
Books

Big Blue Java—Complete Guide to Programming
Java Applications with IBM Tools, Daniel J. Wor-
den, John Wiley & Sons, Inc., New York, 1999. 572
pp. (ISBN 0-471-36343-X).

Big Blue Java is the latest book written by Daniel J.
Worden. Mr. Worden is President of WNS, an au-
thorized IBM Business Partner. This book is a good
overview of the various Java** application develop-
ment tools that IBM offers. The book is appropriate
for managers who would like a better understand-
ing of the various IBM software tools, the skills re-
quired by the staff, and the type of investment in ed-
ucation and hardware that would be required to do
e-business development. It is also appropriate for
sales representatives who want an overview of the
set of IBM products available for that environment.
Many universities are starting to incorporate e-busi-
ness into their curriculum. This book would be a fine
reference to include in a class on managing or lead-
ing a software project.

The book begins with an introduction to the Java
programming language. It discusses the history of
the language, its strengths, and its adoption and en-
dorsement by IBM. For managers who may still be
deciding whether to adopt the Java language, the au-
thor does a convincing job of touting its benefits.

The author briefly mentions how Java is used on per-
vasive devices and commits a mistake that is a pet
peeve of mine. The author references the over-used
analogy of Java on a toaster. I have spent consid-
erable time researching Java on embedded devices
and have found so many wonderful useful applica-
tions of this technology. Toasters do a good job of
making toast. Adding Java to a toaster does not solve
any business or consumer problem. It simply adds

cost to the appliance. The Java programming lan-
guage is useful on mainframes, midrange machines,
personal computers, and small devices, but let us not
discuss kitchen appliances.

The first tool described is VisualAge* for Java. This
tool provides a Java integrated development envi-
ronment for editing, compiling, and debugging Java
code. It also provides a visual programming tool that
generates Java code, a version control management
system to facilitate team programming, and tools to
generate code to connect to databases such as DB2*
(DATABASE 2*) and to transaction systems such as
CICS* (Customer Information Control System). The
book concentrates on an older version of VisualAge
for Java. VisualAge for Java 3.5 is the current ver-
sion and offers Enterprise JavaBeans** (EJB**) sup-
port. Unfortunately, a few important characteristics
of this tool were not explained clearly. The version
control management system does not operate on a
check-in/check-out file methodology. It operates on
a repository, as mentioned, but in an environment
of parallel development with a very fine sense of
granularity. The granularity is based on classes and
methods. The references to checking out a file may
lead you to believe it is similar to other popular ver-
sion control systems.

WebSphere* Studio and NetObjects Fusion** are
used to create Web pages. Their use and how they
work with other tools such as Allaire HomeSite**
and Macromedia Dreamweaver** are shown. The
book includes many screen captures so that the
reader can see what these tools look like.

rCopyright 2001 by International Business Machines Corpo-
ration.

IBM SYSTEMS JOURNAL, VOL 40, NO 3, 2001 0018-8670/01/$5.00 © 2001 IBM BOOKS 803

The author touches on some of the shortcomings of
Java applets and does a fine job of explaining the
components of server-side Java. The definitions of
JavaServer Pages** (JSP**), servlets, and EJBs and
explanations of when you would use them are very
clear. The WebSphere Application Server is intro-
duced. This is a complex product that has grown over
the past year. Obtaining the most recent documen-
tation on it is highly recommended.

From a commerce perspective, Net.Commerce* and
Net.Data* are described. Net.Commerce provides
functionality in setting up a storefront on the Web.
It provides shopping cart services, catalog manage-
ment, and secure credit card transaction support. I
would have preferred to see a discussion on what
Java application programming interfaces are pro-
vided.

Several chapters discuss a set of IBM Java frameworks
called SanFrancisco*. The author acknowledges the
steepness of the learning curve for SanFrancisco. I
also found it to be overwhelming initially. SanFran-
cisco is quite large and has a high memory require-
ment. The set of Java business objects and processes
provided in SanFrancisco are listed. If you are con-
sidering SanFrancisco, these chapters are worth
reading.

If you have found yourself confused by many of the
acronyms of legacy IBM systems, this book is for you.
IBM’s transactional systems, CICS, messaging system,
MQSeries*, and systems management with Tivoli are
explained. In addition, an explanation of a new tech-
nology, Extensible Markup Language (XML), is also
provided.

For managers who want a feel for the complexity of
skills required, I recommend you read the chapters
on creating the sample Web store. The book shows
how skills in the Java language, JavaScript, C11, the
macro language of Net.Data, DB2/SQL (Structured
Query Language), HTML (HyperText Markup Lan-
guage), and XML are required. This does not include
any of the mainframe legacy skills that might be re-
quired. Although these tools make it easier to de-
velop an application, the team of developers needs
a wide variety of skills to finish the job.

Given the title, it is no surprise that the author por-
trays IBM in a positive light. However, in my opin-
ion, it is too favorable. The author does not high-
light some of the more major shortcomings of the
products. Though the author points out small “got-

chas” or minor bugs, he is often too favorable toward
IBM on the larger architectural issues. For instance,
as each product is described, it is obvious that there
is redundancy in function in some areas such as de-
velopment of the user interface of a Web page. How-
ever, with all the overlap, no IBM product, nor a com-
bination of all of them, is sufficient to do a
professional Web page design. A non-IBM product
must be employed to obtain the artwork demanded
for a real application.

The author also discusses the problems of integrat-
ing these tools. In addition to the overlap in func-
tion, it is difficult to bring work that was completed
using one tool into another. Given that all of these
tools are developed by one company, it should be
expected that a smoother integrated scenario would
exist. Part of this problem is that the products do
not all support the same Java Development Kit**
(JDK**) level. If you intend to do any Java devel-
opment, you must make sure that the tools you
choose support compatible JDK levels.

Among all of the Java books available in bookstores
today, it is refreshing to see one that describes IBM
products. This is a good overview book. Developers
who will actually be writing the code using these
products will need to supplement their reading with
more detailed documentation.

Sherry Shavor
IBM Software Group
Research Triangle Park
North Carolina

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.,
NetObjects, Inc., Allaire Corporation, or Macromedia, Inc.

The Object-Oriented Development Process, Tom
Rowlett, Prentice Hall PTR, Upper Saddle River,
NJ, 2001. 421 pp. (ISBN 0-13-030621-5).

Is this the best book ever written about object tech-
nology?

Certainly its clarity is matched only by David A. Tay-
lor’s first edition of OOT: A Manager’s Guide, but
Rowlett’s book is not intended for beginners. Instead
it reveals where knowledgeable developers may
safely veer from traditional paths.

BOOKS IBM SYSTEMS JOURNAL, VOL 40, NO 3, 2001804

And it echoes the truth and terminology of Ivar Ja-
cobson’s Object-Oriented Software Engineering: A Use
Case Driven Approach. But whereas Jacobson illus-
trates with two examples in C11 and Smalltalk,
Rowlett devotes half his book to one example, illus-
trated with the Java** language. Indeed, Rowlett’s
chapter on planning and writing test cases, with its
easily imitated Java examples, is a major contribu-
tion to object-oriented technology.

Although its wisdom about software project man-
agement is not as comprehensive as Adele Goldberg
and Kenneth S. Rubin’s Succeeding With Objects,
Rowlett’s mathematical advice and example of a
spreadsheet for managers, in an appendix, go deeper.

Finally, Rowlett’s practicality strides step for step
with IBM’s Object-Oriented Technology Center’s
(OOTC) Developing Object-Oriented Software, but it
leaves bigger and deeper footprints by explaining the
“whys” and “hows” often only referenced by that IBM
bible. For example, Rowlett assumes that his audi-
ence is familiar with “scenarios” as defined by IBM,
that is, exceptions to the normal use case. But then
Rowlett shows how decision tables provide the key
to finding and analyzing all the conditions and ac-
tions of each use case.

So this book certainly is a contender for “the best,”
and probably will be regarded as the best by many
practitioners inside IBM. They will view it as the
Summa Theologica—a guide for priests—that ex-
plains their OOTC bible by relating its steps not to
supernatural dogma but to the Aristotelian logic of
Ivar Jacobson.

Practitioners outside IBM will cherish it not only for
describing “the” proven process in a way they can
understand, but also for weaving 37 correctness ques-
tions throughout the process, giving them explicit
confidence in activities that always seemed right to
them.

Bernard A. Rackmales
IBM Global Services Institute
Stamford, Connecticut

**Trademark or registered trademark of Sun Microsystems, Inc.

Note—The books reviewed are those the Editor thinks might be
of interest to our readers. The reviews express the opinions of
the reviewers.

IBM SYSTEMS JOURNAL, VOL 40, NO 3, 2001 BOOKS 805

