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Convergent evolution
of protein structure
prediction and
computer chess
tournaments: CASP,
Kasparov, and CAFASP

Predicting the three-dimensional structure of a
protein from its amino acid sequence is one of
the most important current problems of modern
biology. The CASP (Critical Assessment of
Structure Prediction) blind prediction
experiments aim to assess the prediction
capabilities in the field. A limitation of CASP is
that predictions are prepared and filed by
humans using programs, and thus, what is being
evaluated is the performance of the predicting
groups rather than the performance of the
programs themselves. To address this limitation,
the Critical Assessment of Fully Automated
Structure Prediction (CAFASP) experiment was
initiated in 1998. In CAFASP, the participants are
programs or Internet servers, and what is
evaluated are their automatic results without
allowing any human intervention. In this paper,
we review in brief the current state of protein
structure prediction and describe what has been
learned from the CAFASP1 experiment, the
evolution toward CAFASP2, and how we foresee
the future of automated structure prediction. We
observe that the histories of “in silico” structure
prediction experiments and computer chess
tournaments show some striking similarities as
well as some differences. We question whether
the major advances in automated protein
structure prediction stem from novel insights of
the protein folding problem, of protein evolution
and function, or merely from the technical
advances in the ways the evolutionary
information available in the biological databases
is exploited. We conclude with a speculation
about the future, where interesting chess might
only be observed in computer games and where
the interpretation of the information encoded in
the human genome may be achieved mainly
through in silico biology.

With the recent advent of the genome sequenc-
ing revolution, a flood of information is being
accumulated at an exponential rate. The complete
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genome sequences of a few dozen organisms are
available today, dozens more are currently being de-
termined, and within a few years we will have the
complete genomes of more than 100 organisms.
These range from bacteria and yeast to bigger or-
ganisms such as plants, animals, and humans. One
of the main aims of collecting all these data is to study
the function of the encoded proteins. The eventual
goal of all these studies is to understand how the ge-
netic structure affects and controls biological pro-
cesses. In understanding how diseases and mutations
develop, we can perhaps find better ways to deal with
them and to design new and better drugs.

However, the mere knowledge of a protein’s se-
quence, or primary structure (1-D), does not allow
adetailed understanding of its function. The unique,
well-defined, three-dimensional (3-D) structure of a
protein dictates the way in which it performs its bi-
ological function. Knowing the 3-D structure of a pro-
tein allows researchers to gain insight on the active
site of the protein or on the way it interacts with small
molecules and other proteins. Thus, 3-D structures
are essential for a detailed understanding of biology
at the molecular level. Although the determination
of the complete genome sequences of various organ-
isms has already become routine, the experimental
determination of the 3-D structure of the proteins
encoded in these genomes is currently a very labo-
rious process. In some cases it can take years before
the structure of a protein is determined, and in other
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cases, such as membrane proteins, current methods
are not always applicable. In fact, the structure de-
termination step is the bottleneck in the process of
fully characterizing a protein. Therefore, only a small
fraction of known sequences have a known 3-D struc-
ture.

This is where computers come into the picture. With
the aid of strong computing power and quantum and
statistical mechanics, protein models and simulations
of their function could be obtained. The basic as-
sumption is that the information the protein needs
in order to fold into its unique 3-D structure lies en-
tirely in its amino acid sequence.! It is widely ac-
cepted that the native 3-D structure of a protein has
the lowest free energy possible for its combination
of amino acids. Thus, in principle, finding the unique
3-D structure of a protein given its amino acid se-
quence alone, is a computable problem. Prediction
of protein structure “in silico” has thus been the “holy
grail” of computational biologists for many years.
The aim is to feed the amino acid sequence of a pro-
tein to a computer, let it crunch some numbers, and
at the end, produce the correct 3-D shape of the pro-
tein. However, protein structure prediction iz silico
has proven to be a very difficult task. We do not yet
fully understand how a protein foldsin vivo, nor what
are the precise energetic determinants of protein
folding.

Interestingly, the histories of in silico structure pre-
diction and computer chess show some striking sim-
ilarities, as well as some differences, and they appear
to be an enlightening example of convergent evo-
lution. (Two items are said to be the result of con-
vergent evolution if it is believed that their similar-
ities arose by independent processes without any
evidence for common ancestry.) Some common fea-
tures shared by structure prediction and computer
chess are that both are considered “holy grails,” both
are very complex problems, both require billions and
billions of computations, and both are the research
topics for hundreds of groups worldwide. The ulti-
mate goal in both fields is to free humans from te-
dious calculations so that they can concentrate on
strategy and tactics and make better use of their ex-
pertise and intuition. In both fields it has been ques-
tioned whether developments of the automated
methods are merely the result of faster, more pow-
erful, algorithms and machines, rather than of ma-
jor breakthroughs in the understanding of the prob-
lems. Another goal shared by both fields has been
to apply the developed techniques to other areas of
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different fields, such as computer science or med-
icine.

The fields of computer chess and automatic struc-
ture prediction also differ in significant ways. Prob-
ably one of the major differences lies in the complex-
ity of the rules that govern the games. In chess, the
rules are relatively simple and can easily be pro-
grammed into a computer. Thus, in principle, given
enough computer power, a good level of play can be
achieved. In structure prediction the rules are much
more complex and are not yet fully understood. Thus,
the correct folding of a protein is not ensured even
if enough computer power is provided. Other inter-
esting differences relate to the ways in which com-
puters have been used in these fields. Through the
years, the field of chess has seen many grand mas-
ters playing superior chess without the aid of com-
puters, whereas structure prediction is mainly com-
puter-based; computer chess has reached the level
of grand masters, whereas significant improvements
in structure prediction methods are required before
they achieve a superior performance. In addition,
although computer-chess tournaments have been
held since the first computer programs appeared, the
Critical Assessment of Fully Automated Structure
Prediction (CAFASP)? experiment is only three years
old. In contrast, although three computer-aided
structure prediction Critical Assessment of Structure
Prediction (CASP)? experiments have been held since
1994, computer-aided chess tournaments, where hu-
mans equipped with their favorite machines are the
participants, are still to be seen.

In this paper we briefly review the field and describe
a number of experiments that have been devised to
assess progress. Rather than concentrating on com-
puter-chess algorithms or on the parallels of the lat-
ter with protein structure prediction algorithms, we
focus on the similarities and differences found in the
histories of computer-chess tournaments and of pro-
tein structure prediction experiments. The paper is
thus organized as follows. In the remaining part of
the introduction, we briefly define basic protein con-
cepts. In the next section we review current ap-
proaches to the protein structure prediction prob-
lem and allegorically compare them to computer
chess. In the subsequent section we describe the var-
ious existing experiments aimed at evaluating the
performance of available methods and compare
them with computer-chess tournaments. We then
conclude with a summary and with some contem-
plations about the future.
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Basic protein concepts. We now briefly introduce
some of the protein concepts used in the paper. Pro-
teins are three-dimensional (3-D) molecules that have
an important role in all biological processes. The pri-
mary structure (1-D) of a protein consists of a chain,
or sequence, of amino acids, or residues. Each pro-
tein chain folds in space to form the 3-D structure,
or fold, of the protein, which in general is uniquely
determined by its amino acid sequence. It is the 3-D
structure of a protein that dictates the way in which
it performs its biological function. The 3-D structure
of a protein can inform us of the location of binding
sites and of the identity and orientation of active site
residues, which can suggest function and reaction
mechanisms. This knowledge can aid in rational drug
design and protein design. Therefore, knowledge of
the 3-D structure of a protein is essential for fully
characterizing it and has enormous implications for
medicine and human health.

Additional concepts. During the course of evolution
a few major processes have occurred. One of them
is called “divergent evolution” in which different pro-
teins in different organisms have diverged from a
common ancestor protein. Each copy of this ances-
tor in various organisms has been subject to muta-
tions, deletions, and insertions of amino acids in its
sequence, but in general, its 3-D fold and function
have remained similar.*’ Therefore, two protein se-
quences that have diverged from the same ancestor
can show a certain degree of similarity between them.
The similarity between sequences can be observed
by aligning them one on top of the other, in such a
way that similar regions match, and dissimilar seg-
ments are left out as gaps in the alignment. Dynamic
programming algorithms are often used to produce
the optimal sequence alignment.®’ The similarity is
often measured by adding the scores of the match-
ing amino acids that occupy the same position in the
alignment® and by subtracting a penalty for each gap
introduced. Percent sequence identity is the percent
of identical residues in the alignment. Percent se-
quence similarity is the percent of similar residues
in the alignment. If a long enough alignment has
more than 25-30 percent sequence identity and few
gaps, it is generally assumed that the two sequences
have diverged from the same ancestor, and there-
fore they are likely to share a similar fold and func-
tion. % If the percent sequence identity is below the
25-30 percent threshold, there are two possibilities.
Either the two proteins have diverged from the same
ancestor (but their sequences are highly divergent)
or the two proteins are unrelated.

412 SIEW AND FISCHER

Protein structure prediction methods

Computational folding approaches that scan the con-
formational space, trying to identify those structures
with minimal energy, have not yet solved the prob-

Alternative approaches
to predict protein structure
have recently become
a research subfield in
bioinformatics.

lem of protein structure prediction. Limitations of
such approaches include the vast number of confor-
mations to be scanned, the evaluation of their free
energy, and the use of approximations.

Alternative approaches to predict protein structure
have recently become a research subfield in bioin-
formatics.!! These approaches are applicable to spe-
cial cases and usually employ different principles and
various sources of information. These alternative and
partial solutions of the protein folding problem are
in many cases based on Darwinian and statistical
principles. It has become clear that as of today, the
theoretical protein folding problem and the more
practical protein structure prediction problem are
quite different, although much of what can be learned
in one field sheds useful insights on the other. The
protein folding problem is more commonly studied
by theoreticians in the field of physical chemistry,
who are mainly concerned with first principles and
less concerned about producing working 3-D mod-
els for the biologist.!! In contrast, the protein struc-
ture prediction problem is mainly studied by bioin-
formaticians, a new blend of scientists who have
recognized the urgent need of practical solutions for
the postgenomic era.

Although modern bioinformatics approaches do not
simulate the folding of a protein, they have proven
to be efficient and useful. This is an example of a
scientific problem that can be (partially) solved in
practice, without first obtaining a complete under-
standing of the protein folding process as it occurs
in vivo. These partial solutions not only have enor-
mous practical value, but they also entail a signif-
icant contribution to the eventual understanding of
the protein folding problem. Some of the common
approaches used today in order to predict the struc-
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ture of a protein are homology modeling, fold recog-
nition (threading), and ab initio. In what follows we
describe each of these approaches very briefly (we
refer the reader to a number of recent reviews for
further details) and delineate some of the similar-
ities that these approaches share with computer
chess.

Homology modeling. Homology modeling, or com-
parative modeling, is a model-building method based
on the Darwinian and empirical principle of “signif-
icant sequence similarity implies similarity in 3-D
structure.”*!” Similar protein sequences are assumed
to have diverged from a common ancestor. They have
accumulated mutations in their sequences, but in
general, their function and 3-D structure have been
conserved.*’ Thus, if the evolutionary relationship
between a new target protein and at least one pro-
tein of known 3-D structure can be established, a 3-D
model for the new protein can be built using as a
template the structure of the known protein. > The
process of building a model via homology generally
comprises the following six steps.

1. Searching for templates upon which the model
could be built. In homology modeling, a template
is a protein of known 3-D structure with enough
sequence similarity to the sequence of the target
protein. If no such template exists, then homol-
ogy modeling is not applicable, and other ap-
proaches need to be used (see below).

2. Aligning the sequences of the target protein and
the template protein. The aim of this step is to
match each residue in the target sequence to its
corresponding residue in the template structure,
allowing for insertions and deletions (see e.g.,
Reference 15).

3. Copying coordinates from the template to the tar-
get. With use of the alignment produced in step
2, the coordinates of the matching residues in the
known structure are copied, or assigned, to the
residues of the unknown protein. In this stage,
usually only the backbone coordinates are cop-
ied.

4. Building the side chains. Coordinates of identi-
cal residues can be imported directly from the
template to the target, but the side-chain confor-
mations of the nonidentical ones cannot, and thus
they need to be predicted. The prediction of the
side-chain coordinates is usually based on empir-
ical data collected from proteins of known struc-
ture, such as rotamers,'®'” and involves solving a
difficult combinatoric problem.'®
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5. Building the loop regions. The alignment pro-
duced in step 2 includes gaps, usually correspond-
ing to loops between secondary structure ele-
ments. Consequently, these loops need to be
modeled separately. The missing loop coordinates
can sometimes be copied from other known pro-
teins, "~ but usually they have to be built de novo
(e.g., see Reference 22).

6. Improving the model. The model built so far may
include steric clashes between atoms because of
the different composition of residues in the new
protein and the template protein. Therefore, ad-
ditional adjustments need to be made. Various
methods exist for this optimization stage (e.g., see
References 23-26).

Homology modeling and computer chess. The best and
probably simplest way to draw conceptual similar-
ities between homology modeling and chess might
be as follows. The input to a chess program is the
current board situation (i.e., a protein sequence). The
program searches a library of grand master chess
games (a library of proteins with known structure)
for a “homologous” board situation that is similar
enough to the given input (significant sequence sim-
ilarity). If such a board situation is found, then the
next move that the program chooses is the one re-
corded in the library. This move is analogous to the
stored book of openings in current chess programs.
However, it is clear that it is practically impossible
to have grand master moves for all possible chess
situations, since it is practically impossible to have
3-D structures for every single protein sequence.
Thus, if the current board position is absent in the
book of openings, the program jumps to the “board-
recognition” subroutine (described below).

Despite the fact that we will never have 3-D struc-
tures for all proteins, the applicability of homology
modeling is enormous. Up to 30 percent of the pro-
teins encoded in the fully sequenced genomes show
sufficient sequence similarity to proteins of known
structure??® so that good 3-D models can be built
for them.

In our allegory above this could mean that the al-
gorithm to find similarities between the input board
and the stored boards works well only when the
number of differences in the boards (i.e., mutations)
is below some threshold. However, it is clear that
there are innumerable cases where the number of
differences between two chess boards is above our
imaginary threshold, although these two boards still
represent a very similar game (i.e., 3-D structure).

SIEW AND FISCHER 413



Consequently, this implies that the algorithm that
detects board similarities by simply counting the
number of differences between two boards has not
yet captured the full essence of the chess game, and
amore sensitive algorithm that detects distant board
relationships is needed.

Fold recognition. In the lack of significant sequence
similarity, a new target protein may still be structur-
ally similar to one of the proteins of known 3-D struc-
ture.?* It has been estimated that over 50 percent
of genome proteins will have 3-D structures similar
to protein folds already observed.*! Because it is not
possible to identify the correct template for the ma-
jority of these cases with standard sequence com-
parison techniques, more sensitive methods are
needed. One of these methods is known as fold rec-
ognition, or threading. Fold recognition is aimed at
identifying a correct template structure for those pre-
diction targets that show no significant sequence sim-
ilarity to any of the proteins of known structure. If
such a template exists, a further goal of fold recog-
nition is to provide an accurate sequence-structure
alignment between target and template. That is, fold
recognition replaces homology modeling steps 1 and
2, described previously. The approach used by fold
recognition is to measure sequence-structure compat-
ibility rather than mere sequence similarity as in ho-
mology modeling.* Fold recognition methods vary
mainly in the way in which the sequence-structure
compatibility is measured, but they generally share
five essential components:

1. A library of known three-dimensional folds*°

2. Arepresentation of the 3-D information of the li-
brary folds in a way suitable for the sequence-to-
structure compatibility function (see References
32, 36, and 37)

3. A sequence-to-structure compatibility function
that scores the compatibility of a sequence to a
given fold. This function is a mapping of the one-
dimensional sequence of the target onto the 3-D
information of a protein fold. The compatibility
function can take into account a number of fea-
tures that include the preferences of the amino
acids to be in different structural environ-
ments**~* (for recent reviews see, e.g., References
32, 42, and 43).

4. A method to optimally “thread,” or align, the tar-
get sequence into the 3-D fold, using the sequence-
to-structure compatibility function. Computing
the optimal gapped alignment is an NP (nonde-
terministic polynomial time) -complete problem
if the compatibility function takes into consider-
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ation pair interactions.*>* Thus, in these cases,
approximations and heuristics need to be
used. 39,45,46

5. A method to assess significance. Each alignment
of the target with a fold library receives a com-
patibility score. The magnitude of the scores de-
pends, among other things, on the lengths and
composition of the target and fold sequences and
on the number of folds in the library. To select
the best template candidate, an assessment of the
significance of the top scores is required.**

Fold recognition and computer chess. In our allegor-
ical analogy to chess, fold recognition corresponds
to a hypothetical algorithm, which could be termed
“board recognition.” This algorithm would look for
essential similarities between a given board situation
and the stored boards in a library, which go well be-
yond simple variations. This algorithm needs to be
more sensitive than the homology modeling one,
which only looks for almost identical arrangements
of the chessboard. If the more sensitive algorithm
detects a “known” board that can serve as a tem-
plate, then the next move is deduced from the stored
move. If not, then the chess program would jump to
the ab initio subroutine described below. Whether
such an algorithm may exist for chess is beyond the
scope of this paper and the expertise of the authors.
If an algorithm to detect the essence of chess situ-
ations existed, and we knew that the number of “rep-
resentative” chess situations is finite and relatively
small, then, in principle, it would be trivial to pro-
duce a program that plays outstanding chess. Al-
though in chess this may not be feasible because the
number of possible situations is too large, in protein
structure prediction we have a brighter situation. It
is believed that the total number of protein folds in
nature is finite and relatively small—between one
to a few thousand folds****out of which around 600
to 700 are currently known****—and this number is
growing fast. However, the number of sequences
without significant sequence similarity to proteins of
known structure is orders of magnitude larger. Soon,
most of the prediction targets will probably be iden-
tified as having one of the already known folds. Con-
sequently, fold recognition methods have an enor-
mous applicability, which will grow as we approach
the “1000” folds mark. The same may be true to some
extent for homology modeling. However, in order
to have a 3-D structure within “homology-modeling-
distance” for the majority of genome proteins, the
3-D structures of hundreds of thousands of proteins
may be required, because throughout the course of
evolution sequences have diverged faster than struc-
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tures. Structural genomics®~° aims to fill the gaps

in our structural knowledge by attempting to deter-
mine the structures of each sequence family, and to
prioritize efforts to determine structures with likely
novel, previously unobserved folds.?”* Thus, until
one representative structure exists for each sequence
family, fold recognition is the method of choice when
a target protein has no significant sequence similar-
ity to a known structure.

Ab initio. Since our structural knowledge does not
yet approach a complete mapping of all the folds in
nature, we will continue to observe a non-negligible
number of genome sequences that cannot be mod-
eled using the currently known structures, and thus
neither homology modeling nor fold recognition can
be used to predict their structures. For this purpose,
a number of methods that do not directly rely on
known 3-D structures have been developed, and they
usually are referred to as “ab initio”> methods, %8¢

In general, ab initio methods are composed of the
following three essential components (see Reference
63 and references within):

1. A representation of protein geometry. Because
all-atom models of the protein and the solvent
environment are computationally expensive, a
number of approximations in representing the
protein and the solvent are used. These include
methods using one or a few atoms per residue and
an implicit solvent, e.g., see References 64—-67.

2. A potential energy function and other parame-
ters that are generally based on statistical anal-
ysis of known structures of proteins;**® for a re-
view see, e.g., Reference 70.

3. A conformational search technique. The major-
ity of current ab initio methods search the energy
surface using methods such as Monte Carlo, sim-
ulated annealing, genetic algorithms, or molec-
ular dynamics,>*23:66.71-73

Ab initio and computer chess. The ab initio problem
is difficult because in each of its three components
large approximations are required. In addition to re-
quiring enormous computing power, these methods
also suffer from inaccuracies inherent in current po-
tential functions.®*% Thus, an enormous amount of
research is currently being carried out to improve
both the search techniques and the potentials
used. 67,74-76

In computer chess, if enough computing power were
available, a chess program could compute all pos-
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sible moves until the end of the game and always
choose the best one. In this case, the evaluation func-
tion is simply to assess whether a checkmate was
reached or not. In this sense, and unlike protein
structure prediction, it is obvious that unlimited com-
puter power alone would solve the problem. How-
ever, because it is impossible to compute such a large
number of moves, modern chess programs “only”
look ahead a few dozen moves and apply sophisti-
cated evaluation functions that assess the value of
the positions reached. These functions are not per-
fect, of course, and neither are the potential func-
tions used in ab initio methods. Another important
similarity between computer chess and ab initio pro-
tein structure prediction methods is that in both fields
intensive algorithmic development has been carried
out in order to achieve a faster, more complete sam-
pling of the search space.

Evaluating prediction methods

After a model is produced with any of the structure
prediction methods, how do we know how similar
to the real structure the predicted model is? How
do we measure the similarities between the model
and the real structure of the protein? In other words,
how do we know how “good” the current structure
prediction methods are? Addressing these questions
has already become an intense subfield of research.

To test the performance of their methods, research-
ers need a way to compare the predicted models to
the real structures. However, the real structures of
prediction targets are, by definition, unavailable.
Thus, researchers usually test their methods by ap-
plying them to known structures, pretending that they
are prediction targets of unknown structure, and then
checking how similar the prediction is to the real
structure. This “postdiction” testing is not a blind
prediction, because it is possible that biases are in-
troduced, consciously or unconsciously.

In this section we describe three ongoing, worldwide
experiments that try to deal with the evaluation of
prediction methods and discuss some of the lessons
that were learned from them.

CASP. The idea to test the prediction methods in a
blind manner, which enables a direct comparison of
a protein model to its real structure, was the basis
for the CASP experiments, initiated in 1994 by John
Moult, of the Center for Advanced Research in Bio-
technology located in Maryland. In CASP, a few dozen
proteins of known sequence but unknown structure
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are used as prediction targets. Contestants are asked
to file their predictions before the real 3-D structure
of the protein is experimentally determined. The pre-
dictions are filed using various methods spanning the
three main categories: homology modeling, fold rec-
ognition, and ab initio. Subsequently, when the 3-D
structure is released, an assessment of the accuracy

Researchers need a way
to compare the
predicted models to
the real structures.

of the predictions is carried out. This protocol en-
sures that no participant knows the correct answer
while building a model and, thus, the submitted re-
sponses effectively reflect a blind prediction at the
time of the contest. The models in CASP are usually
produced by a combination of computer programs
and human intervention.

CASP is held every two years and concludes with a
meeting in Asilomar, California, to discuss the re-
sults.*”™ The CASP4 meeting was held in Decem-
ber 2000, and over 150 predicting groups worldwide
participated. Over the course of the first three CASP
events held so far (at the time this paper was writ-
ten, June 2000, CASP4 was taking place), much was
learned about the strengths and weaknesses of the
various approaches and methods of structure pre-
diction. In the homology modeling section, often very
good models are produced, providing “detailed
hypotheses of catalysis, ligand binding, and alloste-
ricregulation” and suggesting “which residues to mu-
tate in experimental tests.”* It was also shown that
a key factor to achieving a good model is to have a
good alignment between the unknown protein and
the known proteins.”® This step is most crucial to
the building of a model. When the sequence iden-
tity between the target protein and the template
structure is above 70 percent, current methods seem
to have no problem in finding the correct alignment.
However, in the cases where the similarity between
the proteins is around 20-25 percent, it is very hard
to achieve a correct alignment. Such a low level of
similarity is sometimes referred to as the “twilight
zone” of sequence similarity.

When there is less than 20 percent identity between
the target and the best template, homology model-
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ing methods perform very poorly, mainly because it
is hard to find correct template structures. Even if
such a template is found, it is likely that the align-
ment will contain large errors.®! Although the chal-
lenge is to produce models in which there is an ad-
vancement in the accuracy and detail beyond the
mere copying of the template coordinates,® the ac-
curacy of models depended on the amount of infor-
mation directly transferred from the template to the
target.®" Another clear finding from CASP was that
current optimization methods usually do not improve
the models and can even make them worse.®' Thus,
there is still room for improvement until we reach
a level of accuracy that rivals experimental struc-
tures.?

As for the fold recognition category, the CASP ex-
periments have clearly demonstrated that threading
methods succeed for those targets for which there
is a known structure belonging to the same protein
family (divergent sequences with a probably com-
mon ancestor). But for those proteins for which the
closest template belongs to a different family (con-
vergent structures with probably no common ances-
tor), it is not yet clear how well fold-recognition
methods perform.*#$? Other conclusions from CASP
were that the quality of alignments for the medium
difficulty targets has increased® and that many fold
recognition methods have become hybrid meth-
ods. #9838 These hybrid methods combine structure
information with various types of sequence informa-
tion from multiple alignments,®* and also with the
use of predicted secondary structure (e.g., Reference
58).

In the ab initio category, the CASP experiments have
shown that useful models cannot yet be produced,
although the methods are constantly advancing. In
CASP1 and CASP2 there were almost no good ab in-
itio predictions, but in CASP3 a few groups produced
excellent models; 8% for recent reviews see, e.g.,
References 91 and 92.

Measuring progress through the previous three CASPs
is very important in order to learn about the devel-
opments and advancements of the structure predic-
tion methods. However, progress in CASP is difficult
to assess for a number of reasons. First, the number
of targets is relatively small and, therefore, the re-
sults may not always be significant. Second, the as-
sessment is carried out by humans, with different as-
sessors in each CASP and, therefore, it is not always
straightforward to reproduce. Third, the difficulty of
the targets used in the evaluation was different in
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each CASP. Thus, it is clear that in order to assess
progress over the years, large-scale experiments with
homogeneous, reproducible, and automated evalu-
ation methods are needed. Nevertheless, from var-
ious analyses***~ it appears that, in general, signif-
icant improvements can be observed from CASP1 to
CASP2, but in CASP3 the improvement appeared to
be less dramatic.

CAFASP. Despite the enormous value of the CASP
experiments, they do have some limitations, one of
which is that CASP can only assess the performance
of computer-aided structure prediction. Since human
intervention is allowed when producing the predic-
tions, what is measured are the capabilities of hu-
man experts using prediction programs and not the
capabilities of the programs themselves. However,
assessing the performance of fully automatic meth-
ods is critical for biologists. When biologists aim to
predict the structure of a protein, what they wish to
know is which program performs best and not which
group was able to produce the best predictions at
CASP. With the advent of genome sequencing
projects, including the human genome, the need for
fully automated structure prediction has become ev-
ident. A few years ago, automated tools were either
nonexistent or highly inaccurate. But as protein struc-
ture prediction has evolved and a number of auto-
mated tools have demonstrated that they are already
able to produce valuable predictions in many cases,
it became important to test their capabilities alone.

The benefits of an assessment of fully automated
methods are manifold. First, the nonspecialist users
can choose which is the best method for them to use
on their prediction targets. Second, users can eval-
uate and better interpret the results they obtain from
the various prediction programs. And last, fully au-
tomated predictions are reproducible, unlike the
cases where human intervention is part of the model-
building process.

To address these needs, the CAFASP experiment was
initiated by Daniel Fischer from our group (see
http://www.cs.bgu.ac.il/ ~ dfischer/CAFASP2). CAFASP1
was a small experiment with only a handful of fold-
recognition servers. The prediction targets were the
same as those used in CASP3, but the experiment took
place after the real structures were revealed, so that
in a sense the prediction was not fully blind. How-
ever, the models were produced completely automat-
ically without any human intervention. The CAFASP1
results demonstrated that although in most cases hu-
man intervention resulted in better predictions, sev-
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eral programs could already independently produce
reasonable models.

CAFASP2 was run in parallel to CASP4 using the same
prediction targets. The target sequences were sent
automatically to the participating servers at the time
they were released for the CASP4 participants, and
the data produced by these servers are automatically
collected and stored for subsequent evaluation. The
developers of the servers were not active in this pro-
cess, and therefore an assessment of fully automated,
blind predictions could be achieved. At the time this
paper was initially written (June 2000) CAFASP2 was
taking place with over two dozen registered auto-
matic servers from five continents (see Table 1).
CAFASP2 covered all aspects and methods of auto-
mated protein structure prediction, including the one
considered to be the most difficult: ab initio. The first
fully automated ab initio servers were two of the
CAFASP2 participants. Figure 1 is an example from
CAFASP2. Members of the prediction community, and
in particular the nonexpert protein structure predic-
tors in the wider biology community, are waiting to
learn about the capabilities of automated structure
prediction. By the time this paper is published, the
results of the experiment will be available at the
CAFASP Web site listed above.

Protein structure experiments and computer chess tour-
naments. The CAFASP experiment resembles the
computer chess tournaments that have existed since
computer chess began. It was obvious to chess pro-
gram developers that in order to learn which are the
best existing programs, a tournament was needed.
It was also clear that the programs should play alone,
without the expert input from humans; otherwise it
would not be possible to distinguish whether the suc-
cess or failure of a program was due to the program
itself or due to the human that intervened. As for
protein structure prediction, the state of the field up
until recently was such that a fully automated pro-
tein structure prediction tournament would have
shown that the programs were not very successful,
to say the least. But, as prediction programs have
improved, the time became ripe to begin such tour-
naments. We hope that the experience gained
through years of computer chess tournaments will
be useful in our future CAFASP experiments.

Because the CAFASP experiments may gain valuable
insights from the experience obtained in computer
chess tournaments, it may also be that the computer
chess community will benefit from the experience
gained in the CASP experiments, where computer-
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Table 1 Protein structure prediction servers registered at CAFASP2

Server Name Type* URL
United States

PHD/PROF (Rost) SS/SS http://dodo.cpmc.columbia.edu/predictprotein
SSpro SS http://promoter.ics.uci.edu/BRNN-PRED
SDSC1 HM http://cl.sdsc.edu/hm.html
FFAS FR http://bioinformatics.burnham-inst.org/FFAS
SAM-T99 FR/SS http://www.cse.ucsc.edu/research/compbio/

MMM-apps/T99-query.html
P-Map FR http://www.dnamining.com
loopp FR http://ser-loopp.tc.cornell.edu/loopp.html
123D+ FR http://www-lmmb.ncifcrf.gov/ ~ nicka/123D+.html
Isites Al http://honduras.bio.rpi.edu/~isites/ISL_rosetta.html
Dill-Ken Al http://www.dillgroup.ucsf.edu/ ~ kdb

Asia
PSSP SS http://imtech.ernet.in/raghava/pssp
FAMS HM http://physchem.pharm kitasato-u.ac.jp/FAMS
rpfold FR http://imtech.chd.nic.in/raghava/rpfold
Europe

Jpred2 SS http://jura.ebi.ac.uk:8888
Pred2ary SS http://www.cmpharm.ucsf.edu/~ jmc/pred2ary/
PROF (King) SS http://www.aber.ac.uk/~ phiwww/prof/index.html
Nanoworld SS http://ftp.decsy.ru/nanoworld/DATA/

PROGRAMS/DNETOENT/dne_to_ent.htm
3D-JIGSAW HM http://www.bmm.icnet.uk/people/paulb/3dj
GenTHREADER/Psipred FR/SS http://www.psipred.net
3D-PSSM FR http://www.bmm.icnet.uk/servers/3dpssm
FUGUE FR http://www-cryst.bioc.cam.ac.uk/~ fugue
ssPsi FR http://130.237.85.8/~ arne/sspsi
threadwithseq FR http://montblanc.cnb.uam.es
CORNET CP http://prion.biocomp.unibo.it/cornet.html
PDG_contact_pred CP http://montblanc.cnb.uam.es/cnb_pred/pdg_contact_pred.html

Middle East
bioinbgu FR http://www.cs.bgu.ac.il/ ~ bioinbgu/
Australia

Sausage FR http://rcs.anu.edu.au/ ~ arussell/TheSausageMachine.html

*Type of server: SS stands for Secondary Structure Prediction
HM stands for Homology Modeling
FR stands for Fold Recognition
Al stands for ab initio
CP stands for contacts predictions

For further details see http://cafasp.bioinfo.pl/server/

aided structure prediction is assessed. Personally, we
would be anxiously watching the first computer-aided
chess tournament, where human grand masters
equipped with their favorite programs play against
each other. And in particular, one eagerly awaited
event might be a tournament where a program plays
against a human equipped with a machine. Such
events may provide invaluable insights to under-
standing what humans add to the game that machines
do not use in their calculations, and whether this hu-
man expertise is computable at all and thus amena-
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ble to being incorporated into programs. This aspect
is probably one of the most interesting of artificial
intelligence. The analysis of such a comparison will
be one of the most important outcomes of the CASP4
and CAFASP2 experiments.

Questions raised by the emergence of the protein struc-
ture experiments. Here we discuss four of the ques-
tions that have been raised during the past protein
structure experiments that have important implica-
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tions within and beyond the protein structure pre-
diction field.

1. How do we compare human versus machine per-
formance? One of the most anxiously awaited re-
sults of CASP4 and CAFASP2 is the comparative anal-
ysis of the performance of humans (CASP4) with that
of the automatic programs (CAFASP2). The perfor-
mance comparison of humans versus machines will
allow the amount of human intervention required
in current interactive predictions to be objectively
quantified for the first time. Understanding and an-
alyzing the aspects of human expertise that lead to
a better human performance will allow their future
incorporation into automated programs; this chal-
lenge is and will continue to be a major one for de-
velopers. In the CAFASP2 and CASP4 comparison it
is expected that humans will perform better, in part
because the automated predictions from the servers
are available long before the filing deadline for the
human predictions, and human predictors can make
use of the automated results when preparing their
predictions (but not vice versa).

Comparing human and machine performance is be-
ginning to raise interest similar to that of the man-
versus-computer matches in chess. It took over 20
years of computer chess tournaments before a ma-
chine beat a grand master. Although machines will
probably not outperform humans this year, we should
not bet high against machines in CAFASP3.

2. Isautomation a valid scientific enterprise? Some
objections have been raised as to the scientific value
of the recent developments in automation. In both
fields it has been questioned whether developments
of the automated methods are merely the result of
faster, more powerful algorithms and machines, and
of larger databases, rather than of major break-
throughs in understanding the problems with which
we are dealing. From the theoretical point of view,
no major breakthroughs in understanding have been
achieved from efforts to improve the techniques. Cur-
rent programs are far from being able to simulate
the folding of a protein as it occurs in vivo, or to sim-
ulate the thought processes that occur within the
brain of a human chess grand master. The develop-
ment of automated tools appears to have led to only
a slightly better understanding of the above prob-
lems. In particular, it was clear from the CASP ex-
periments that very little effort was put toward solv-
ing the protein folding and stabilization problems,
which require addressing the physics-based aspect
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of protein structure. Perhaps the reason is because
computing these important scientific aspects is still
very complicated.® Moult et al. have also accurately
observed that current methods tested at CASP mainly
focus on technology development for producing the
best possible protein structure models, rather than
on basicscience.* A similar process has been observed
in other fields; long periods of technology develop-
ment were required before major advances in un-
derstanding were achieved.® We thus expect that
after further developments in protein structure
technology are achieved, we will begin to understand
the basic aspects of the protein folding process in a
more profound way.

3. Why automate structure prediction? Consider-
able benefits are to be gained from studies of au-
tomated structure prediction. Given the large
amount of raw data available today, the need to ob-
tain as much information on unknown proteins as
possible, and the improvements in automated struc-
ture prediction, automation will play a major role,
especially at the initial, genomic-scale, screening
steps. The goal, as in chess, is to encourage further
development of the automated tools so that they be-
come more routine companions in the prediction
tasks, ridding humans from as many tedious com-
putations as possible and allowing them to better ap-
ply their intuition and expertise. If something is com-
putable, programs should be written to compute it,
and their performance should be thoroughly tested.
With good automatic procedures, human experts will
be free to concentrate on the more important ques-
tions and aspects of protein research, such as the fold
pathway, the forces that determine the fold, and, of
course, other biological and pharmaceutical aspects.
In addition, improvements in automated structure
prediction will allow us to distinguish more and more
cases of accurate and reliable predictions. This will
leave fewer cases for human intervention—a most
important goal in the postgenomic era.

4. Will machines replace humans? The fact that a
machine begins to compete with humans, and may
eventually beat them, should be regarded as a great
accomplishment for humanity. Rather than a loss,
itis a celebration of a human’s capabilities; humans
created the machine, after all. However, in the near
future, it is likely that human intervention will still
be required to improve the automatically generated
3-D protein structure models, because of the knowl-
edge, expertise, and intuition that humans have and
that programs still lack. Furthermore, we are still far
away from the time when computer 3-D models will

SIEW AND FISCHER 419



be able to replace experimentally determined pro-
tein structures.

In chess, perhaps the situation is a bit different. It
is likely that in the future, humans (without the aid
of computers) will not be able to beat a machine.
Nevertheless, this does not mean that the interest
of human chess will disappear, and not only for rec-
reational purposes. The character of the game of a
human grand master will probably continue to be
for the near future far more interesting than that per-
formed by computers. No superiority of computer
over human has been achieved as far as technique
and style is concerned. Since in chess the strategy
and “elegance” of thinking are essential parts of the
game, computer chess algorithms still need to be im-
proved in these directions. We should perhaps wait
to see chess tournaments that evaluate style and tech-
nique in addition to plain victory.

LiveBench. A limitation of both CASP and CAFASP
is the relatively small number of prediction targets
(afew dozen). To overcome this limitation, a large-
scale evaluation of automatic servers, named “Live-
Bench,” was recently initiated by Leszek Rychlewski
from Poland. LiveBench follows the CAFASP ideol-
ogy in that it evaluates automatic servers only, and
itworks as follows. Each week the Protein Data Bank
(PDB)* is checked for new entries. Proteins with low
sequence similarity to other proteins of known struc-
ture are chosen as prediction targets for LiveBench
and are immediately submitted via the Internet to
the participating servers. After a few months, a large
collection of prediction targets is thus obtained, and
the predicted models can be evaluated. Although
LiveBench uses new PDB releases, it practically en-
tails a blind experiment, because it is highly unlikely
that developers “adjust” their servers on a weekly
basis only to improve their performance at Live-
Bench.

LiveBench-1 is currently under way, with only a hand-
ful of fold-recognition servers. Preliminary results
show that the best servers are able to produce cor-
rect models for between one-third and one-half of
all newly released structures that show no sequence
similarity to other proteins of known structure”” (see
http://bioinfo.pl/LiveBench for further details).
These results show that automated servers have a
significantly higher sensitivity than standard se-
quence-based methods. Unfortunately, this increase
in sensitivity came with the cost of lower specificity.
Another interesting finding of LiveBench was that
an “ideally combined consensus” of all servers would
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increase the percentage of correct assignments by
50 percent. This hints at the benefits of using more than
one server for difficult prediction targets. A similar,
large-scale evaluation of secondary structure predic-
tion methods is led by Burkhard Rost from Columbia
University (see http://maple.bioc.columbia.edu/eva
for details).

The main contribution of large-scale evaluation ex-
periments is, like CAFASP, to inform biologists about
the current performance of available automated serv-
ers; the main difference between them and CAFASP
is that the large-scale projects are carried out in a
continuous fashion and use a larger number of pre-
diction targets.

The problem of model evaluation. During the CASP
experiments it became clear that the evaluation pro-
cess of the predicted 3-D models vis-a-vis the real
structures is a difficult problem. In CASP, different
criteria were used for the assessment, partly auto-
matic, partly involving human expertise and knowl-
edge. Each criterion focused on different aspects of
a 3-D model. Evaluating how good a predicted 3-D
model is has turned out to be a controversial sub-
field of research.

In CAFASP, an objective, fully automated, quantita-
tive, and reproducible evaluation method is used. To
this end, a single numerical measure that can be
added over all predictions was needed so that an es-
timation of the overall performance of each method
can be obtained. To address these needs, the Max-
Sub method was developed. ”® MaxSub measures the
quality of a predicted model by searching for the larg-
est subset of C-alpha atoms in the model that su-
perimpose well over the real structure of the pro-
tein (see Figure 1), and by producing a normalized
score that reflects the quality of this superimposi-
tion. Although this problem is difficult, we have
shown that a heuristic approach performs well.”

The availability of such an automated evaluation
measure allows large-scale evaluation experiments,
such as LiveBench, to take place. It also allows the
achievement of full automation in CAFASP2 and in
LiveBench, both in the way the models are produced
and in the way they are evaluated.

Evaluation experiments such as CASP, CAFASP, and
LiveBench are becoming the standard measures of
progress in the field and effectively reflect the state
of the art of structure prediction at the time of the
experiment. The value of such experiments is enor-
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Figure 1
(in red)

Superposition of a predicted protein model from CAFASP2 (in cyan and blue) with the experimental protein structure

The model was automatically produced by one of the CAFASP2 servers. The superposition was computed by#aki8hldentified 113

“well-predicted” residues (cyan) that superimpose onto the experimental structure with a root-mean-square deviation of 3.7 A. Portions of the model that
were not well-predicted are in blue (a total of 43 residues). This prediction has a MaxSub score (using a scale of zero to one, where zero corresponds to
a wrong prediction and one corresponds to a perfect prediction) of 0.6, which corresponds to a relatively good prediction, where most of the secondary
structures match well. In the absence of an experimental structure, this level of accuracy in a predicted model can often be very helpful for biologists.

mous: They show the strengths and weaknesses of
each method and encourage developers to improve
their programs. They also inform researchers out-
side the prediction community, including biologists
and commercial companies, about the capabilities,
limitations, and progress of current structure pre-
diction methods. And finally, they have catalyzed sig-
nificant improvements in automated structure pre-
diction so that current methods have already become
routine companions of many biologists.

Summary and discussion

Progress in automation has definitely changed both
the computer chess and protein structure prediction
fields. With the availability of automation, both fields
have become more interesting as deep and challeng-
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ing questions, impossible to address before, can now
be explored. Computer programs in this and other
fields, rather than challenging humans, have made
a better world. From a practical point of view, au-
tomated protein structure prediction is changing the
methodology of biology. Current tools already allow
for many useful predictions and are becoming rou-
tine tools for biologists (for a few recent examples
see http://www.cs.bgu.ac.il/ ~ bioinbgu). Further ad-
vances in the prediction methods, especially homol-
ogy modeling and fold recognition, will become in-
creasingly important and widely applicable as the
various structural genomics projects continue to fill
the gaps in our structural knowledge.> The im-
portance of being able to predict the structure of the
proteins encoded in the genomes of various organ-
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isms is enormous. The means to achieve this pre-
diction via technological or basic science advances
will ultimately be of minor importance. If there is
room for technological improvement in the near fu-
ture so that available information is collected and
more accurate models are produced, it is essential
that bioinformaticians fulfill this need. Their contri-
bution will be to the biological sciences first, and only
later to the biophysical aspects of protein folding.

The CAFASP and LiveBench experiments are a con-
tribution toward the long-sought-after goal of being
able to submit to a computer the complete genome
sequence of an organism, and upon a number of cal-
culations, obtain the 3-D structures of each of the en-
coded proteins. Comparing the performance of hu-
mans versus that of automated programs will help
us learn what it is that humans know and machines
do not. The result will be a major step toward our
ability to understand the relationship between struc-
ture and function in biological systems, to prevent
and cure diseases, and to control processes in living
systems. Although these goals will not be fully
achieved in CAFASP2, subsequent tests will serve as
further catalysts to this process and as measures of
continuing success. The protein structure prediction
community and the wider community of bioinforma-
ticians and biologists using these tools will certainly
be watching the 2000 protein structure prediction
Olympic games® for the advances in the classic “hu-
man-plus-machine” CASP category, for the new re-
ports of the fully-automated CAFASP category, and
for the comparison between the two.

Automation efforts in one field can sometimes lead
to unexpected advances in other, nonrelated fields.
One such example is the development of the Blue
Gene project, '"“!°! which will probably make use of
many lessons learned in the Deep Blue project. Sim-
ilarly, it may not be completely absurd to imagine
a program that, having evolved from principles used
in the protein structure prediction field, will become
the future world chess champion.

For more information see the CASP site at http://
PredictionCenter.lInl.gov/casp4, the CAFASP site at
http://www.cs.bgu.ac.il/ ~ dfischer/CAFASP2, and the
LiveBench site at http://bioinfo.pl/LiveBench.'*>'?
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