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New techniques
for extracting features
from protein sequences

In this paper we propose new techniques to
extract features from protein sequences. We
then use the features as inputs for a Bayesian
neural network (BNN) and apply the BNN to
classifying protein sequences obtained from the
PIR (Protein Information Resource) database
maintained at the National Biomedical Research
Foundation. To evaluate the performance of the
proposed approach, we compare it with other
protein classifiers built based on sequence
alignment and machine learning methods.
Experimental results show the high precision of
the proposed classifier and the complementarity
of the bioinformatics tools studied in the paper.

As a result of the Human Genome Project and
related efforts, DNA (dioxyribonucleic acid),
RNA (ribonucleic acid), and protein data accumu-
late at an accelerating rate. Mining these biological
data to extract useful knowledge is essential in ge-
nome processing. This subject has recently gained
significant attention in the bioinformatics commu-
nity. " We present here a case study in extracting
features from protein sequences and using them to-
gether with a Bayesian neural network to classify the
sequences.

The problem studied here can be stated formally as
follows: Given are an unlabeled protein sequence S
and a known superfamily ; we want to determine
whether or not S belongs to :J. (We refer to § as the
target class and the set of sequences not in 5 as the
nontarget class.) In general, a superfamily is a group
of proteins that share similarity in structure and func-
tion. If the unlabeled sequence S is determined to
belong to 5, then one can infer the structure and func-
tion of §. This process is important in many aspects
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of bioinformatics and computational biology. ™ For
example, in drug discovery, if sequence S is obtained
from some disease X and it is determined that S be-
longs to the superfamily 5, then one may try a com-
bination of the existing drugs for 5 to treat the dis-
ease X.

There are several approaches available for protein
sequence classification. One approach is to compare
the unlabeled sequence S with the sequences in the
target class and the sequences in the nontarget class
using an alignment tool such as BLAST.'® One then
assigns S to the class containing the sequence best
matching S.

The second method for protein sequence classifica-
tion is based on hidden Markov models (HMMs). !
The HMM method (e.g., SAM'? and HMMer ') employs
a machine-learning algorithm, which uses probabi-
listic graphical models to describe time-series and
sequence data. It was originally applied to speech
recognition,* and now is also applied to modeling
and analyzing protein superfamilies. It is a gener-
alization of the position-specific scoring matrix to in-
clude insertion and deletion states. Often, an HMM
is built for each (super)family. One then scores the
unlabeled sequence S with respect to the HMM of a
(super)family.’ If the score is more significant than
a cut-off value, then § is regarded as a member of
the (super)family.
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Another approach for protein sequence classifica-
tion is to iteratively build a model either based on
hidden Markov models (e.g., SAM-T99'?) or based on
a position-specific weight matrix (e.g., PSI-BLAST ™).
The unlabeled sequence S is used as a seed sequence
and iteratively searched against the (super)family ei-
ther by the HMM or by the position-specific weight
matrix.

In the study presented here, we compare our ap-
proach with BLAST, SAM, and the iterative method
using SAM-T99. With hidden Markov models, we
choose SAM rather than HMMer because the former
outperforms the latter in protein sequence classifi-
cation.'” With iterative methods, we choose SAM-T99
rather than PSI-BLAST because the former is more
sensitive than the latter in homolog detection.” We
choose BLAST as a point of comparison because it
represents a different computing paradigm, namely
performing classification simply via alignment. One
interesting finding from our work is that the com-
pared classification methods complement each oth-
er; combining them yields higher precision than us-
ing them individually, as our experimental results will
show later. This is consistent with a previous report '®
in which we gave a preliminary analysis of the com-
plementarity among our approach, BLAST, and SAM.

Feature extraction from protein data

From a one-dimensional point of view, a protein se-
quence contains characters from the 20-letter amino
acid alphabet 0 = {ACD EF,GHI,K L, MN,
P,QR S, T,V,WY}. An important issue in applying
neural networks to protein sequence classification
is how to encode protein sequences, i.e., how to rep-
resent the protein sequences as the input of the neu-
ral networks. Indeed, sequences may not be the best
representation at all. Good input representations
make it easier for the neural networks to recognize
underlying regularities. Thus, good input represen-
tations are crucial to the success of neural network
learning. "

We propose here new encoding techniques that en-
tail the extraction of high-level features from pro-
tein sequences. The best high-level features should
be “relevant.” By relevant we mean that there should
be high mutual information between the features and
the output of the neural networks, where the mu-
tual information measures the average reduction in
uncertainty about the output of the neural networks
given the values of the features.
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Another way to look at these features is that they
capture both the global similarity and the local sim-
ilarity of protein sequences. The global similarity re-
fers to the overall similarity among multiple se-
quences, whereas the local similarity refers to motifs
(or frequently occurring substrings) in the sequences.
The next two sections elaborate on how to find the
global and local similarity of the protein sequences.
The third section presents our classification algo-
rithm, which employs the Bayesian neural network
originated from Mackay.? The last three sections
evaluate the performance of the proposed classifier,
compare our approach with the other protein clas-
sifiers, and conclude the paper.

Global similarity of protein sequences

To calculate the global similarity of protein se-
quences, we adopt the 2-gram, also known as 2-tuple,
method as described in Wu.?' The 2-gram encoding
method extracts various patterns of two consecutive
amino acid residues in a protein sequence and counts
the number of occurrences of the extracted residue
pairs.” For instance, given a protein sequence
PVKTNVKthe 2-gram amino acid encoding method
gives the following result: 1 for PV (indicating PV
occurs once), 2 for VK (indicating VK occurs twice),
1 for KT, 1 for TN, and 1 for NV.

We also adopt the 6-letter exchange group {e,, e,,
es, €4, €5, €g} to represent a protein sequence,’
where €1 € {Ha Ra K}a € € {D’ E) N) Q}9 €; € {C}a
e, €{S, T,P,A G,es € {MI,L,V},and ¢, €
{F, Y, W. Exchange groups represent conservative
replacements through evolution. These exchange
groups are effectively equivalence classes of amino
acids and are derived from PAM.*** For example,
the above protein sequence PVKTNVKcan be rep-
resented as e, ese e e,ese;. The 2-gram exchange
group encoding for this sequence is: 1 foreges, 2 for
ese, 1 fore,e,, 1 for e,e,, and 1 for e,es.

For each protein sequence, we apply both the 2-gram
amino acid encoding and the 2-gram exchange group
encoding to the sequence. Thus, there are 20% + 62 =
436 possible 2-grams in total. If all the 436 2-grams
are chosen as the neural network input features, it
would require many weight parameters and train-
ing data. This makes it difficult to train the neural
network—a phenomenon called “curse of dimen-
sionality.” Different methods have been proposed
to solve the problem by careful feature selection and
by scaling of the input dimensionality.** We pro-
pose here to select relevant features (i.e., 2-grams)
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by employing a distance measure to calculate the rel-
evance of each feature.?’

Let X be a feature and let x be its value. Let
P(x|Class = 1) and P(x|Class = 0) denote the class
conditional density functions for feature X, where
Class_1 represents the target class and Class_0 is the
nontarget class. Let D(X) denote the distance func-
tion between P(x|Class = 1) and P(x|Class = 0), de-
fined as®

D(X) = f |P(x|Class = 1) — P(x|Class = 0)| dx
(1)

The distance measure prefers feature X to feature
Y if D(X) > D(Y). Intuitively, this means it is eas-
ier to distinguish between Class_1 and Class_0 by ob-
serving feature X than feature Y. That is, X appears
often in Class_1 and seldom in Class_0 or vice versa.
In our work, each feature X is a 2-gram. Let ¢ de-
note the occurrence number of the feature X in a
sequence S. Let/ denote the total number of 2-grams
in S and let len(S) represent the length of §. We
have / = len(S) — 1. Define the feature value x for
the 2-gram X with respect to the sequence § as

c
= len($) 1 @
For example, suppose S = PVKTNVKThen the value
of the feature VK with respect to S is 2/(7 — 1) =
0.33.

Because a protein sequence may be short, random
pairings can have a large effect on the result. We ap-
proximate D(X) in Equation 1 by*

D(X) = Wirvre (3)

where m and d, (m, and d, respectively) are the
mean value and the standard deviation of the fea-
ture X in the positive (negative, respectively) train-
ing data set. Intuitively, in Equation 3, the larger the
numerator is (or the smaller the denominator is),
the larger the interclass distance is, and therefore
the easier to separate Class_1 from Class_0 (and vice
versa).

The mean value m and the standard deviation d of
the feature X in a set & of sequences are defined as
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where x; is the value of the feature X with respect
to sequence S; € §, and N is the total number of
sequences in .

Let Xy, X5, ..., Xy, N, << 436, be the top
N, features (2-grams) with the largest D (X) values. ™
Intuitively, these N, features occur more frequently
in the positive training data set and less frequently
in the negative training data set. For each protein
sequence S (whether it is a training or an unlabeled
test sequence), we examine the N, featuresin §, cal-
culate their values as defined in Equation 2, and use
the N, feature values as input feature values to the
Bayesian neural network for the sequence S.

To compensate for the possible loss of information
due to ignoring the other 2-grams, a linear corre-
lation coefficient (LCC) between the values of the
436 2-grams with respect to the protein sequence S
and the mean value of the 436 2-grams in the pos-
itive training data set is calculated and used as an-
other input feature value for S. Specifically, the LCC
of S is defined as:

LCC(S) =

436 436 436

436 D xX — 2 X D, X,

j=1 =1 j=1

/ 436 436 2 436 436 2
\f436 > x}— (Exj) \/436 Esz— (Ex,—) (6)

j=1 j=1

where ¥; is the mean value of the jth 2-gram, 1 =
j = 436, in the positive training data set, and x; is
the feature value of the jth 2-gram with respect to
S as defined in Equation 2.

Local similarity of protein sequences

In contrast to the 2-grams that occur from the be-
ginning to the end of a sequence (thus referred to
as global similarities), the local similarity of protein
sequences refers to frequently occurring motifs,
where a motif is composed of substrings occurring
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in local regions of a sequence. Let 5, = {S,, ...,
Si} be the positive training data set. We use a pre-
viously developed sequence mining tool Sdiscover®*
to find the regular expression motifs of the forms
xX* and *X * Y* where each motif has length =
Len and approximately matches, within Mut muta-
tions, at least Occur sequences in 5,. Here, a mu-
tation could be a mismatch, an insertion, or a de-
letion of a letter (residue); Len, Mut, and Occur are
user-specified parameters. X and Y are segments of
a sequence, i.e., substrings made up of consecutive
letters, and * is a variable length “don’t care” (VLDC)
symbol. The length of a motif is the number of the
non-VLDC letters in the motif. When matching a mo-
tif with a sequence §;, a VLDC symbol in the motif
is instantiated into an arbitrary number of residues
in §; at no cost. For example, when matching a mo-
tif *VLHGKKVE with a sequence MNVLAHGKKYV-
LKWKthe first * is instantiated into MNand the sec-
ond * is instantiated into KWK The number of
mutations between the motif and the sequence is 1,
representing the cost of inserting an A in the motif.

The Sdiscover tool is based on a heuristic that works
by taking a small sample X of sequences from the
given set of sequences I, and storing them in a gen-
eralized suffix tree (GST).** The GST can be con-
structed asymptotically in O(n) time and space™
where n is the total length of all sequences in the
sample. The heuristic then traverses the GST to gen-
erate candidate regular expression motifs and com-
pares these candidate motifs with all the sequences
in §, to calculate their occurrence numbers. Given
a candidate motif M and a sequence S in,, one can
determine whether M is within Mut mutations of S
in O(Mut X |S|) time when O(|M|) = O(log|S]).*
Thus Sdiscover can find all the motifs satisfying user-
specified parameter values in time O(n X Mut X
m X k), where n is the total length of all sequences
in the sample X, m is the average length of the se-
quences in,, and k is the total number of sequences
in,, although the tool is practically much faster due
to several optimization heuristics implemented for
speeding up the traversal of the GST.

Often, the number of motifs returned by Sdiscover
is enormous. It is useful to develop a measure to eval-
uate the significance of these motifs. We propose
here to use the minimum description length (MDL)
principle®**7 to calculate the significance of a mo-
tif. The MDL principle states that the best model (a
motif in our case) is the one that minimizes the sum
of the length, in bits, of the description of the model
and the length, in bits, of the description of the data
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(the positive training sequences in J, in our case)
encoded by the model.

Evaluating the significance of motifs. We adopt in-
formation theory in its fundamental form**** to mea-
sure the significance of different motifs. The theory
takes into account the probability of an amino acid
in a motif (or sequence) when calculating the de-
scription length of the motif (or sequence). Specif-
ically, Shannon™ showed that the length in bits to
transmit a symbol b via a channel in some optimal
coding is —log, P.(b), where P, (b) is the probabil-
ity with which the symbol b occurs. Given the prob-
ability distribution P, over an alphabet X, = {b,,
b,, ...,b,},wecan calculate the description length
of any string b by, ... by, over the alphabet 2, by

l

=2, log, P.(b,) (7)

i=1

In our case, the alphabet X, is the protein alphabet
(1 containing 20 amino acids. The probability distri-
bution P, or P in our case, can be calculated by ex-
amining the occurrence frequencies of amino acids
in the positive training data set 55,. One straightfor-
ward way to describe (or encode) the sequences in
J3,, referred to as Scheme 1, is to encode sequence
by sequence, separated by a delimiter $. Let dlen(S;)
denote the description length of sequence S; € ,.
Then

20

dlen(S,) = — E g log, P(aj) (8)

j=1

wherea; € (1, 1 =j = 20; n, is the number of oc-
currences of a; in §;. For example, suppose §; =
MNVLAHGKKVLKWKa sequence in J,. Then
dlen(S;) = —(log, P(M+log, P(N+2 log, P(V)

+ 2 log, P(L)+log, P(A) +log, P(H)

+ log, P(G)+4 log, P(K)

+ log, P(W) )
Let dlen(5,) denote the description length of 5, =

{81, ..., S}. Then the description length of 5, is
given by
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k

dlen(5,)= 2, dlen(S,)+(k—1) X dlen($) (10)

i=1

Since the description length of the delimiter §,
dlen(8$), is insignificant, we can ignore it and hence

dlen(5,)= 2, dlen(S)) (11)

i=1

Another method to encode the sequences in ,, re-
ferred to as Scheme 2, is to encode a regular expres-
sion motif, say M, and then encode the sequences
in 5, based on M;. Specifically, if a sequence S; €
J, can approximately match M;, then we encode S,
based on M;. Otherwise we encode S; using Scheme
1.% Let us use an example to illustrate Scheme 2.
Consider, for example, M; = *VLHGKKVE. We en-
code M; as 1, *, V, L, H,G;K,K,V L, *, $0 where
1 1nd1cates one mutation is allowed in matching M;
with S; and $0 is a delimiter to signal the end of the
motif. Let 2, denote the alphabet {a, a,, ..., ax,
*,$0}, where ay, a,, ..., a,, are the 20 amino ac-
ids. Let P, denote the probability distribution over
the alphabet 2. P, ($0) can be approximated by the
reciprocal of the average length of motifs. P, (*) =
n(P1($0)), Py(a)) = (1 — (n + 1)P,(80)) P(a)),
where n denotes the number of VLDCs in the motif
M;. For a motif of the form X, n is 2; for a motif
of the form *X * Y*, n is 3.

Given P, we can calculate the description length of
a motif by substituting the probability distribution
P, for the probability distribution P, in Equation 7.
Spec1ﬁca11y, letM; =*a;a,, ...,a;*. Letdlen(M))
denote the descriptlon length in bits of the motif
M;. Then

dlen(M)) = —(2 log, P,(*) + log, P,($0)

k
+ E log, Pl(aj,)) (12)

i=1

For instance, consider again M; = *VLHGKKVLk. We
have

dlen(M;) = —(2 log, P(*) + log, P,($0)
+ 2 log, P,(V)+2 log, P,(L)
+ log, P,(H)+log, P,(Q

+ 2 log, P\(K)) (13)
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Sequences that are approximately matched by the
motif M; can be encoded with the aid of the motif.

For example consider again M; = *VLHGKKVE and
S; = MNVLAHGKKVLKWM; matches §; with one
mutation, representing the cost of inserting an Ain
the third position of M;. The first VLDC symbol is
instantiated into MNand the second VLDC symbol is
instantiated into KWKWe can thus rewrite S; as MN
¢SS, e KWKvhere SS; is VLAHGKKVIand ¢ denotes
the concatenation of strings. Therefore we can en-
code S; as M N, $1; 1, (O, 3, A); K, WK, $1. Here
$1 is a delimiter, 1 indicates that one mutation oc-
curs when matching M; with S;, and (O, 3, A) in-
dicates that the mutation is an insertion that adds
the letter A to the third position of M;. In general,

the mutation operations involved and their positions
can be observed using approximate string matching
algorithms.* The description length of the encoded
S: based on M;, denoted dlen(S;, M;), can be cal-
culated easily as in Equation 12.

Suppose there are i sequences S, ... S, inthe pos-
itive training data set J, that can approximately
match the motif M;. The weight (or significance) of
M;, denoted w(M;), is defined as

=> dlen(S,)

i=1

w (M)

h

—|dlen(M) + X, dlen(S,, M) (14)

i=1

Intuitively, the more sequences in 55, approximately
matching M; and the fewer bits we use to encode M,
and to encode those sequences based on M, the
larger weight M; has.

Using Sdiscover, one can find a set & of regular
expression motifs of the forms X and *X * Y* from
the positive training data set §, where the motifs sat-
isfy the user-specified parameter values Len, Mut,
and Occur. We choose the top N, motifs with the
largest weights. Let R denote this set of motifs. Sup-
pose a protein sequence S (whether it is a training
sequence or an unlabeled test sequence) can approx-
imately match, within Mut mutations, /1 motifs in
Q. Let these motifsbe M, ..., M,,. The local sim-
ilarity (LS) value of S, denoted LS(S), is defined as
LS(S) = {max1<l<m{w(M)} ifm#0

otherwise (15)
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Figure 1 The Bayesian neural network architecture
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This LS value is used as an input feature value of
the Bayesian neural network for the sequence S.
Note that we use the “max” operator here to max-
imize discrimination. In general, positive sequences
will have large LS values with high probabilities and
small LS values with low probabilities. On the other
hand, negative sequences will have small LS values
with high probabilities and large LS values with low
probabilities.

Remark. Essentially, the proposed scheme is to count
amino acids in a sequence (or motif). This scheme
is not complete in the sense that different sequences
may have the same description length when they have
the same number of the same amino acids. Also,
there may be multiple ways to align a motif M with
a sequence S and hence the description length of
the encoded sequence § based on M may not be
unique. As a consequence, the weight of a motif de-
fined in Equation 14 may not be unique (in which
case the proposed heuristic randomly picks one).
There are several other approaches for finding mo-
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tifs of different forms and for calculating their sig-
nificance values (see, e.g., Wang,® Brazma,* Cali-
fano,* and Hart*'). However, motifs have relatively
little effect on PIR sequence classification and a com-
bination of the proposed techniques already yields
a very high precision, as our experimental results
show in a later section.

The Bayesian neural network classifier

We adopt the Bayesian neural network (BNN) orig-
inated from Mackay? to classify protein sequences. *
There are N, + 2 input features, including N,
2-grams, the LCC feature, and the LS feature, both
previously described. Thus, a protein sequence is rep-
resented as a vector of N, + 2 real numbers. The
BNN has one hidden layer containing multiple hid-
den units. The output layer has one output unit,
which is based on the logistic activation function
f(a) = 1/(1 + e ~?). The BNN is fully connected be-
tween the adjacent layers. Figure 1 illustrates an ex-
ample BNN model with two hidden units.

WANG ET AL.
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Table 1 Data used in the experiments. N is the number of
sequences, L, is the minimal length of the
sequences, and L, is the maximal length of the

seguences.
Data Set N L, L,
Globin 831 115 173
Kinase-related transforming protein 350 151 502
Ras transforming protein 386 106 322
Ribitol dehydrogenase 319 129 335
Negative sequences 1650 100 200

Table 2 Parameters and their base values for the
proposed BNN classifier

Parameter Meaning Value
N, Number of 2-grams used by BNN 60
N, Number of motifs used by BNN 20
Len Length of motifs for Sdiscover 6
Mut Mutation number for Sdiscover 2
Occur Occurrence frequency of motifs for 1/10
Sdiscover
r Size ratio 2

Let 9 = {x",t,},1=m = N, denote the training
data set including both positive and negative train-
ing sequences. x™ is an input feature vector includ-
ing the N, + 2 input feature values, and ¢,, is the
binary (0/1) target value for the output unit. That is,
t,, equals 1 if x" represents a protein sequence in
the target class, and 0 otherwise.

Let x denote the input feature vector for a protein
sequence, which could be a training sequence or a
test sequence. Given the architecture A and the
weights w of the BNN, the output value y can be
uniquely determined from the input vector x. Be-
cause of the logistic activation function f(a) of the
output unit, the output value y(x; w, A) can be in-
terpreted as P(¢t = 1|x, w, A), i.e., the probability
that x represents a protein sequence in the target
class given w, A. The likelihood function of the data
9 given the model is calculated by

N

P(Dlw, A)=[] y"(1-y)' ™ = exp (=G (9w, A))
m=1

(16)

where G(9|w, A) is the cross-entropy error function,
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N

G(Dlw, A)=— > 1, log (y)+(1-t,) log (1—y)

m=1

(17)

The G(9|w, A) is the objective function in a non-
Bayesian neural network training process and is min-
imized. This process assumes all possible weights are
equally likely. The weight decay is often used to avoid
overfitting on the training data and poor general-
ization on the test data by adding a term /2 X1,
w? to the objective function, where « is the weight
decay parameter (hyperparameter), ., w? is the
sum of the squares of all the weights of the neural
network, and ¢ is the number of weights. This ob-
jective function is minimized to penalize the neural
network with weights of large magnitudes. Thus, it
penalizes an over-complex model and favors a sim-
ple model. However, there is no precise way to spec-
ify the appropriate value of «, which is often tuned
off line.

In contrast, in the Bayesian neural network, the hy-
perparameter « is interpreted as the parameter of
amodel and is optimized on line during the Bayesian
learning process. We adopt the Bayesian training of
neural networks described in Mackay? to calculate
and maximize the evidence of a, namely P(9|a, A).
The training process employs an iterative procedure;
each iteration involves three levels of inference. Fig-
ure 2 illustrates the training process of the BNN.

In classifying an unlabeled test sequence S repre-
sented by its input feature vector x, the output of
the BNN, P(t = 1|x, w, A), is the probability that S
belongs to the target class. If the probability is greater
than the decision boundary 0.5, S is assigned to the
target class; otherwise S is assigned to the nontarget
class. In general, for an unlabeled test sequence S
with m amino acids, it takes O(m) time to calculate
2-gram feature values, O(m) time to calculate the
LCC feature value, and O(m X n) time to calculate
the LS feature value where 7 is the total length of
the motifs chosen, and constant time for calculating
the probability P(¢ = 1|x,w, A). Thus, the time com-
plexity of our approach to classifying the unlabeled
test sequence S is O(m X n).

Performance of the BNN classifier

We carried out a series of experiments to evaluate
the performance of the proposed BNN classifier on
a Pentium** II PC running the LINUX** operating
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Figure 2  The training process of the Bayesian neural network
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system. The data used in the experiments were ob-
tained from the International Protein Sequence Da-
tabase,® release 62, in the Protein Information Re-
source (PIR) maintained by the National Biomedical
Research Foundation (NBRF-PIR) at the Georgetown
University Medical Center. This database, accessi-
ble at http://pir.georgetown.edu, currently has
172 684 sequences. Table 1 summarizes the data used
in the experiments.

Data. Four positive data sets were considered; they
were globin, kinase, ras, and ribitol superfamilies,
respectively, in the PIR protein database. The neg-
ative data set contained 1650 protein sequences, also
taken from the PIR protein database, with lengths
ranging from 100 residues to 200 residues; these neg-
ative sequences did not belong to any of the four pos-
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itive superfamilies. Both the positive and negative
sequences were randomly divided into training se-
quences and test sequences, where the size of the
training data set equaled the size of the test data set
multiplied by an integer r. With the same training
data, we tested several BNN models with different
numbers of hidden units. When there were two hid-
den units, the evidence obtained was the largest (see
Figure 2), so we fixed the number of hidden units
at two. Models with more hidden units would require
more training time while achieving roughly the same
performance.

Table 2 summarizes the parameters and base values
used in the experiments. The measure used to eval-
uate the performance of the BNN classifier is preci-
sion, PR, which is defined as
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Figure 3 Impact of N in the BNN classifier
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where NumCorrect is the number of test sequences
classified correctly and NumTotal is the total num-
ber of test sequences. In general, precision is a com-
prehensive measure in the sense that it considers true
positives, false positives, true negatives, false neg-
atives, and unclassified sequences;* it is used here
to find the best parameter values of the proposed
BNN classifier. A false positive is a nontarget mem-
ber sequence that was misclassified as a target mem-
ber sequence. A false negative refers to a sequence
in the target class (e.g., the globin superfamily) that
was misclassified as a nontarget member. We present
the results for the globin superfamily only; the re-
sults for the other three superfamilies were similar.

Results. In the first experiment, we considered only
2-grams and evaluated their effect on the perfor-
mance of the proposed BNN classifier. Figure 3 graphs
PR as a function of N,. It can be seen that the per-
formance improves initially as N, increases. The rea-
son is that the more 2-grams we use, the more pre-
cisely we represent the protein sequences. However,
when N, is too large (e.g., >90), the training data
are insufficient and the performance degrades. In
general, the larger N is, the more input features the
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BNN classifier has, and thus the larger training data
set BNN requires. In our case, there are 561 positive
training sequences and 1089 negative training se-
quences. When N, > 90, these data become too few
to yield reasonably good performance. Figuring out
how big the parameter N, should be requires some
tuning. We have not yet worked out a theory for it.

In the second experiment, we considered only mo-
tifs found by Sdiscover and studied their effect on
the performance of the BNN classifier. In this exper-
iment 1597 motifs were found, with lengths ranging
from six residues to 34 residues. Figure 4 graphs PR
as a function of N,. It can be seen that the more mo-
tifs one uses, the better performance one achieves.
However, that would also require more time in
matching a test sequence with the motifs.* We ex-
perimented with other parameter values for Len,
Mut, and Occur used in Sdiscover. The results did
not change as these parameters changed.

Figure 5 compares the effects of the various types
of features introduced in the paper. To isolate the
effects of these features, we began by using features
of only one type and then using their combinations.
It can be seen that features generated from global
similarities yield better results than those generated
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Figure 4  Effect of N, in the BNN classifier

Figure 5 Comparison of the various types of features used by the BNN classifier

from local similarities. This happens because PIR su- Comparison of four protein classifiers
perfamilies are categorized based on the global sim-

ilarities of sequences. Note also that the best per- The purpose of this section is to compare the pro-
formance is achieved when all the features are used. posed BNN classifier with the BLAST classifier ° built
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Table 3 The bioinformatics tools studied in the paper

Tool Underlying Techniques
BNN Bayesian neural networks
BLAST Similarity search and pairwise alignment
SAM Hidden Markov models
SAM-T99 Iterative hidden Markov models

based on sequence alignment, and with the SAM and
SAM-T99 classifiers'® built based on hidden Markov
models. The parameter values for the BNN classifier
were as shown in Table 2. Table 3 summarizes the
studied tools. The BNN classifier used both 2-grams
and regular expression motifs.

The BLAST version number was 2.0.10. We used de-
fault values for the parameters in BLAST. For this
tool, we aligned an unlabeled test sequence S with the
positive training sequences (i.c., those in the target class,
e.g., the globin superfamily) and the negative training
sequences in the nontarget class shown in Table 1
using the tool. If the score of S was below the thresh-
old of the expectation (E) value of BLAST, S was un-
determined or unclassified. Otherwise, we assigned S
to the class containing the sequence best matching S.

The SAM version number was 3.2.1. For this tool, we
employed the program buildmodel to build the HMM
model by using only the positive training sequences.
We then calculated the log-odds scores™ for all the
training sequences using the program hmmscore. *
The log-odds scores were all negative real numbers;
the scores (e.g., —100.3) for the positive training se-
quences were generally smaller than the scores (e.g.,
—4.5) for the negative training sequences. The larg-
est score S, for the positive training sequences and
the smallest score S, for the negative training se-
quences were recorded. Let B, = max {S,, S,}
and B,,, = min {S,, S,}. We then calculated the
log-odds scores for all the unlabeled test sequences
using the program hmmscore. If the score of an un-
labeled test sequence S was smaller than B,,,,, S was
classified as a member of the target class, e.g., a glo-
bin sequence. If the score of § was larger than B,
S was classified as a member of the nontarget class.
If the score of S was between B, and B, S was
unclassified or undetermined.

The SAM-T99 version number was also 3.2.1. For this
tool, we built an HMM (target model) for each un-
labeled test sequence S. We then scored all the train-
ing sequences using the HMM target model. If the
lowest score of the training sequences was higher
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than the expectation value (E-value) of the HMM tar-
get model, the test sequence S was undetermined
or unclassified.*” Otherwise, we assigned the test se-
quence to the class containing the training sequence
having the lowest E-value. The target model was built
in four iterations. In the first iteration, SAM-T99 used
BLAST to compare the test sequence S with sequences
in the nonredundant protein database maintained
at the National Center for Biotechnology Informa-
tion (NCBI) and chose a set of close homologs to build
an initial HMM. It also did a BLAST search of the test
sequence S against the nonredundant protein data-
base with a very loose cut-off value to get a pool of
potential homologs. Then the HMM obtained from
the previous iteration was compared against the pool
of potential homologs with a looser cut-off value than
that of the previous iteration to find weaker ho-
mologs. These weaker homologs were included to
build a new HMM for the next iteration. This whole
process was repeated three times.

In comparing the relative performance of these tools,
we use four more measures in addition to the pre-
cision PR defined in the previous section: specificity,
sensitivity, unclassified,, and unclassified,, where

o pr
specificity = | 1 — N 100 percent (19)
ng
e . an
sensitivity = (1 — N )X 100 percent (20)
po
. N,,
unclassified, = N X 100 percent (21)
po
unclassified, = Nlm X 100 percent (22)

ng

Ny, is the number of false positives, N, is the num-
ber of false negatives, N,, is the number of unde-
termined positive test sequences, N, is the number
of undetermined negative test sequences, N, is the
total number of negative test sequences, and N, is
the total number of positive test sequences. Note that
in contrast to PR, specificity and sensitivity do not con-
sider unclassified sequences. That is why we also add
the unclassified, and unclassified, measures for per-
formance evaluation.

In the first experiment, we studied the effect of the
threshold of the E-value in the BLAST classifier. Fig-
ure 6 shows the impact of E-values on the perfor-
mance of BLAST. It can be seen that with E = 10,
BLAST performs well. With smaller E-values (e.g.,
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Figure 6 Impact of E-values for BLAST
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Table 4 Comparison of the studied classifiers on the globin superfamily
BNN BLAST SAM SAM-T99 COMBINER
Precision 98.0% 92.7% 95.3% 93.2% 99.8%
Specificity 98.0% 95.7% 99.8% 94.9% 99.6%
Sensitivity 98.0% 100.0% 99.6% 100.0% 100.0%
Unclassified, 0.0% 0.0% 1.1% 0.0% 0.0%
Unclassified, 0.0% 6.7% 6.2% 5.1% 0.0%
CPU time 36 1515 80 848 961 —
Table 5 Comparison of the studied classifiers on the kinase superfamily
BNN BLAST SAM SAM-T99 COMBINER

Precision 99.0% 86.2% 99.4% 92.6% 99.6%
Specificity 98.8% 87.8% 99.5% 93.1% 99.5%
Sensitivity 100.0% 100.0% 100.0% 100.0% 100.0%
Unclassified, 0.0% 0.0% 0.0% 0.0% 0.0%
Unclassified, 0.0% 4.4% 0.2% 2.0% 0.0%
CPU time 30 1214 63 2168 005 —

0.1), the specificity of BLAST can approach 100 per-
cent with very few false positives, whereas the num-
ber of unclassified sequences is enormous. Thus, we
fixed the threshold of the E-value at 10 in subsequent
experiments.

Tables 4, 5, 6, and 7 summarize the results and clas-
sification times, in seconds, of the four studied tools,
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referred to as basic classifiers, on the four superfami-
lies in Table 1.* In addition to the basic classifiers,
we developed an ensemble of classifiers, called
COMBINER, that employs a weighted voter and works
as follows. If a basic classifier gives an “undeter-
mined” verdict, the classifier is regarded as “abstain-
ing” and its verdict is not counted. The result of
COMBINER is the same as the result of the majority
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Table 6 Comparison of the studied classifiers on the ras superfamily

BNN BLAST SAM SAM-T99 COMBINER
Precision 98.7% 91.0% 95.5% 91.6% 99.7%
Specificity 99.3% 95.0% 99.8% 92.2% 99.6%
Sensitivity 96.1% 100.0% 100.0% 100.0% 100.0%
Unclassified, 0.0% 0.0% 3.1% 0.0% 0.0%
Unclassified, 0.0% 6.0% 4.6% 2.5% 0.0%
CPU time 29 1232 64 637 424 —

Table 7 Comparison of the studied classifiers on the ribitol superfamily

BNN BLAST SAM SAM-T99 COMBINER
Precision 96.6% 88.5% 99.4% 90.4% 99.4%
Specificity 97.0% 92.6% 100.0% 91.1% 99.2%
Sensitivity 94.3% 100.0% 100.0% 100.0% 100.0%
Unclassified, 0.0% 0.0% 2.0% 0.0% 0.0%
Unclassified, 0.0% 6.2% 0.3% 2.5% 0.0%
CPU time 27 1212 62 747 821 —

Conclusion

Table 8 Complementarity among the four studied tools
BNN, BLAST, SAM, and SAM-T99. The
percentages in the table add up to 100.

Percentage of the
Test Sequences

Classification Results

All classifiers agreed and all 80.88
were correct

All classifiers agreed and all 0.07
were wrong

The classifiers disagreed and 18.91
one of them was correct

The classifiers disagreed and 0.14

all were wrong

of the remaining classifiers. If there is a tie on the
verdicts given by the remaining classifiers, the result
of COMBINER is the same as the result of the BNN
classifier. We see that in comparison with BLAST,
SAM, and SAM-T99, the BNN classifier is faster, yield-
ing fewer unclassified sequences. COMBINER achieves
the highest precision and SAM-T99 requires most time
among all the classifiers.

Table 8 shows the complementarity of the four stud-
ied tools BNN, BLAST, SAM, and SAM-T99. We see that
when all the four classifiers agree on their classifi-
cation result, the result is correct with probability
80.88 percent/(80.88 percent + 0.07 percent) = 99.91
percent.
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In this paper we have presented a Bayesian neural
network approach to classifying protein sequences.
The main contributions of our work include:

* The development of new algorithms for extract-
ing the global similarity and the local similarity
from the sequences that are used as input features
of the Bayesian neural network

e The development of new measures for evaluating
the significance of 2-grams and frequently occur-
ring motifs used in classifying the sequences

» Experimental studies in which we compare the per-
formance of the proposed BNN classifier with three
other classifiers, namely BLAST, SAM, and SAM-T99,
on four different superfamilies of sequences in the
PIR protein database

The main findings of our work include the follow-
ing:

¢ The four studied classifiers, BNN, BLAST, SAM, and
SAM-T99, complement each other; combining them
yields better results than using the classifiers in-
dividually.

e The training phase, which is done only once, of
the BNN classifier may take some time. After the
classifier is trained, it runs significantly faster than
BLAST and SAM-T99 in sequence classification.
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Future research directions include:

* Comparison of motifs generated by different tools
in combination with learning-based tools such as
neural networks and hidden Markov models
when applied to sequence classification in PIR,
PROSITE,*>* and other protein databases

* Generalization of the classifiers in combination
with graph matching algorithms to analyze the se-
quence-structure relationship in protein and DNA
sequences.
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