, (CERT;), SIG,

HDR*, IDg, (CERTR), SIGg

shared exclusively between the initiator and the re-
sponder before the IKE negotiation in Figure 7 takes
place. Here [AUTH]s are replaced by HASH; and
HASHR. The SKEYID is derived from the preshared
key:

SKEYID = prf(preshared-key,
NONCE|NONCEy)

Because of the properties of a pseudorandom func-
tion and the fact that the preshared key is an exclu-
sively shared secret, this SKEYID is also an exclu-
sively shared secret even though NONCE,; and
NONCE} are sent unencrypted. Since the nonces are
fresh, used-only-once random numbers, such an
SKEYID is also fresh and used only for a particular
IKE Phase I negotiation. Therefore, HASH; and
HASH , provide authentication because the key used
to compute them is a fresh, exclusively shared se-
cret. Using SKEYID instead of using the preshared
key directly also reduces the exposure of the pre-
shared key, which is usually a valuable, long-term
secret.

Using the preshared secret key is not scalable, but
it does provide the basic operational capability and
has no dependency on any PKIX.
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IKE using public key signature. Figure 8 depicts the
IKE main mode using public key signature.”” Here
[AUTH]s are replaced by the initiator’s and the re-
sponder’s signatures, SIG; and SIG, computed over
HASH,; and HASH. CERT, and CERTy are the
public key certificates of the initiator and the re-
sponder. The certificates are placed inside the
ISAKMP CERTIFICATE payloads and can be used to
verify the signatures. Sending the certificates is op-
tional. If no certificate is sent, then both parties must
acquire the other’s certificate through some other
channel, usually a PKIX. Certificates must be veri-
fied before being used to verify signatures. The
SKEYID is derived from the nonces as follows:

SKEYID = prf(NONCE,NONCE,, g**)

The key to the prf is NONCE,|NONCEy, so this
SKEYID is fresh, but it cannot be used for authen-
tication, because neither the nonces nor the DH se-
cret, g**, is cryptographically bound to the identity
of the initiator or the responder. The authentication
is provided by the public key signatures.

Using public key signature eliminates the need for
a preshared key and is much more scalable, but it
does require at least a minimum PKIX, meaning a
certification authority (CA) to issue public key cer-
tificates. The CA’s own public key certificates can be
published and cached everywhere to facilitate ver-
ifying other certificates.

IKE using public key encryption. Figure 9 depicts IKE
main mode using public key encryption.* PK; and
PKj are the public keys of the initiator and the re-
sponder. Note that the nonces are encrypted with
the intended receiver’s public key. Since only the
holder of the corresponding private key can decrypt
an encrypted nonce, the nonces become secrets
shared between the initiator and the responder. The
idea is to use the two nonces to replace a preshared
key with the added advantage that the nonces are
ephemeral and not long-term shared secrets.

The SKEYID is derived from the nonces:

SKEYID = prf(hash(NONCE,|NONCEy),
cookie-I|cookie-R)

where “hash” is a hash algorithm determined dur-

ing the parameter negotiation. Since the nonces are

shared secrets, the SKEYID is also a shared secret;
therefore, HASH; and HASH can be used directly
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for authentication. Also, since no signature or long-
term secret is used in authentication, either party can
deny the negotiation ever happened, and thus full
repudiation' of communication is provided. The
price for the added advantages is that IKE using pub-
lickey encryption must have access to an on-line PKIX
to get public key certificates. Otherwise, the initia-
tor cannot produce the first key exchange message
(message 3 in Figure 9).

The “hash,” term is the hash of the responder’s pub-
lickey certificate containing PK . “hash,” is optional
and tells the responder which of its public keys is
used to encrypt NONCE;. The responder’s public
key certificate cannot be sent directly because it
would reveal the responder’s identity. The certifi-
cate cannot be encrypted with PK because its size
is larger than that of PKj.

ID;, is sent in message 3 instead of 5. This is neces-
sary because the responder needs ID; to look for
the initiator’s public key certificate. IDy is sent in
message 4 instead of 6 just to make the flow of in-
formation more symmetric.

There are two defects in IKE using public key en-
cryption. First, a total of four expensive public key
encryption/decryption operations are used. Since the
computation cost of public key encryption and pub-
lic key signature are of the same order, the compu-
tation cost of IKE using public key encryption is about
twice that of IKE using public key signature. Second,
the responder does not send a hash of PK; to the
initiator. Thus the initiator may have trouble choos-
ing the correct private key to decrypt {NONCER} p .
These two defects are corrected in IKE using revised
public key encryption.

IKE using revised public key encryption. Figure 10 de-
picts IKE main mode using revised public key encryp-
tion. The SKEYID here is the same as that of IKE
using public key encryption. IKE using revised pub-
lic key encryption corrects the two defects of IKE us-
ing public key encryption.

First, the total number of public key encryption op-
erations is reduced from four to two. The nonces are
still encrypted with public keys, but other encryp-
tions use symmetric keys. The two symmetric encryp-
tion keys, Ke; and Ke,, are derived as:

Ke;, = prf(NONCE,, cookie-I)
Ke, = prf(NONCEy, cookie-R)
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Figure 9  IKE main mode using public key encryption
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Figure 10 IKE main mode using revised public key
encryption

Initiator Responder

HDR, SA proposal
@)

HDR, SAchoice
@

HDR, (hashs), {NONCE }pic.,
{9"ke ;1D }ke; ({CERT }ke;)

HDR, {NONCER}pk ., {9*ke, {IDR}Ke,

HDR*, HASH,

HDR*, HASHg

The symmetric key encryption algorithm is deter-
mined during the parameter negotiation.

Second, the initiator is allowed to send its encrypted
public key certificate to the responder so that the
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Figure 11 IKE aggressive mode
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responder can use the public key inside the certif-
icate to encrypt NONCEY,. The certificate can be en-
crypted now because symmetric key encryption is
used so that the size of the certificate is not an issue.

IKE aggressive mode. Figure 11 depicts IKE aggres-
sive mode using different authentication methods.
A few observations can be made: (1) Identities are
not encrypted unless (revised) public key encryption
is used. (2) The Diffie-Hellman algebraic group can-
not be negotiated in IKE aggressive mode. It is cho-
sen by the initiator. (3) The authentication method
cannot be negotiated if the initiator chooses to use
public key encryption or revised public key encryp-
tion. Otherwise, since the forms of the first message
are the same when using preshared key or public key
signature, the initiator could offer the responder a
choice between the two methods.

Security of IKE Phase | protocol. The security of IKE
Phase I protocols come from the following two fac-
tors:

¢ Authentication methods—to defeat active, man-
in-the-middle, impersonating attacks. Assuming
the underlying cryptographic primitives are secure,
the security of these authentication methods de-
pends entirely on the security of the preshared se-
cret keys or the (public key, private key) key pairs
the methods are using. If these keys are compro-
mised, then any IKE negotiation using the compro-
mised keys is also compromised.

* DH key agreement—to provide the main secret
source of entropy, ¢**, when deriving the resul-
tant shared secret keys (SKEYID,;, SKEYID,, and
SKEYID,). Assuming the DH algorithms and the
DH algebraic groups used are secure, then the se-
curity of DH key agreement depends on keeping
x; and x, secret. Secrecy requires x; and x, to be
strong, unpredictable (pseudo)random numbers.

A secondary secret source of entropy, namely the
preshared key or the secret nonces, is provided
through SKEYID when deriving the shared secrets
if IKE uses preshared key, public key encryption,
or revised public key encryption. An adversary
must compromise both the main source and the
secondary source to learn the shared secret keys.

IKE Phase II protocol. IKE defines a new ISAKMP ex-
change for its Phase II protocol, called QUICK mode.
Figure 12 depicts IKE QUICK mode. Messages belong-
ing to a particular QUICK mode negotiation are pro-
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tected by an ISAKMP SA shared by the initiator and
the responder; these messages are identified by two
pieces of information in their message headers:
(cookie-I, cookie-R) of the ISAKMP SA, and a unique
message ID assigned to the negotiation by its initi-
ator.

As the name implies, QUICK mode is meant to be
fast and efficient. A QUICK mode negotiation con-
sists of three messages and can be conducted with-
out using any public key cryptography operations.
QUICK mode does provide the option of using DH
key-agreement techniques, so that g* and ¢g* in the
figure are optional. Also, the identities ID ,; and ID ,,
are optional; they are used by the initiator to indi-
cate a QUICK mode negotiation is a proxy negotia-
tion on behalf of ID,; and ID,,. If the identities are
not sent, it is assumed that the unsent identities are
the same as ID; and ID in the ISAKMP SA; that is,
the two parties are acting on behalf of themselves.
Note that if the initiator sends g* or (ID ;, ID,,) in
the first message, the responder must send g* or
(ID;, ID,,) in the second message to continue the
negotiation.

In Figure 12, the “*” symbol after the message head-
ers indicates the bodies of these messages are en-
crypted by the SKEYID, and its associated encryp-
tion algorithm in the ISAKMP SA. HASH |, HASH,,
and HASH; authenticate the corresponding mes-
sages. They are computed using SKEYID, and the
pseudorandom function in the ISAKMP SA:

HASH, = prf(SKEYID,,
message-ID|SAINONCE[|g*]
(7p,|1D,,.])

HASH, = prf(SKEYID,,
message-ID[NONCE|SAINONCE,
[lg*“1tl1D,|ID,,1)

HASH, = prf(SKEYID,,
0|message-IDINONCE |NONCE}y)

Information in square brackets ([ ]) is optional when

computing the hashes; they are used if and only if

the messages include them. Since each hash is com-

puted over a different set of information, it has a
sense of direction and also a sense of ordering.
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Figure 12 IKE Phase Il QUICK mode

Initiator Responder

HDR*, HASH1, SAproposals NONCE), (g*i), (IDy;, IDy,)
HDR*, HASH2, SAgpoice: NONCER, (9%7), (ID;, IDy)

HDR*, HASH,

The proposals in the SA payload are for IPSec SAs.
As cited in the earlier subsection on ISAKMP pro-
posal and parameter negotiation, two unidirectional
IPSec SAs are generated for each (security protocol,
transform) chosen by the responder. The key in such
a per-protocol, unidirectional SA, called KEYMAT,
is derived as:

KEYMAT = prf(SKEYID,,
[ 9| lprotocol|SPIINONCE,|
NONCEy)

“SPI” is the security parameter index. Since each ini-
tiator and responder chooses its own SPI for a se-
curity protocol, the SPI makes a “KEYMAT” unidi-
rectional. “Protocol” is the identifier for the security
protocol and makes a “KEYMAT” per protocol.

By the nature of a pseudorandom function, KEYMAT
is not compromised by the compromise of other
KEYMATSs; thus IKE QUICK mode provides perfect-
forward-secrecy in this sense. However, if the pro-
tecting ISAKMP SA is compromised, a passive adver-
sary can decipher all QUICK mode negotiations
protected by the ISAKMP SA and compromise all
KEYMATs generated by these negotiations unless DH
Key Agreement is used in these negotiations. The
use of DH Key Agreement does not prevent an ac-
tive adversary from impersonating the initiator or
the responder when the ISAKMP SA is compromised.

Design and implementation

In this section we discuss the architecture and im-
plementation of our ISAKMP/IKE engine. We first dis-
cuss the design rationales and then the architecture
itself.
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Design rationales. We had to address a number of
problems and concerns when we designed and im-
plemented our ISAKMP/IKE engine, including future
expansibility, usability and manageability, seemingly
infinite number of variations in VPN policies, con-
stantly evolving standards, dependency on public key
infrastructure, and code portability. Because of time
and other resource constraints, the following deci-
sions were made:

e To focus our effort on implementing the
ISAKMP/IKE server executing the ISAKMP/IKE pro-
tocol. The implementation of the server should
capture the framework concept of ISAKMP to ac-
commodate more than one DOI and therefore the
key exchange protocols supported by a DOI. Al-
though only one DOI and one key exchange pro-
tocol are currently defined, it is the intention of
ISAKMP to accommodate more.

 To isolate the high-level specification of VPN pol-
icies from the ISAKMP/IKE server. The high-level
specification may take on many different forms, but
it eventually has to be translated into the form spec-
ified by the ISAKMP/IKE protocol, and this protocol-
specific form will be used by the ISAKMP/IKE server
in parameter negotiations.

* Toisolate public key certificate handling from the
ISAKMP/IKE server. Public key infrastructure >'?
and certificate handling comprise a topic that is
very complex by itself, and its standards have been
evolving constantly.

* Toisolate the run-time management of ISAKMP/IKE
from the ISAKMP/IKE server. The ISAKMP/IKE server
exports an interface to accept and respond to run-
time management commands, such as status query,
starting a negotiation, and deleting an SA, but the
job of interfacing with the administrators and users
to generate run-time management commands and
record-keeping is delegated to another process.

* To divide the code into modules based on func-
tionalities to achieve reasonable code stability in
the face of constantly evolving protocols. The hope
is that a code change resulting from a protocol
change will be confined to as few modules as pos-
sible, provided that the division of functionalities
is correct so that each module exports a stable in-
terface. Object-oriented programming and C++
were used for actual coding; our feeling was that
modularity could be achieved more easily in this
way.

e To divide the code into a system-independent part
and a system-dependent part to provide code port-
ability across different platforms, such as AIX and
other UNIX** systems, $/390, and AS/400. The sys-
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tem-independent part should implement the core
logic of various functionalities, and the system-de-
pendent part should take care of system chores
such as timer and alarm, network communication,
signaling, and database storage; it should also ex-
port a generic, system-independent application
programming interface (API).

On the basis of the design decisions, the code ar-
chitecture is divided into four modules: (1)
ISAKMP/IKE server: a process implementing the
ISAKMP/IKE protocols, (2) Tunnel manager: a front-
end process handling administrative commands and
user requests, (3) Policy administration tools: a set
of utilities to create, store, and maintain VPN pol-
icies, and (4) Certificate proxy: a back-end process
responsible for acquiring and verifying public key cer-
tificates. This division of functionalities provides a
lot of freedom for each component to evolve its in-
ternal details independently.

We spent most of our effort on the ISAKMP/IKE server,
spent some effort on the certificate proxy and the
policy administration tools, and did a simple imple-
mentation of the tunnel manager. In the following
discussion, the amount of details on each module
will be given accordingly.

ISAKMP and IKE finite state machines. Commu-
nication protocols are usually implemented through
finite state machines (FSMs). In the case of
ISAKMP/IKE, we think that two FSMs are needed; one
implements the ISAKMP framework and the other im-
plements IKE. Figure 13 depicts the combined
ISAKMP/IKE FSMs. According to the earlier discussion
in the subsection on ISAKMP, ISAKMP FSM is divided
into two steps: parameter negotiation and key ex-
change. Three states are needed to represent the
message flow of parameter negotiation, but key ex-
change is represented in one state. An FSM for a key
exchange protocol (KEP), such as the IKE FSM, re-
sides in the ISAKMP key exchange state. This nested
FSM design allows FSMs implementing other key ex-
change protocols to be added to the ISAKMP FSM and
therefore preserves the framework concept of
ISAKMP. A KEP FSM is defined by the particular KEP
and is not constrained by the ISAKMP FSM.

Figure 13 shows parameter negotiation precedes key
exchange. If aggressive exchange is used, the two
steps will happen in parallel; i.e., the ISAKMP FSM
and KEP FSM will exist and operate in parallel.
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Figure 13  Nested ISAKMP/KEP finite state machines

Our ISAKMP FSM is modeled by following the send-
ing and receiving of ISAKMP messages. This approach
is not well-suited for modeling the IKE Phase I FSM
because IKE Phase I has a main mode and an ag-
gressive mode, and each has its own particular mes-
sage flow. Also, the types of information carried by
a message may differ from one authentication
method to another. To avoid implementing an in-
dividual FSM for each mode or even for each authen-
tication method, we model the IKE Phase I FSM based
on the flow of information rather than on the flow
of messages. Regardless of the modes or authenti-
cation methods, the initiator and the responder of
an IKE Phase I negotiation basically exchange infor-
mation in the following order:

1. KE and NONCE payloads
2. Identities: ID payload
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3. Authentication information: HASH or SIGNATURE
(with CERTIFICATE) payloads

In our IKE Phase I FSM, a state is represented by two
bit-vectors, the sent vector and the rcvd vector. Each
of the KE, NONCE, ID, HASH, and SIGNATURE pay-
loads has a corresponding bit in each vector. The vec-
tors record what payloads have been sent and re-
ceived. When a message is received, the payloads in
the message are examined. Then, on the basis of the
two bit-vectors, the role (initiator or responder), the
mode, and the authentication method, a decision is
made on what actions should be taken: what mes-
sage to send in response, or that the IKE Phase I ne-
gotiation is complete. For an initiator or a responder,
an IKE Phase I negotiation is complete if all payloads
that should be sent have been sent, all payloads that
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Figure 14 IKE Phase I finite state machine
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should be received have been received, and the au-
thentication has been verified.

Figure 14 depicts the IKE Phase I FSM. One detail
left out in this figure is handling of unexpected
messages. If an unexpected message carries a pay-
load of types KE, NONCE, ID, HASH, or SIGNATURE
that has already been received, this message is con-
sidered a replay. If this payload was carried in the
last received message, the response message to that
message is resent; otherwise the replay message is
simply discarded. A fixed upper limit is set on how
many times a message can be resent, after which the
IKE Phase I negotiation is simply abandoned to de-
feat possible denial-of-service attacks. An unex-
pected message that is not a replay is simply dis-
carded. Note that a replay does not have to be exactly
the same as what has been received before. The rea-
son is a message may have been corrupted en route
or it may have been manufactured by an attacker.
Since there is no way to tell whether a message is
genuine until the authentication payloads (HASH or
SIGNATURE) are verified, we felt there is no need to
do a more time-consuming bit-by-bit comparison. A
simple check of the rcvd bit-vector will suffice.

Figure 15 depicts the IKE Phase II FSM. It is designed
using the same principle for IKE Phase I FSM, al-
though it is much simpler because it has only one
mode and one authentication method.

Code architecture. Figure 16 depicts the run-time
architecture of our ISAKMP/IKE code. It is divided into
four components as described earlier in this section:
tunnel manager, ISAKMP/IKE server, certificate proxy,
and policy administration tools.

We focused most of our effort on the ISAKMP/IKE
server, so we discuss it first in detail.

ISAKMP/IKE server. The sole purpose of the
ISAKMP/IKE server is to conduct ISAKMP/IKE nego-
tiations to generate SAs. The management of a se-
cure tunnel, which is made of a sequence of SAs
through the lifetime of the tunnel,’ is left to the tun-
nel manager.

This server is implemented in an asynchronous event-
driven model. Each event may trigger a state tran-
sition in the ISAKMP or IKE FSMs. There are four kinds
of events:

* A request to establish an SA—The response is to
start an ISAKMP/IKE negotiation by constructing
and sending the first message.
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* The receipt of a message—The response is to pro-
cess the received message and to construct and to
send a reply message if necessary. This event may
also cause the completion or abandonment of the
negotiation.

e The firing of a timer alarm—The response depends
on the alarm; usually a message is resent or a ne-
gotiation may be abandoned.

e The receipt of a reply from the certificate proxy
server—This reply will usually be a verified public
key certificate. If the reply indicates an error, the
negotiation that made the corresponding request
may be terminated.

To achieve portability, we define an object, called
ananchor, which establishes the system-dependency
boundary. Inside the anchor are system-independent
objects implementing the logic of the ISAKMP and
IKE protocols. Attached externally to the anchor are
objects implementing system-independent APIs to
system-dependent services.

The system-dependent objects are:

e Network: Sending and receiving messages
e Timer alarm: Setting and firing timer alarms
* Crypto: Providing cryptographic functions, such as
DH Key Agreement, encryption, and random num-
ber generation. Our implementation uses the
RSA BSAFE** library® for public key cryptography
operations and IBM’s code for other functions. The
BSAFE library and IBM’s code were optimized by
our colleagues for the PowerPC* processor archi-
tecture.* Our implementation uses the C language
with a C++ wrapper and is platform-independent.
This object may be system-dependent because
some platforms may provide hardware-based im-
plementations. Its entropy source for random num-
ber generation could also be system-dependent.
* SA cache: Storing Phase II SAs so that the IPSec pro-
tocol can use them
* Request capturer: Capturing requests for estab-
lishing SAs
* System-dependent parts of DOI as follows:
—DOI factory: Generating DOI objects
—Per-DOI policy database: Providing policy for pa-
rameter negotiation. More discussion on the DOI
policy database is given later.
—Interface to certificate proxy server
—Per-DOI preshared key database: Storing keys pre-
shared with other systems; keys are indexed by
the identities or IP addresses of those systems
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Figure 15 IKE Phase Il finite state machine

Cookie factory: Generating cookie-Is and cookie-
Rs. Generation of cookies is system-dependent be-
cause the process should include some secrets lo-
cal to a system.
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All events generated by these system-dependent ob-
jects are captured by a special event capturer object.
The event capturer then delivers captured events to
the anchor through the event delivery interface of
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Figure 16 ISAKMP/IKE code run-time architecture
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the anchor. The event capturer is needed to main-
tain the system-dependency boundary of the anchor,
because events are generated in various system-de-
pendent ways so that the capturer formats these
events into a system-independent manner before de-
livering them to the anchor.

Inside the anchor are three kinds of system-indepen-
dent objects. One kind is an SA object. An SA object
implements an instance of the ISAKMP FSM. One
should not confuse an SA object with an SA (security
association)—an SA is the result of a negotiation con-
ducted within the context of an SA object. The ini-
tiator and the responder of a negotiation each cre-
ates an SA object for the negotiation. An SA object
creates and invokes a DOI object to conduct param-
eter negotiation. It creates and invokes a KEP object
to conduct key exchange. It receives events from the
anchor and processes an event by itself or dispatches
the event to either the attached DOI object or the
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attached KEP object, depending on the state of the
ISAKMP FSM. After the negotiation is completed, an
SA object exists and holds the final result of the ne-
gotiation until the SA object is deleted.

An SA object exports two APIs to conduct negotia-
tion: start is invoked by the initiator to construct and
send the very first message in a negotiation, process_
msg processes a received message by itself or by in-
voking the DOI object or the KEP object.

SA objects are of two types: Phase I and Phase II.
A Phase I SA object contains all the Phase II SA ob-
jects under its protection.

For an initiator, an SA object is created upon receiv-
ing a request to establish an SA; the request includes
the responder’s identity and the identifier of a DOL.
For a responder, an SA object is created upon re-
ceiving the first message from the initiator.
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The anchor is responsible for dispatching a received
message to the proper Phase I SA object, based on
the cookies in the message header. A Phase I object
is responsible for dispatching a received Phase II
message to the proper Phase II SA object, based on
the message ID field in the header. A new SA object
is created if no proper one exists.

Another system-independent object is a DOI object.
A DOI object is mainly used for parameter negoti-
ation. It exports two APIs for parameter negotiation:
propose is invoked by the initiator to construct a pro-
posal list, and accept is invoked by the responder to
choose a proposal from the list. An initiator creates
a DOI object upon receiving a request to establish
an SA. A responder creates a DOI object upon re-
ceiving the first message containing the proposal list
from the initiator. A link to the per-DOI policy da-
tabase is built into a DOI object during its creation.
A DOI object is always attached to an SA object.

Besides conducting parameter negotiation, a DOI ob-
ject also provides the following services:

e Storing and operating on the initiator’s and the re-
sponder’s identities. An identity has to be inter-
preted within the context of a DOIL. Parameter ne-
gotiation also uses identities to find the correct
rules in the policy database.

» Exporting an interface to a per-DOI KEP factory that
creates KEP objects. Such a factory exists inside a
DOI because the identifier of a KEP has to be in-
terpreted within the context of a DOI.

* Exporting an interface to the per-DOI certificate
proxy server to the KEP objects created through
the factory

* Exporting an interface to the per-DOI preshared
key database

A third system-independent object is a KEP object.
A KEP object implements an instance of a KEP FSM.
It is always created by an SA object through the
per-DOI KEP factory and is attached to the SA object.

A KEP object exports two APIs to conduct key ex-
change: Start constructs the first KEP message sent
by the initiator and the first KEP message sent by the
responder; process_msg processes a received KEP
message and usually constructs a reply message. Mes-
sages generated by a KEP object are passed to its cre-
ating SA object, which will send the message through
the network object.
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Implementation of IKE FSM. The IKE FSM is imple-
mented as a family of C++ classes. Figure 17 shows
the IKE class hierarchy. Phase I and II FSMs are im-
plemented through two separate subhierarchies.
Both subhierarchies inherit the IKE common class as
a C++ protected parent. The IKE common class im-
plements functionalities needed by both IKE Phase
I and Phase II FSMs, such as nonce generation and
storage, Diffie-Hellman Key Agreement, and encryp-
tion and decryption of ISAKMP message bodies.

The Phase I hierarchy starts with the KEP base ab-
stract class that defines the public interface, includ-
ing start and process_msg, of all Phase I KEP classes.
The IKE base class inherits this interface from the
KEP base class and implements a template of the IKE
Phase I FsM. This template implements the common
features of the IKE Phase I protocol, but lets its sub-
classes override its C++ virtual functions to imple-
ment different authentication methods. The IKE pub-
lic key class provides public key certificate handling
and private key handling services to its subclasses.
The IKE preshared key, IKE public key signature, IKE
public key encryption, and IKE revised public key en-
cryption classes implement the four different IKE
Phase I authentication methods. Each of the IKE pre-
shared key, IKE public key signature, and IKE public
key encryption classes has its own version of a C++
virtual function compute_SKEYID( ) to compute the
SKEYID of its authentication method; the IKE revised
public key encryption class inherits compute_
SKEYID() from the IKE public key encryption class.
RFC 24097 specifies two different public key signa-
ture algorithms: RSA (encryption algorithm named
for its creators)**? and DSA (Digital Signature Al-
gorithm).** We only implemented the RSA algo-
rithm through the IKE RSA signature class.

Figures 18 and 19 show the flowcharts of the start()
and the process_msg( ) functions of the IKE base class.

The start() function is invoked by the initiator and
the responder of a negotiation to build the first pair
of IKE messages exchanged between them. The
authn_specific_start( ) function is a C++ virtual func-
tion that can be overridden by subclasses to do pro-
cessing specific to a particular authentication
method. It was originally envisioned to be used for
the public key encryption methods to encrypt indi-
vidual payloads. We later discovered that writing new
start( ) functions for the IKE public key encryption and
IKE revised public key encryption classes is better for
performance and results in simpler code. However,
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Figure 17  IKE class hierarchy

the concept for processing specific to an authenti-
cation method is still kept.

The process_msg() function is used to process re-
ceived IKE messages. Whereas start() begins an IKE
Phase I FSM, process_msg() keeps the FSM going by
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processing received messages, generating reply mes-
sages, and finally concluding the negotiation. Pre-
authentication processing in Figure 19 refers to
any computation that is needed to generate or ver-
ify the authentication data, including computing
SKEYID, and in the case of IKE main mode, com-
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Figure 18 IKE Phase | start() flowchart
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puting SKEYID,, SKEYID,,, and SKEYID,. The fol-
lowing four C++ virtual functions, whose implemen-
tations are authentication-method-specific, are
shown in Figure 19:

e authn_specific_process(): Itis used to decrypt pay-
loads if (revised) public key encryption authenti-
cation methods are used. It is also used to issue
a prefetching of public key certificates if an authen-
tication method requires such certificates. It may
be used for other processing if new authentication
methods are added to IKE.

¢ needRemoteCred( ): It is used to determine whether
a credential of the remote party is needed at the
current state of the IKE FSM. For the authentica-
tion methods discussed earlier, a credential may
be a preshared key or a public key certificate.

e getRemoteCred(): It is used to obtain the remote
party’s credential. It may either access the local
preshared key database or ask the certificate proxy
to obtain a public key certificate.

e verify_auth(): It is used to verify the authentica-
tion data. The data are carried in either a HASH
payload or a SIGNATURE payload. Not shown in
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Figure 19 is the function compute_auth() that com-
putes the authentication data and puts the data in
the proper payload. For each implementation of
verify_auth() there is a corresponding implemen-
tation of compute_auth(). Compute_auth() is in-
voked by the I_reply() and R_reply( ) functions that
build reply messages for the initiator and the re-
sponder, respectively.

Implementation of ISAKMP/IKE policy database. Fig-
ure 20 shows the schema for the ISAKMP/IKE policy
database.

In the schema, a remote identifier (ID) references
a pair of lists of proposals. Each list of proposals con-
tains references to proposals. List for Initiator is used
by an initiator to construct an ISAKMP proposal list
to the responder identified by the remote ID; the con-
struction process basically copies the list. List for Re-
sponder is used by a responder to match against a
proposal list sent by the initiator identified by the
remote ID. The matching process takes a proposal
from the initiator’s proposal list, starting from the
first, and matches the proposal against each proposal
in the List for Responder, starting from the first. The
matching process continues until the first match is
found, or until the initiator’s proposal list is ex-
hausted and no match is found, in which case the
responder will send a “no match found” error mes-
sage to the responder. Otherwise, the initiator’s
matching proposal will be sent back as the reply.

If IKE main mode (ISAKMP identity-protection ex-
change) is used, then the initiator’s ID is not avail-
able to the responder when the matching takes place,
and the initiator’s IP address is used instead.

It is open to debate as to whether two different pro-
posal lists for a remote ID are really needed. Our
argument is that during a Phase I parameter nego-
tiation the responder may know much less about an
initiator than the initiator knows about the re-
sponder, as in the IKE main mode case. Therefore,
the responder may need to be more cautious and
use a different list. This argument is not very strong,
but neither can we provide any strong argument that
the two-list schema will never be needed; so we stick
with this schema. If only one list is needed, then the
two references in a pair can reference the same list.
We also feel that the ultimate goal of IKE is to gen-
erate Phase II SAs to protect data communication,
so it is acceptable to be overly cautious in Phase 1.
A Phase Il negotiation can always decide on a more
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Figure 19 IKE Phase | process_msg () flowchart

suitable proposal because IDs of both sides are readily
available.

Certificate proxy. The certificate proxy process pro-
vides the following three services to the ISAKMP/IKE
server:

* Acquire and verify a public key certificate spec-

ified by certificate type, usage, owner’s (subject)
identity, etc.
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* Verify a given public key certificate
* Verify a given public key certificate and that the
certificate belongs to a specific identity

Our implementation of the certificate proxy is not
simple because of the complexity of certificate han-
dling. It is rather experimental because the standards
for certificate handling and for IPSec/IKE certificates
were still evolving when the code was being written.
IBM’s product divisions have since greatly enhanced

cHENG 743



Figure 20 ISAKMP/IKE policy schema
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the certificate proxy and brought it more in line with
the standard. The standards are still not finalized.

Policy administration tools. The policy administration
tools are parsers that parse four kinds of input files
that are an instance of the policy database described
earlier. They are: remote-ID to pair mapping, pairs
of references to lists of references to proposals, lists
of references to proposals, and proposals.

The input files are all stanza files in plain text; they
are all created by standard text editors. The output
files are simple database tables in the popular
UNIX NDBM format. The output files are used by the
DOI objects for parameter negotiations.

IBM’s product divisions have enhanced these tools
and the policy database by adding a graphical user
interface and migrating the database to DB2*
(DATABASE 2*) to provide much better manageabil-
ity and usability.

Tunnel manager. Our tunnel manager is a simple
command-line utility that constructs a request to es-
tablish an SA and sends the request to the ISAKMP/IKE
server.

IBM’s product divisions have greatly enhanced the
tunnel manager so it becomes the central control
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point for managing secure tunnels. The enhanced
tunnel manager can determine whether an existing
secure tunnel can satisfy a request. It can also pro-
vide status information on all existing tunnels and
ongoing negotiations.

Performance

Our colleagues from the AIX VPN team have done
performance measurements on a 350MHz PowerPC-
based*’ system. The measurements were made with
the following parameters:

e Phase I:
-DH Key Agreement: IKE DH group 1 (768-bit
prime modulus)
—Encryption: DES
—Hash and pseudorandom function: MD5 and
HMAC-MD5
—Mode: aggressive
—Authentication method: preshared key
* Phase II: no PFS (DH). Note that a Phase II ne-
gotiation applies the algorithms of its Phase I ne-
gotiation for encryption, hash, and pseudorandom
functions.

The ISAKMP/IKE code was instrumented to generate
time stamps with microsecond resolution. The pol-
icy databases of the initiator and the responder con-
tain only one list with one proposal defined accord-
ing to the configuration parameters. Ten Phase I
negotiations were performed. For each Phase I SA
generated, two Phase Il negotiations were performed
under its protection.

The measurements show that a Phase I negotiation
takes about 40035 microseconds and a Phase II ne-
gotiation takes about 3740 microseconds. Further in-
vestigation shows that a modular exponentiation in
IKE DH group 1 takes 19000 microseconds. Since the
responder or the initiator needs to perform two mod-
ular exponentiations to complete a DH Key Agree-
ment, it accounts for 95 percent of the time (38000
microseconds) spent in a Phase I negotiation.
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