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It is becoming clear that the emergent,
integrative behaviors of biological systems result
from complex interactions between all system
components, and that knowledge of each
component is not sufficient to understand such
behaviors. In this paper, we describe our
approach to the integrative modeling of cardiac
function. This approach spans multiple levels of
biological analysis, ranging from subcellular to
tissue. We have applied diverse analytical
methods, including imaging techniques for
measurement of anatomic structure and
biophysical and biochemical responses of cells
and tissue, parallel computing techniques for the
numerical solution of large systems of model
equations, and interactive visual exploration of
model dynamic behavior.

The reductionist approach in biology has provided
a wealth of detailed information on the genetic

and molecular components from which living systems
are composed. This is demonstrated by the fact that
there are now several hundred biological databases
accessible from the World Wide Web. The impor-
tance of this achievement cannot be understated—it
has transformed the nature of both biology and med-
icine. There is, however, growing recognition that
the tabulation of genetic and molecular building
blocks from which biological systems are composed
is not sufficient for understanding the functional
properties of these systems. Rather, it is becoming
clear that the emergent, integrative behaviors of bi-
ological systems result from complex interactions be-
tween all system components, and that knowledge
of each component, however detailed, is not suffi-
cient by itself to understand such behaviors.

Cardiac electrophysiology is a discipline with a long
tradition of integrative modeling. In this paper, we

describe our approach to the integrative modeling
of cardiac function. This approach spans multiple
levels of biological analysis ranging from subcellu-
lar to tissue. In developing these models, we have
found it necessary to apply diverse analytical meth-
ods including: (1) imaging techniques for measure-
ment of anatomic structure and biophysical and bio-
chemical responses of cells and tissue; (2) parallel
computing techniques for the numerical solution of
large systems of model equations; and (3) interac-
tive visual exploration of model dynamic behavior.
We demonstrate how these various techniques con-
tribute to the development of an integrative model
of the heart.

Measurement and modeling of biophysical
and biochemical properties of single cardiac
myocytes

A quantitative understanding of the biophysical and
biochemical properties of individual cardiac myo-
cytes is now emerging through application of a range
of experimental methodologies including recording
of: (1) whole-cell membrane currents from acutely
dissociated individual myocytes; (2) membrane cur-
rents generated by recombinant channels expressed
in cell culture; (3) single-channel gating properties;
and (4) time-varying intracellular ion concentration
using fluorescent indicators. A number of compu-
tational models of single ventricular myocytes based
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on such data have been developed.1–3 In the follow-
ing, we describe a computational model of the ca-
nine ventricular myocyte,4 a species that is frequently
used in the study of heart disease such as myocar-
dial infarction and heart failure.5,6

The canine myocyte model. The canine myocyte
model (see Figure 1) describes voltage-gated mem-
brane currents (labeled Ix in Figure 1, where x de-
notes the type of current), voltage- or concentration-
dependent membrane transporters (labeled INaCa,
Ip(Ca), INaK, and ISR), mechanisms for sequestration
and release of calcium (Ca21) within the cell, and
time-varying intracellular concentrations of sodium
(Na1), Ca21, and potassium (K1). Inward voltage-
gated membrane currents (the fast inward Na1 cur-
rent INa and the L-type [low-threshold] Ca21 current
ICa,L) generate the rapid upstroke of the cardiac ac-
tion potential (AP) (see Figure 2A, red line). Voltage-
gated outward membrane currents carried primar-
ily by K1 determine the repolarizing phase of the
AP.

The voltage- and time-dependent behavior is de-
scribed using systems of nonlinear ordinary differ-

ential equations.7 In this formulation, current pro-
duced by the ensemble behavior of a particular class
of ion channels is assumed to be given by the prod-
uct of a voltage-dependent membrane conductance
Gx(v(t), a) and an electrical driving force v(t) 2
Ex(t), where v(t) is time-varying membrane poten-
tial, a is a vector of state variables on which the con-
ductance depends, and Ex(t) is the reversal poten-
tial of the permeable ionic species, and is given by
the Nernst equation.8 As an example, the Hodgkin-
Huxley model of the fast inward Na1 current INa(t)
is given by the following system of equations (see
Hille8):

INa~t! 5 GNa@v~t!, a#@v~t! 2 ENa~t!#

a 5 @m@v~t!# h@v~t!## T

GNa@v~t!, a# 5 GNam@v~t!# 3h@v~t!#

@v~t!# 5 am@v~t!#$1 2 m@v~t!#% 2 bm@v~t!#m@v~t!#

ḣ@v~t!# 5 ah@v~t!#$1 2 h@v~t!#% 2 bh@v~t!#h@v~t!#

ENa~t! 5
RT
zF

ln ~Nao/Nai! (1)
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Figure 1 Schematic illustration showing important voltage-gated membrane currents, membrane transporter currents,
and intracellular compartments defined in the canine myocyte model.
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Figure 2 Model vs experimental action potentials and Ca2+ transients. Each action potential and Ca2+ transient is in response
to a one-hertz pulse train, with responses measured in the steady state. (A) Experimentally measured membrane
potential (millivolts) as a function of time in normal (red) and failing (black) canine myocytes. (B) Experimentally
measured cytosolic Ca2+ concentration (nanomole/litre) as a function of time (milliseconds) for normal (red) and
failing (black) canine ventricular myocytes. (C) Membrane potential (millivolts) as a function of time (milliseconds),
simulated using the normal canine myocyte model (red), and with the successive down regulation of Ito1 (orange,
66 percent down regulation), Ik1 (green, down regulation by 32 percent), SERCA2 ( right-most blue, down regulation
by 62 percent), and NCX1 (black, up regulation by 75 percent). (D) Cytosolic Ca2+ concentration (nanomole/litre) as
a function of time (milliseconds), simulated using the normal (red) and heart failure (black) model.
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where m[v(t)] and h[v(t)] are state variables de-
scribing the activation and inactivation of the cur-
rent, GNa is the peak Na1 conductance, am, bm, ah

and bh are voltage-dependent rate constants that are
determined experimentally, and Nao and Nai are ex-
ternal and internal Na1 concentration.

A diversity of voltage-dependent membrane currents
are defined in the canine ventricular cell model.4,9

These include: (1) the fast inward Na1 current INa(t)
responsible for the rapid upstroke of the AP; (2) the
L-type Ca21 current ICa,L(t) that contributes to the
upstroke, and helps set and maintain the AP plateau;
(3) the rapidly activating delayed rectifier K1 cur-
rent IKr, which contributes to repolarization of the
AP; (4) the slowly activating delayed rectifier current
IKs, which also contributes to repolarization of the
AP; (5) the Ca21-independent transient outward K1

current I to1, which is a modulator of AP shape and
duration; and (6) the instantaneous inward rectifier
current IK1, which functions in repolarization of the
AP at relatively hyperpolarized membrane potentials,
and which helps set the resting potential of the myo-
cyte.

Voltage- and concentration-dependent membrane
transporters, labeled INaCa, Ip(Ca), INaK, and ISR in Fig-
ure 1, function to maintain internal ion concentra-
tions near equilibrium values. The Na1-Ca21 ex-
changer (INaCa) is the principal means by which Ca21

that enters the cell during an AP is removed from
the cell following that AP. The exchanger current de-
pends on Na1 and Ca21 concentration both inside
and outside the cell, and on membrane potential
v(t). The Na1-K1 pump functions to extrude Na1

from the cell that enters during an AP. The sarcolem-
mal Ca21 pump utilizes energy in the form of aden-
osine triphosphate (ATP) to extrude Ca21 from the
cell, and the sarcoplasmic reticulum (SR) Ca21-AT-
Pase uses ATP as an energy source to pump Ca21

from the cytoplasm into the SR. The current Ik
tr(t)

generated by each of these transporters is assumed
to be an instantaneous function of the relevant state
variables, and is described using algebraic equa-
tions:

Iks
tr ~t! 5 Fk@Ci~t!, Co~t!, v~t!# (2)

where C i(t) and Co(t) are the time-varying internal
and external concentration of each ionic species. The
time rate-of-change of ionic concentrations within
the cell is given by:

Ċi~t! 5 2
ICi

tot~t!
zFVeff

(3)

where Ci(t) is the intracellular concentration of the
ith ionic species, ICi

tot(t) is the total membrane cur-
rent carried by ion species Ci , z is the valence, F is
Faraday’s constant, and Veff is the cell volume.

Finally, membrane potential v(t) is itself a state vari-
able, with time derivative proportional to the sum
of ionic currents flowing across the cell membrane:

v̇~t! 5 2
1
C O

i51

N

Ii~t! (4)

where C is total cell membrane capacitance and I i(t)
is the ith voltage-dependent membrane or trans-
porter current.

Cardiac Ca21 dynamics and excitation-contraction
coupling. Cardiac myocytes have evolved intricate
mechanisms for the sequestration and release of in-
tracellular calcium and regulation of muscle contrac-
tion—a process known as excitation-contraction (EC)
coupling. EC coupling involves a close interplay be-
tween L-type Ca21 channels in the sarcolemmal
membrane, and Ca21-induced Ca21-release channels
(referred to here as RyR) in the SR membrane. Mod-
eling of this process is described in Jafri10 and may
be understood with reference to Figure 1. During
the initial stages of the action potential, voltage-gated
L-type Ca21 channels (also called di-hydropyridine
receptors—DHPRs) in the sarcolemmal membrane
open, allowing the entry of Ca21 into a restricted sub-
space between these channels and the SR membrane.
As subspace Ca21 concentration increases, Ca21

binds to the RyR, increasing their open probability
and leading to Ca21 release from the junctional SR
(JSR). The amount of Ca21 released from the JSR is
significantly more than the amount of trigger Ca21

entering via L-type Ca21 channels. Diffusion of sub-
space Ca21 into the cytosol leads to the Ca21 tran-
sient that may be imaged using Ca21-sensitive fluo-
rescent indicators. An example of a Ca21 transient
measured experimentally using the indicator Indo-1
is shown in Figure 2B (red). This transient was mea-
sured simultaneously with the AP shown by the solid
line in Figure 2A. Model reconstructions of an AP
and Ca21 transient are shown in Figures 2C and 2D.
Following the AP, cytosolic Ca21 is either extruded
from the cell by the Na1-Ca21 exchanger, or pumped
back into the SR by the SR Ca21-ATPase. The ca-
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nine ventricular cell model accurately reproduces not
only the shape of the intracellular Ca21 transient but
also the rates at which Ca21 is extruded and rese-
questered by these pumping mechanisms.

Numerical solution of model equations. A system
of 34 coupled nonlinear ordinary differential equa-
tions, with form similar to those presented previously,
define the canine ventricular cell model. A complete
description of the original equations defining the
model is available in Winslow4 (Appendix) and
source code is available at http://www.bme.jhu.
edu/;rwinslow. Equations are integrated using the
Merson modified Runge-Kutta 4th order adaptive
step algorithm,11 with a maximum step size of 100
microseconds (msec) and maximum error tolerance
of 1026. The error from all variables is normalized
to ensure that each contributes equally to the cal-
culation of global error. Initial conditions listed in
Winslow4 (Appendix) were computed in response
to a periodic pulse train of frequency 1 hertz (Hz),
and were determined immediately preceding the
11th pulse. Action potentials are initiated using 100
microamperes per microfarad (mA/mF) current in-
jection for 500 msec. Equations describing the
dynamics of the RyR have extremely rapid kinetics,
and use of a stiff integrator such as DVODE12 can im-
prove simulation performance substantially.

Applications of the single cell model. The develop-
ment and analysis of biophysically and anatomically
detailed computational models of physiological sys-
tems is providing an important tool for relating
changes in gene expression to changes in biological
function at the levels of cell and tissue in both health
and disease. This approach is illustrated using a re-
cently developed computational model of the fail-
ing myocyte.

Heart failure is a significant disease in the United
States, with more than two million patients diagnosed
with this illness. Patient prognosis remains poor, with
over 15 percent dying within one year of initial di-
agnosis, and a greater than 80 percent six-year mor-
tality rate. Up to 50 percent of these patient deaths
result from sudden cardiac death (SCD). Heart fail-
ure is in fact the leading cause of SCD in the United
States. Remarkable advances have been achieved in
understanding the genetic and molecular basis of
heart failure. Studies in both animal models (spe-
cifically, the canine tachycardia pacing-induced
model of heart failure5,6,13) and human patients have
shown significant “down regulation” of the transient
outward current I to1 and the fast inward rectifier cur-

rent IK1, respectively, in end-stage heart failure.14–17

Studies have also shown reduced expression of
SERCA2 (the gene encoding the SR Ca21-ATPase)
and increased expression of NCX1 (the gene encod-
ing the Na1-Ca21 exchanger protein).18 Equally sig-
nificant advances have been achieved in character-
izing electrophysiological properties of failing
ventricular myocytes. It is now known that action po-
tential duration is prolonged in failing myocytes. An
example of AP prolongation is shown by the black
line in Figure 2A, which was recorded in a left ven-
tricular myocyte isolated from a failing canine heart,
in which heart failure was induced using the tachy-
cardia pacing procedure. AP duration is more than
double that recorded in normal myocytes (red line,
Figure 2A). AP prolongation is known to be arrhyth-
mogenic, increasing the likelihood of severe, life-
threatening arrhythmias such as early after-depolar-
izations (EADs).18,19 Understanding the mechanism
of AP prolongation therefore has clinical relevance
to the prevention of SCD in heart failure. It is also
known that Ca21 transient amplitude and rate of de-
cay are significantly reduced in heart failure. An ex-
ample of a Ca21 transient, measured during the AP
shown by the black line in Figure 2A, is shown by
the black line in Figure 2B. This example of a Ca21

transient measured in a failing myocyte exhibits sig-
nificant reduction in amplitude and slowed decay.
Ca21 transient amplitude reduction contributes to
reduced contraction of the heart during heart fail-
ure.

The myocyte model has been used to investigate the
relationship between altered patterns of gene expres-
sion and mechanisms of arrhythmia in heart failure.4

These computational models are based on data ob-
tained from the canine tachycardia pacing-induced
model of heart failure. Models were used to show
that prolongation of AP duration (Figure 2C) and
reduction of Ca21 transient amplitude and decay rate
(Figure 2D) observed in failing myocytes are ac-
counted for primarily by altered expression of Ca21

handling proteins. Unexpectedly, down regulation
of outward K1 currents appears to play a secondary
role in AP prolongation. By enabling a clear iden-
tification of the biophysical mechanisms responsi-
ble for these altered responses of failing myocytes,
the models have suggested specific therapeutic tar-
gets for reducing AP prolongation and risk of arrhyth-
mia in heart failure. Specifically, drugs that inhibit
phospholamban (an inhibitor of the SR Ca21-AT-
Pase) or that act directly on the SR Ca21-ATPase to
increase its transport rate would be expected to im-
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prove contractile strength of the heart and reduce
AP duration prolongation in heart failure.

Mapping and modeling of cardiac anatomy

Development of biophysically detailed models of sin-
gle cardiac myocytes has contributed greatly to our
understanding of processes underlying excitation and
repolarization in the heart. However, knowledge of
cellular events alone is not sufficient for understand-
ing the complex patterns of electrical conduction
within the cardiac ventricles. The reason for this is
that the detailed spatial orientation of muscle fibers
within the heart has a profound influence on the ways
in which electrical and mechanical activity is both
generated and propagated. The challenge now is to
acquire a more detailed understanding of this an-
atomical structure—knowledge that ultimately will
enable the development of biophysically and ana-
tomically accurate models of the heart as a function-
ing organ.

Histological reconstruction of ventricular anatomy.
Cardiac fibers are arranged as counter-wound hel-
ices encircling the ventricular cavities, and the ori-
entation of these fibers depends on transmural lo-
cation.20–23 Fibers tend to lie in planes parallel to the
epicardium, approach a longitudinal orientation on
the ventricular surfaces, and rotate toward the hor-
izontal near the midwall. Detailed measurements of
fiber orientation within the cardiac ventricles have
been obtained by Nielsen,24 who used these data to
construct a finite-element model describing myofi-
ber structure. LeGrice et al. have made comprehen-
sive measurements of canine ventricular macro- and
micro-structure25 in which they report an additional
level of organization of the myofibers—they appear
to be arranged in distinct myocardial laminae about
4 myocytes thick, which are separated from adjacent
laminae by the extracellular collagen network. This
finding is also supported by the recent local recon-
struction of myocardial lamina in rabbit heart re-
ported by Costa.26

Estimation of ventricular fiber orientation using dif-
fusion-tensor magnetic resonance imaging. The di-
rect anatomical reconstructions just described are
extremely labor-intensive and time-consuming. More
rapid techniques for achieving ventricular recon-
structions would greatly enhance our ability to char-
acterize cardiac structure in both health and disease.
Recently, a number of studies have suggested that
diffusion-tensor magnetic resonance imaging
(DTMRI) may be used to determine muscle fiber ori-

entation of tissues. DTMRI yields estimates of a voxel-
averaged diffusion tensor, the eigenvectors and ei-
genvalues of which specify the principal directions
and rates of water diffusion at each voxel of the tis-
sue image. The eigenvector corresponding to the
maximum eigenvalue of the diffusion tensor points
in the direction of maximum rate of diffusion. Since
muscle fibers are long and thin, this direction has
been hypothesized to correspond to the orientation
of the long axis of a muscle fiber.

Quantitative histologic verification of this hypoth-
esis has been lacking until recently. Hsu27 provided
the first quantitative correlation of DTMRI-based and
histological estimates of fiber orientation in an ex-
cised portion of the right ventricle. Scollan28 showed
that DTMRI estimates of fiber orientation in local tis-
sue regions obtained from perfused, nonbeating rab-
bit heart accurately reproduce histologic measure-
ments of orientation made at the same locations in
the same heart. It was demonstrated subsequently
that maps of fiber orientation with much improved
spatial resolution can be obtained in fixed myocar-
dium—a preparation that minimizes possible arti-
factual motion of the heart.29

Reconstruction of ventricular anatomy using
DTMRI. DTMRI has recently been used to perform
the high spatial resolution reconstruction of the en-
tire cardiac ventricles in rabbit heart.30 The follow-
ing imaging protocol was used in these studies. First,
three-dimensional GRASS (gradient recalled acqui-
sition in the steady-state) intensity images were col-
lected for subsequent use in defining the epicardial
and endocardial surfaces. This yielded a set of 128
short-axis slices with in-slice spatial resolution of
156 3 312 micrometers (mm), and a slice separation
of 469 mm. Following acquisition of the GRASS in-
tensity data set, DTMRI was used to estimate myo-
cardial fiber orientation. These images were obtained
using a slice-selective fast spin-echo diffusion-
weighted technique followed by a two-dimensional
discrete Fourier transform. Slice thickness was var-
ied depending on longitudinal position. In regions
at and near the base of the heart where epicardial
surface curvature is smallest, slice thickness was set
to 2 millimeters (mm). At more apical regions where
curvature is larger, slice thickness was set to 1 mm.
Eight basal short-axis sections were obtained with
a slice thickness of 2 mm, followed by twelve apical
short-axis sections at a slice thickness of 1 mm. This
protocol was selected as a trade-off between total
imaging time (approximately 20 hours) and spatial
resolution, and yields one 256 3 128 3 128 matrix
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of intensity data, which is used to estimate ventric-
ular geometry, and a coincident 256 3 128 3 20 ma-
trix of points at which estimates of the 3 3 3 dif-
fusion tensor are available.

Reconstruction of ventricular anatomy from these
data involves four steps. First, epicardial and endo-
cardial boundaries are estimated using both the

short-axis GRASS intensity and diffusion-weighted
short-axis slices. This is done using a semiautomated
image segmentation tool called HeartWorks. 31 This
yields a series of 128 planar contours defining epi-
cardial and endocardial boundaries. Second, these
contours are used to reconstruct the ventricular epi-
cardial and endocardial surfaces for visualization of
ventricular structure. Third, diffusion tensor eigen-
values and eigenvectors are computed from the dif-
fusion-weighted short-axis sections that are coinci-
dent with a subset of the GRASS imaging short-axis
sections, thus providing estimates of fiber orienta-
tion within the myocardium in each of these sections;
and fourth, fiber orientation is interpolated for myo-
cardium in those short-axis sections for which there
are no corresponding diffusion data.

The semiautomated image segmentation algorithms
in HeartWorks provide a set of 3 3 128 planar con-
tours that specify epicardial and endocardial surfaces,
where each contour is represented by a set of ordered
points. Given these contours, ventricular surfaces are
reconstructed using a piecewise smooth-surface re-
construction algorithm, developed by Hoppe and
DeRose, which determines an optimal triangular til-
ing between points in adjacent contours.32

Figure 3A shows reconstruction of a rabbit ventri-
cle based on GRASS image data obtained at a spatial
resolution of 156 3 312 3 469 mm. Image segmen-
tation was performed using the method of active con-
tours. Papillary muscles projecting into the ventri-
cles were edited from the images using HeartWorks.
Left ventricular (LV) and right ventricular (RV) sur-
faces are shown in gold and red, respectively. The
epicardial surface is rendered as a wire-frame mesh.
The high spatial resolution afforded by GRASS im-
aging is sufficient to reveal the highly detailed struc-
ture of both the epicardial and endocardial surfaces.
Figure 3B–3E shows the reconstructed ventricle of
Figure 3A into which 12 of 20 short-axis DTMRI sec-
tions are inserted. Each of these sections shows fiber-
inclination angle coded according to the indicated
color map. These sections show a transmural vari-
ation in fiber angle from the epicardial to endocar-
dial surfaces.

Bringing maps and models together:
Simulation of electrical excitation in the
heart

The development of rapid methods for the anatom-
ical reconstruction of cardiac ventricular geometry
and fiber organization described in the previous sec-

Figure 3 (A) Reconstruction of epicardial (blue wire mesh)
and endocardial surfaces (RV endocardium—red;
LV endocardium—gold). (B)–(E) Short-axis
sections of rabbit ventricular myocardium in
which fiber inclination angle is color coded.
Short-axis section numbers, beginning from the
most basal section, are: 1,7,13 (B); 2,8,14 (C);
3,9,15 (D); and 4,10,16 (E).

A

B C

D E

90

-90

WINSLOW ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001348



tion now creates the possibility that anatomical and
computational models of an extensive library of nor-
mal and diseased hearts may be generated, and that
structural and electrical properties of these hearts
may be computed and compared. The following sec-

tion describes methods for computational modeling
of the ventricular myocardium.

Governing partial differential equations. The bido-
main equations describe the flow of electrical cur-
rent within the myocardium between the intracel-
lular and extracellular domains.33,34 This approach
treats each domain of the myocardial tissue as a con-
tinuum, rather than as being composed of discrete
cells connected by gap junctions and surrounded by
the extracellular milieu. Thus, quantities such as con-
ductivity and transmembrane voltage represent spa-
tial averages.

The bidomain equations are derived by applying con-
servation of current between the intra- and extra-
cellular domains. The equations consist of coupled
parabolic and elliptic equations that must be satis-
fied within the myocardium, and an additional el-
liptic equation that must be satisfied in the bath, or
tissue, surrounding the heart. Solution of the full bi-
domain equations is known to be important when
modeling the effects of electric-field stimulation on
cardiac electrical responses. However, in circum-
stances not involving field stimulation, the bidomain
equations are usually simplified considerably.35 If the
tissue surrounding the body surface is taken to be
a good insulator, and the assumption of equal anisot-
ropy is assumed to hold, namely that

Mi~x! 5
1
K

Me~x! (6)

where K is called the anisotropy ratio, then the bi-
domain equations reduce to the (monodomain) par-
abolic reaction-diffusion equation

­v
­t

~x, t! 5 2
1

Cm
Iion~x, t! 1 Iapp~x, t!

2
1
b S K

K 1 1D¹ z ~Mi~x!¹v~x, t!! (7)

where x is spatial position within the myocardium,
v(x, t) is the transmembrane voltage, Cm is the mem-
brane capacitance per unit area, I ion(x, t) is the sum
of the ionic currents per unit area through the mem-
brane (positive outward), as given by ionic models
of the myocyte as described earlier, I app(x, t) is an
applied stimulus current per unit area, b is the ratio
of membrane area to tissue volume, and M e(x) and
M i(x) are the extracellular and intracellular 3 3 3
conductivity tensors at each point x. Equation 7 is
solved subject to a no-flux boundary condition at the
cardiac surfaces.

The intracellular conductivity tensors at each point
within the heart are specified by fiber orientation and
by specific intracellular conductivities in each of the
local coordinate directions. The intracellular conduc-
tivity tensor in the local coordinate system, G i(x),
is defined as

Gi~x! 5 Fs1,i

s2,i

s3,i

G (8)

where s1,i is the longitudinal and s2,i and s3,i are the
transverse intracellular conductivities, respectively.
This local tensor may be expressed in global coor-
dinates to give the intracellular conductivity tensor
of Equation 6 using the transformation

Mi~x! 5 P~x!G~x! P T~x!, (9)

where P(x) is the transformation matrix from local
to global coordinates at each point x. When work-
ing from DTMRI data, the columns of P(x) are set
equal to the eigenvectors of the diffusion tensor es-
timated at point x.

Parallel solution of the monodomain equation. So-
lution of the monodomain equation (Equation 7)
throughout the ventricular myocardium is compu-
tationally demanding and is typically performed us-
ing parallel computation. In this section, we describe
a parallelization method implemented on an
IBM RISC System/6000* (RS/6000*) SP* POWER3 sym-

Bidomain equations are
derived by applying conservation

of current between the intra-
and extra-cellular domains.
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metric multiprocessor (SMP) system running IBM
Parallel Environment (PE) for AIX* v2.4 and
XL FORTRAN v6.1. Each of the four nodes on this
system consists of eight 222 megahertz processors
and one gigabyte of shared memory. Each proces-
sor has 32 kilobytes of primary instruction cache, 64
kilobytes of primary data cache, and 4 megabytes of
direct-mapped secondary cache. The implementa-
tion achieves multilevel parallelism by utilizing the
Message Passing Interface (MPI) for communication
among nodes, and OpenMP directives for parallel
computation within each node. The implementation
is highly portable, running on either SMP architec-
tures, distributed networks of scalar processors, or
hybrid architectures.

The first step of this parallel solution method is to
find discrete spatial terms for Equation 7. The di-
vergence operator in the diffusion term generates
first, second, and mixed second-order spatial deriv-
atives as shown in the following expansion:
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First derivatives (advective term) are approximated
using upwind differencing:

­V
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(11)

The second-order derivatives are approximated by
finite differencing using a three-point stencil:
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2
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Mixed second-order derivatives are approximated
using a five-point stencil:
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The discrete terms are achieved using a regular
three-dimensional mesh as shown in Figure 4A. The
spatial resolution of the grid affects the numerical
accuracy of simulation results. To determine an ap-
propriate grid resolution, a tissue block of one cubic
centimeter was constructed for a convergence test.
One face of the block was stimulated and param-
eters such as activation time (the interval between
the time at which the stimulus is applied and the time
at which the action potential exhibits the greatest rate
of increase), conduction velocity (distance traveled
by the wave per unit time), peak voltage (maximum
value of membrane potential), and upstroke veloc-

ity (maximum time rate-of-change of membrane po-
tential) were measured at the same points in space
as the grid was successively refined. Figure 5, plot-
ting activation time as a function of grid resolution,
shows that there is a large error in activation times
when grid resolution is larger than 500 mm, and that
a minimum spatial resolution of 250–300 mm is re-
quired to model propagation accurately. On the ba-
sis of these and similar data, the dimensions of the
mesh were chosen to be 101 3 167 3 202 points in
the x, y, and z coordinate directions (see Figure 4A)
for the activation studies reported here. Correspond-
ing mesh resolution was 235 3 240 3 198 mm.
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Figure 4 (A) The left and right ventricles immersed in a finite difference grid. (B) The x-z plane illustrates the partitioning of the
volume into subdomains and the distribution of these blocks of short-axis sections to three SMP nodes. Node 2 is
assigned more slices than the others as there are fewer myocardium points in the short-axis sections toward the
apex. Grid points that are updated by the node itself are represented by circles, and ghost cells that are updated by
the adjacent nodes and communicated via MPI calls represented by diamonds.
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Of the more than three million lattice points, 906183
were within the myocardium (as opposed to the fluid-
filled ventricles). Thus, numerical simulation of elec-
trical activation in the heart model required the so-
lution of more than 30 million coupled nonlinear
ordinary differential equations subject to an initial
condition (that the heart is in an electrically quies-
cent state). A number of numerical methods have
been used to perform the time integration of this
system of equations. These include: (1) the Euler
method36–38; (2) fourth-order nonadaptive and Mer-
son modified adaptive Runge-Kutta methods
(RK4)11,36–38; and (3) an operator-splitting method
based on the reacting flow model developed by
Knio.39,40 The latter method uses a backward differ-
entiation algorithm implemented in DVODE (double-

precision variable coefficient ordinary differential
equation solver) to integrate the reaction term. In
the simulations reported here, an RK4 fixed-step
method with 2.5 msec time step is used.

Parallel implementation involves partitioning the
computational grid and associated data into a set of
N subdomains, and then distributing these subdo-
mains to the SMP nodes that communicate with one
another using MPI. To do this, as described earlier,
the ventricles are “immersed” in a regular three-di-
mensional lattice (Figure 4A). The number of sub-
domains N is set equal to the number of processor
nodes. In FORTRAN, data are arranged in the main
memory of each node according to the leading di-
mension of the underlying data arrays. In Figure 4,
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Figure 5 A convergence test for determining an appropriate simulation mesh. Activation time (milliseconds) within a cubic
centimeter volume of modeled tissue was measured at various fixed distances from the stimulus site at the edge
of the mesh as mesh resolution was increased.
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this is taken to be the z, y, and x dimensions. The
myocardium is partitioned into subdomains along the
x-axis (long axis) so that data within a subdomain
will be localized in shared memory. This in turn op-
timizes memory and cache accesses. Each subdomain
therefore consists of a set of short-axis slices in the
y-z plane. Since roughly 40–50 percent of grid points
in each short-axis section are within the myocardium,
these points (referred to as “active points”) are iden-
tified and totaled by use of a mask. To optimize load
balancing, the algorithm generates subdomains con-
sisting of an integer number of short-axis sections.

After performing domain decomposition, each node
loads and initializes only the parameters and data
that pertain to its subdomain. Data required to com-
pute the diffusion term in Equations 10–13 and to
compute the time evolution of membrane potential
v(t) require nearest-neighbor communication. At
most grid points, these data are available in the
node’s shared memory. For grid points on the bound-
ary of a subdomain, membrane potentials of the
neighbors are retrieved from adjacent subdomains
before each iteration of the computation. This is ac-
complished by padding the x-dimension of the sub-
domain with additional “ghost” cells. Values for
these cells are computed by the neighboring subdo-
mains and exchanged between nodes via MPI com-
munication calls at each time step. Figure 4B illus-
trates a volume partitioned using this algorithm. The
x-z plane is shown on the right, with circles repre-
senting cells updated by processors local to the sub-
domain and diamonds representing ghost cells up-
dated by processors in neighboring nodes. All other
state variables defining properties of membrane cur-
rents (Equation 1), membrane transporter currents
(Equation 2), and intracellular concentrations
(Equation 3) are local variables in the sense that their
time evolution at each grid point may be computed
given knowledge of membrane potential at that grid
point.

Once all required data are in the memory of the SMP
node, all processors within a domain begin compu-
tation on a specific short-axis section in the subdo-
main. Upon finishing, each processor proceeds to the
next available slice in its subdomain. The distribu-
tion of workload between the two processors is
guided by OpenMP directives used to make parallel
the loops that compute the currents and integrate
the state variables. The scheduling of the parallel
loop is static, as the overhead of dynamic schedul-

ing is justified only when there is a high degree of
load imbalance.

Whole-heart simulation results. Figure 6 shows
snapshots of the electrical activation sequence sim-
ulated for a rabbit heart reconstructed using DTMRI
as described in the previous section. Intracellular
conductivities (Equation 8) were assumed to be
transversely isotropic (s2i 5 s3,i). The longitudinal
value was set to 2.49 milliseconds/centimeter
(ms/cm), and the transverse values to 0.28 ms/cm
(8.89:1 ratio), yielding longitudinal and transverse
conduction velocities (CVs) of 76 centimeters/second
(cm/s) and 26 cm/s, respectively. These conduction
velocities are similar to those measured in rabbit
myocardium. A current stimulus was injected into
a set of cells on the endocardial surface in order to
initiate electrical depolarization of the heart. In the
first panel, the heart is at its resting potential of 280
millivolts (mV), denoted by the blue color. Early ac-
tivation is pictured in the second panel, where the
endocardial surfaces of the septum have taken on
an orange color, corresponding to more positive
membrane potentials. The simulated value of total
activation time was 30.72 milliseconds—very simi-
lar to values reported experimentally. The average
CV was 50.54 6 18.72 cm/s. CV reached a maximum
value of 114.31 cm/s at the epicardium due to the
imposition of the no-flux boundary condition, and
thus reduced electrical loading of cells on the sur-
faces of the heart.

The three-dimensional heart model has also been
used to test the hypothesis that a particular class of
cellular arrhythmia known as early after-depolariza-
tions (EADs) may trigger re-entrant arrhythmias in
the failing heart. To do this, cell properties within
one region of the right ventricle, representing about
5 percent of the total myocardial mass, were adjusted
to produce the extreme prolongation of action po-
tential duration (APD) observed during heart failure
by reducing I to1, IK1, and the SR Ca21-ATPase mag-
nitude, and increasing the Na1-Ca21 exchanger mag-
nitude. These changes, through their effects on APD,
produced EADs in cells within that region. A wave
of excitation was initiated in the model using a sin-
gle excitatory stimulus applied at endocardial stim-
ulation points. EADs triggered within the spatially lo-
calized region of the model heart were seen to initiate
re-entrant waves that were completely self-sustain-
ing for the full five seconds of the computation. Im-
ages of electrical activity on the model ventricular
surface are seen in Figure 7.
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Interactive visualization of simulation data

As can be appreciated from Figures 6 and 7, the gen-
eration and propagation of electrical activity within
the heart is governed by large systems of ordinary
differential equations defined over a geometrically
complex, nonhomogeneous anatomical structure.
Understanding the time evolution of these equations
within such a complex geometry is a challenging task.
To aid in this understanding, we have developed an
interactive statistical visualization tool, called WEAVE
(Workbench Environment for Analysis and Visual
Exploration), and are applying this tool to analysis
of cardiac simulation data.41

WEAVE supports the rapid development of multiple,
customized statistical analyses of the simulation data
that are linked to the underlying geometry of the sim-
ulation data set. Statistical analyses include, but are
not limited to, generation of histograms, pie charts,
scatterplots, calculation of covariation between mul-
tiple data sets, and clustering. An example of the use
of WEAVE is shown in Figure 8. The upper-left panel
displays the heart geometry, on which is superim-
posed by means of a color code the spatial values of
a selected state variable or model membrane cur-
rent at a particular instant of time following elec-
trical activation of the model heart by a current stim-
ulus applied to a local region of the endocardial
surface. Any state variable or current may be selected
for display—in this instance we show values of the
transient outward current I to1 at every grid point in
the model.

The I to1 current is an outward potassium current that
activates following membrane depolarization, but
then undergoes rapid inactivation. The lower-left
panel displays a histogram of I to1 values. Inspection
of this histogram shows that I to1 current magnitude
is near zero for the majority of grid points in the
model, as the majority of cells within the model are
in a resting state. The histogram exhibits a second,
much smaller peak at an ordinate value of approx-
imately 2.3 picoamperes per picofarad (pA/pF). As
shown in this panel, the mouse cursor was used to
select three different sets of points in this histogram:
(1) a set of points about this second peak (green);
(2) a set of points about the major peak positioned
near 0 pA/pF (red); and (3) an intermediate set of
points between these two peaks (blue). On selection,
the location of each set of points is displayed on the
heart geometry shown in the upper left panel using
the chosen color code. The third panel in the upper-
right corner of the display is a scatterplot of I to1 den-

Figure 6 An electrical activation sequence simulated for a
rabbit heart reconstructed using DTMRI. In (A),
the heart is at a resting potential of –80 mV (blue).
The activation wave is initiated by electrical
stimulation on the endocardial surfaces. Sites of
endocardial activation were selected to mimic the
locations where earliest activation occurs in the
normal heart. Panels (B) and (C) show sequential
electrical activation of the ventricles at
successive 10-millisecond intervals.
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sity (in pA/pF for the ordinate) and membrane po-
tential (in mV for the abscissa). Points in this display
are also shown using the color code selected during
interaction with the histogram display. These data

show that I to1 current is small for cells with low mem-
brane potential (red), because these cells are at rest.
Cells for which voltage is high and I to1 density takes
on intermediate values (blue) define the activation

Figure 7 Sequential views (left to right; top to bottom) of epicardial membrane potential (red is resting potential, blue is
ventricular cell plateau potential) at 20-millisecond intervals illustrating re-entrant arrhythmia evoked by local genera-
tion of EADS in heart failure. Canine anatomical model provided by P. Hunter, Auckland University, New Zealand.
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wavefront (depolarization of these cells has just oc-
curred, and I to1 is beginning to activate). Cells with
high voltage and high current density are cells that
have just activated.

These data illustrate the ability of WEAVE to per-
form a wide range of statistical analyses on simula-

tion data, and to enable the user to explore prop-
erties of subsets of simulation data with reference
to the underlying anatomical model. Such interac-
tive statistical analyses are crucial for interpretation
and for understanding of the very large simulation
data sets that arise in integrative modeling of the
heart.

Figure 8 User interface for WEAVE (Workbench Environment for Analysis and Visual Exploration)
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Discussion

This paper has reviewed modeling research in three
broad areas: (1) models of single ventricular myo-
cytes; (2) methods for the reconstruction and mod-
eling of ventricular geometry and microanatomy; and
(3) integrative modeling of the cardiac ventricles. We
have seen that the level of biophysical detail, and
hence the accuracy and predictability of current ven-
tricular myocyte models, is considerable. Nonethe-
less, much remains to be done. In particular, as we
acquire increasingly detailed data regarding the ki-
netic behavior of specific voltage-gated ion currents
and transporter systems in the myocyte, and as we
begin to identify the genes and gene systems encod-
ing particular ion currents and transporters, we will
need to increase the fidelity with which these mech-
anisms are represented in the single cell models.

In real cardiac myocytes, there exist a diversity of
mechanisms that act to modulate cellular excitabil-
ity. This includes a- and b-adrenergic signaling path-
ways acting through G protein42-coupled membrane
receptors to modulate properties of the L-type Ca21

channel, various K1 channels, and Ca21 transport-
ers such as the SR Ca21-ATPase. Transport of Ca21

into the SR and extrusion of Na1 from the cell fol-
lowing the AP are just two examples of vitally im-
portant processes utilizing substantial energy re-
sources of the cell in the form of ATP. The addition
of these modulatory and energy-requiring homeo-
static mechanisms to the cell models remains an im-
portant goal for the future.

Diffusion tensor magnetic resonance imaging now
offers a relatively rapid way to measure ventricular
fiber structure at high spatial resolution. The ability
to rapidly acquire fiber orientation data throughout
the ventricles in large populations of normal and dis-
eased hearts will enable quantitative statistical com-
parison of normal and abnormal cardiac structure,
and will provide insights into the possible structural
basis of arrhythmia in heart disease. Availability of
high spatial resolution models of the ventricles will
also facilitate three-dimensional computer model-
ing of ventricular activation and its relationship to
the underlying fiber structure of the heart in both
health and disease. Unfortunately, a detailed under-
standing of the spatial heterogeneities within the
heart, such as variation of intercellular coupling, re-
gional expression of ionic currents, and Ca21 han-
dling proteins, is still unavailable, although signif-
icant progress has certainly been made. Clearly, the
development of an anatomically and biophysically

accurate model of the cardiac ventricles still remains
a challenge for the future.
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