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Fastfinger:

A study into the

use of compressed
residue pair separation
matrices for protein
sequence comparison

Protein sequences are diverse in size and in
content meaningful to researchers. They are rich
in what seems to be “noise,” or aspects of lesser
interest that obscure clearer core features
required to establish true relatedness and
function. This paper represents part of a larger
study that explores the possible efficient use and
storage of “fingers” for protein sequence
analysis, i.e., matrices of uniform size and shape
that can “stand for” protein sequences by
making more explicit the essential aspects of
protein sequence pattern information. The
essence of the study relates to data
compression. Compression invokes an
interesting alternative idea of pattern—the
concept of “primeness” as in number theory is
used to create the notion of an irreducible and
potentially recurrent pattern element, and then
this philosophy is mapped onto number theory by
the unique factorization theorem, in order to
define a novel measure of pattern difference.
Other possible approaches are also discussed.
Because compression and other approximations
involve information loss, this is also a study of
performance in the face of such loss. Because of
the effects of this loss, no claims are made that
encourage replacement of established sequence
comparison methods, but the concept may have
value in a number of applications within, and
outside, molecular biology.

he interpretation of genes is based on compar-

ison of the sequences of the proteins implied by
those genes. Reference to known proteins serves to
establish function when a sequence of related func-
tion is known, and a three-dimensional protein struc-
ture when a sequence of related structure is known.
Protein sequences, however, are often inconvenient
objects for routine manipulation in several respects.
They are not regularly structured data objects, be-
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cause they differ drastically in length and contain
many features that obscure signals relating to a com-
mon function and even to a common folding con-
figuration, at least to the eye of the human observer.
The present study explores the possibility that matri-
ces with fixed (e.g., 20 X 20) data structures may use-
fully represent sequences in some situations, and so
be used to “finger” the full sequence, or related se-
quences, when required. For example, such finger
matrices, or “fingers,” might be “hard-wired,” mi-
crocoded or otherwise precoded to stand for se-
quences, to allow extremely rapid preliminary iden-
tification of related protein structures and domains,
given a new protein sequence. Although usually one
will need to refer to actual sequences at some stage,
key information might be pinpointed, and irrelevant
information eliminated, to identify the types of se-
quence required. Although this implies, in simplest
applications, avoidance and independence of align-
ment (a goal that has long attracted several labora-
tories), this is not the most fundamental feature of
the method, and so this aspect will not be touched
upon significantly here. Rather, the deeper challenge
is that the notion of “relatedness” of sequences is
variable. This study spans two major current ap-
proaches, lying at different extremes of the notion
of relatedness, as follows.

The longest established software methods, some-
times colloquially described as the “gold standard”
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methods '™ are linked with the concept of “homol-
ogy.” For more than ten years, the inference of ho-
mology between proteins, implying the occurrence
of a common biological ancestor, has been based on
the measurement of statistically significant sequence
similarity. This is determined by comparison of iden-
tity or physicochemical similarity between amino acid
residues throughout two or more whole proteins, or
at least extensive regions of them, based in turn on
anotion of optimal alignment of the sequences. For
detailed work, such as modeling structures by ho-
mology, a typical approach has been to apply the ap-
proximate method BLAST? or PSIBLAST often fol-
lowed by, say, a CLUSTALW alignment. FASTA® is
becoming once more a very popular choice thanks
to the emergence of powerful workstations. There
is also still a preference among some researchers for
tidying alignments by manual methods or semi-in-
teractively. The “gold standard” techniques can be
easily located by searching the Web (using the tech-
nique name), and are found on many servers, such
as those of the European Bioinformatics Institute
and the National Center for Biotechnology Infor-
mation, and sometimes in large integrated packages
such as the “Biology Workbench,” from The Na-
tional Center for Supercomputer Applications (Uni-
versity of Illinois at Champagne-Urbana). All of this
broad family of techniques imply alignment, or re-
quire it at some stage. From that perspective, even
for a given algorithm or overall protocol, there is no
absolutely best way to align two weakly related se-
quences because there are adjustable parameters,
to control factors such as the penalty for creating
gaps, i.e., so as to better align two or more sequences
elsewhere. (On servers there are, of course, hidden
or recommended default settings.)

Alternative methods with a very different notion of
relatedness are those that use a purely, or relatively,
local definition of pattern. They do not usually in-
volve alignment (although they can be invoked to
help with alignment). Such local patterns or “mo-
tifs” may putatively code for features such as cat-
alytic sites, binding regions concerned with intracel-
lular and extracellular transport, or purely local
architectural (conformational) motifs, which are per-
ceived as relatively common recurrent themes when
viewed over the space of all sequences as a whole.
This includes many instances when the “gold stan-
dard” methods, by their own internal criteria, would
not consider such patterns to be statistically signif-
icant. These local pattern methods are also com-
monly used and include PROSITE and BLOCKS, as-
pects of pfam, prints, MEME, and others, and the
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approaches such as the BIODICTIONARY at the IBM
Computational Biology Center (based on local pat-
terns and “seqlets” or “struclets”*”"). These meth-
ods may also be located on many Web servers. A
principal purpose of the alternative methods is to
predict the function of the protein product of a gene
irrespective of overall homology (or lack of it). In
some cases, as for some widely recurrent motifs that
have common functions such as the glycosylation
consensus, motif recognition is very useful to estab-
lish the overall biological role and life of the pro-
tein. However, motifs of that type are too broadly
spread among many protein families to guarantee
a common ancestor for extensive regions of the pro-
tein. Such examples make clear that in general in
the local pattern approach, overall or extensive se-
quence homology is not necessarily expected, nor re-
quired, even in principle. Indeed, it might not be un-
reasonable to consider this type of approach as
allowing and making use, a priori at least, of con-
vergent evolution as much as divergent evolution.

These two types of approach are clearly very differ-
ent in philosophy. It is well known that there is merit
in comparing these and other techniques in a study
on a new sequence, or in combining them in a gen-
eral protocol for interrogation and annotation of
novel sequences. The present study is one of a se-
ries to address the issue of whether it is possible or
useful to develop a further approach, which poten-
tially takes account of some aspects of both. Here
we are particularly concerned with the need for sim-
ple techniques for compression of data that arise in
considering one class of potential hybrid method.
Practical considerations to do with that compression
locally confine the extent of each pattern component
(in this work, typically ten residues), but all parts of
the sequence are considered as contributing poten-
tial pattern.

Theory

The use of a mathematical principle, known as the
prime factorization theorem, has several possible ap-
plications in the field of data compression, beyond
the application to sequence representation and com-
parison as presented here. In practice, however, there
are inevitable information losses. The present study
provides a simple vehicle for introducing the advan-
tages and difficulties of the approach, which can to
some extent be preempted by general theoretical
consideration.
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Representation of a sequence by a matrix of fixed
form. One approach is to first represent the se-
quences in the form of tables of the frequency of oc-
currence of singlets, pairs, triplets, and so on of amino
acids, in all specified relative positions, such as two
residues apart in the sequence. This route seems
promising as the basis for a universal approach be-
cause, in principle at least, it is possible to see how
one might refine the method to describe unambig-
uously both local patterns, such as PROSITE motifs,
and given a large enough matrix, overall sequences.
A practical advantage for very high-speed searching
is that such separation tables can certainly be cal-
culated and stored in advance for an entire database
(alternatively the matrix could be calculated at search
time from the sequence data). As noted, an advan-
tage for efficient storage and for parallel processing
is the fixed dimensions of the matrix (e.g., 20 X 20),
compared with sequences that vary considerably in
length.

A conceptual starting point is a three-dimensional
20 X 20 X W “finger matrix.” The dimensions of
length 20 relate to the 20 types of biologically coded
amino acid residues. Albeit with the caveat discussed
later, this can be seen as extensible to 20 X 20 X 20
for amino acid triplets, and to even higher dimen-
sional matrices; if utility can be demonstrated for the
lower information content inherent in the method,
further study is justified for the more information-
rich tables. W relates to the different separations used
between the pairs. That is, W different separations
are considered for relative distances along the se-
quence of 1, 2, 3, ... W where W is the maximum
separation or “window,” which (in most cases in the
present study) is 10 unless stated otherwise. Though
this is a local range, in part chosen to avoid the loss
of “phase” that occurs due to insertions and dele-
tions, the samples are still drawn from throughout
the entire sequence. Each element of such a matrix
Fis a frequency of occurrence of the form N[R;, R, 4,
k], where k is the number of times that an amino
acid of type R; is followed by an amino acid R,
k residues in the C-terminal direction (i.e., to the
right of any specified residue), where k < W. The
basis for comparison of sequence is the distance be-
tween two such matrices, one of which will corre-
spond to a sequence in the database, and one to the
probe sequence. For example, one could score 0 ev-
ery time a matrix element matches, and 1 otherwise,
finally normalizing these scores by computing
1/(20 X 20 X W). The author considers all these
as Fastfinger methodologies in the sense that a sin-
gle matrix derived from a probe “fingers” another
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sequence as related by addressing its array. These
more direct methods will be reported elsewhere,
though the method EST%ID, described later for com-
parative purposes, is arguably of this general class.

A major departure explored in the present study
deals with the difficulty that in practice these 20 X
20 X 20 X ... matrices will be very large. It is con-
venient if these sequences can be represented by their
precalculated, well-structured matrices in databases.
However, while storage of data is not always an is-
sue, multiplying by many orders of magnitude the
storage requirements of data, on the scale of that
available from the genome projects, is not attrac-
tive. Even the elements of the minimal (20 X 20 X
10 = 4000 elements) matrix explored here will most
often be at least an order of magnitude larger than
typical original sequences (say, 50-500 symbol el-
ements). Hence, this study will serve as a useful ex-
ample that is valid for the larger matrices, even if
not a compelling case for compression in its own
right.

Data compression. Various strategies of data com-
pression are possible in principle and are based on
removing storage space associated with empty, or
nonrequired, information content. One common ap-
proach for images is based on the fact that the ma-
trices describing them are typically sparse; however,
in the present case, matrices are not in general very
sparse, except for short sequences. Another ap-
proach, used here, is to remove information content
less relevant to the pattern of interest, and to com-
press one or more dimensions on that basis. Here
a method is introduced to reduce each data item in
the (now typically) 20 X 20 array to a single scalar
quantity, encoding all the separations that existed
along the W-long separation dimension. There are
also promising alternative representations of inter-
est. For example, matrices compressed in different
ways and with values more closely related to phys-
icochemical properties of amino acid residues are
also possible and are discussed later, and have par-
ticular value in threading.

How might one compress at least some of the in-
formation about a variety of sequence separations,
and the counting of their occurrences, into a single
number, so reducing the 20 X 20 X W matrix to
a20 X 20 matrix? One approach is to use prime num-
bers. The approach is interesting because, of itself,
it suggests an alternative approach to thinking about
pattern—as a form of “primeness.”
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Analogy by pattern factor (definition). 1f every pos-
sible nonempty, nonordered set {p, p> ps ...p,}
of pattern factorsp, p, ps ... p, in aset of data can
be expressed as the function f returning value f, which
implies that set and no other set, B

fpipaps---p)=f<oipipaps--.pd, =1
(1)

then any two sets or subsets of data 4, B with the
same value of f, f, = f can be said to be “anal-
ogous” by their pattern factors p, p, ps ... p,. The
latter are considered irreducible, in that they can-
not be reduced into simpler components encoding
features, such as order, that are considered mate-
rial.

The symbol < signifies “maps to,” one to one, with-
out ambiguity in either direction. By this definition
we may say that a pattern is analogous between two
objects if it contains the same irreducible compo-
nents, even though they are not necessarily in the
same order. Here “analogous” is used to avoid “ho-
mologous.”® This is an aspect of the local pattern
concept in the sense that, for example, the order of
PROSITE patterns found in a sequence is not signif-
icant.

How may it be guaranteed that a single scalar value
f will uniquely and efficiently describe the pattern
that gave rise to it? It is this key issue that corre-
sponds to the properties of prime numbers and sug-
gests their use.

Fundamental theorem of number theory. Every nat-
ural number n (>1) is a prime or can be expressed
as the product of primes (prime factors) in the form

n=pipPs.--Pn» r=1 (2)

and there is only one such expression as a product
(decomposition into prime factors), if the order of
the factors is not taken into consideration. (Theo-
rem 4, Nagell.”)

How does a prime number represent a separation?
Let each p now be a function of the observed sep-
aration m between the specified residue ati andi +
m up to and including a maximum value for m, m =
W (i.e., a specified separation window ), and oc-
currence vs nonoccurrence in the window or se-
quence. Let such nonoccurrence be indicated by
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zero. The mapping from m to p is then here imple-
mented by the function

A(m) =log(P(m)) & m,  A(0) =0 3)
where P(m) is the mth prime number in the series

2,3,5,7,11, 13,17, ..., and log is the natural log-
arithm.

How does one represent the number of times that
each separation occurs? The notion of using “pri-
mality” to encode non-numeric concepts occurs in
cryptography and in Goedel’s theorem.*'” This lat-
ter is a corollary of Nagell’s concise statement of the
unique factorization theorem, the corollary being
that Equation 2 also holds when two or more of the
primes are identical, e.g.,p{ p% p5, . .. . Itis the pow-
ers that are important in Goedel’s theorem and ar-
guably the prime numbers largely serve as arbitrary
bases that guarantee uniqueness; in the present
study, however, both the primes and their powers
are important. The primes will code the separations,
and the powers serve to count the number of times
that a particular separation, encoded by each prime,
occurs. If a particular separation occurs s times, then
the corresponding prime factor p, encoding sepa-
ration x is raised to the power s. Colloquially, we
might say that a term such as p, is introduced into
Equation 2 every time a particular pair at a partic-
ular separation is observed. Consistently, p, = p.,
implying exactly one occurrence, and a zeroth power
pY = 1 means that there is no occurrence of the
amino acid pair at the separation x, and a factor p,
does not appear explicitly in the list of factors.

The choice of taking the logarithm in Equation 3 is
arguably a natural one, both for ease of manipula-
tion and because an information-theoretic approach
will be taken to combine matrices in future studies.
The logarithmic value relates the concept of “recov-
ery” of information by the factorization of primes
from the viewpoint of the “Gauss conjecture” and
the “one-prime” number theorem of Hadamard and
Poussin.’ Note that the usual formulation of this is
in terms of the standard function 7(x) of number
theory, which expresses the number of primes less
than x. Here we use the inverse notation such that
m = m(P(m)), and hence from the one-prime num-
ber theorem® we obtain

A(m) = log(P(m)) = P(m)/m = log(2) 4)

Values occurring in this study are conveniently re-
ferred to in the information unit “nats” (natural units
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based on the natural logarithm, analogous to bits,
i.e., binary units, based on log base 2).

Implementation as the 20 X 20 finger matrix
method. As implied, the A(m) terms are added to-
gether to give the final term of a specific pair of amino
acid residues, i.e., an element of a finger matrix char-
acteristic of a protein sequence. Note that informa-
tion is retained only as to the type of pair, say A-V,
and all information about the various separations at
which that pair occur is pooled into a single value
by the following summation procedure:

F(i,j) =2, A(m,) =%, log(P(m,)) (%)

The index d is to make it understood that the sum-
mations are performed over the log-prime.

Note that if we consider the P(m)/m as probability-
like terms, then sums of these measures for each pair
(i, j) that yields the 20 X 20 entries of the finger
matrix F(i, j) have the status of applying successive
logical “or” operations to those probability-like terms
over all separations d encountered between the given
symbols i, j.

Equation 5 summarized how to calculate the value
of each element of the 20 X 20 array F, and the dif-
ference between two sequences can now be estimated
without alignment by a procedure that involves sub-
tracting the array for one sequence from that of the
other. Let the two sequences be called 4 and B; the
corresponding matrices are then F, and Fy. The el-
ements of the resulting 20 X 20 “difference matrix”
are the “difference elements” |F,(i,j) — Fz(i, )|,
i.e., the absolute values of the difference between
corresponding elements. The corresponding matrix
of such difference elements is the “difference ma-
trix” F,_p. For statistical purposes, note that we will
only be interested in the properties of such a differ-
ence matrix, not the two matrices that gave rise to
it.

Using such a matrix as a distance measure is pos-
sible but inconvenient. A corresponding scalar mea-
sure f of the difference between two sequences on
this basis is simply the sum over all the terms of the
difference matrix. This could later be re-expressed
empirically in probability terms by statistical anal-
ysis, so in that sense, further scaling of the value is
not critical. However, it is useful to set a standard
and appropriate treatment of values, for working
purposes, that returns values on an intuitive scale,
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say f =0... 1. Note that it is not strictly a (Euclid-
ean) distance metric, as it does not fulfill the trian-
gle inequality.

“Bad metric” self-editing principle and the statis-
tics of F(i,). An apparent primary difficulty with the
method presented here is that there seems to be no
immediately obvious relationship between the mag-
nitude of the similarity measure and any concept of
sequence similarity. Furthermore, the treatment of
the components as a sum of logs, stated in limited
precision, makes it impossible, in general, to actu-
ally recover the prime factors and deduce some mea-
sure of difference from the component separations.
The first of these concerns arises because we are de-
liberately dealing with an alternative definition of
pattern (though nonlinear correlation is discussed
later in terms of BLAST searching). The second dif-
ficulty simply vanishes because the method does not
require the user to recover the prime factors, merely
to demonstrate a difference between their products.
The difference between any two F, one such matrix
for each sequence, provides an estimate of the in-
formation in favor of evidence that two sequences
are different, i.e., in favor of the null hypothesis that
the two sequences have no relationship at least within
the definition of analogous pattern used here.

A natural difficulty arises in that, on some occasions,
different products of primes can have similar, though
never identical, values. Suppose we have the two
numbers, 99 and 100, that factor as follows:

99 =3 X3 X 11
100=2X2X5X5

These two products would be considered close to
each other (indicating |F (i, j) — Fz(i, j)| =
|1n(99/100) | = 0.010 prior to rescaling), but it is clear
that they represent quite different prime factors, and
hence quite different patterns. This is indeed so, but
this also well illustrates the “self-editing” principle
inherent in the use of the prime factorization the-
orem. The difference is of an order smaller than typ-
ical differences between matrix elements, and it is
therefore naturally weighted down. In short, such
troublesome cases are naturally “damped out.” It
would be better said, however, that we are prepared
to discard some information in return for the ben-
efits of compression. The formal requirement is sat-
isfied that information is lost, but not created. An-
other instance would be prime 29 (corresponding to
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maximal separation of 10) and 30 = 2 X 3 X
5|F4(i, j) — Fs(i, j)| = [In(29/100)| = 0.034.

Note the useful property that ambiguity arises and
information is lost as the sizes of prime numbers in-
crease. This is a proper trend, since autocorrelation
information will tend to be lost in application be-
cause of the increasing chances of the separation
spanning an insertion or deletion.

Has too much useful information been discarded
overall? The minimum possible value when no cor-
responding pattern at all is observed in one sequence
(i.e.,where A(m) = 0) islog(2) = 0.693, which cor-
responds to the difference between the log primes
for separation distances of zero and of one. When
neither corresponding element is zero and there are
ten possible primes 2 . . . 29 corresponding to ten pos-
sible distances, and when just two such primes com-
pared to two separations are compared, then the
smallest possible nonzero contribution is that from
aseparation of 10 and a separation of 11. Thisis 0.231
(compared with 0.693 for separations 0-1, 0.405 for
separations 1-2, and 0.511 for separations 2-3). The
typical difference between products that are “coin-
cidentally” of similar value is lower still.

To show this more thoroughly, consider a simple
Monte Carlo simulation. For one million tries, se-
lecting at random one log prime number from the
range log(2) . . . 1og(29), 18-36 percent will have the
same value to the nearest nat. That is, placing sam-
plesincells 0, 1, 2, . . . corresponding to the integer
of the log prime number, no cell will contain less than
18 percent and no cell will contain more than 36 per-
cent. Itis self-evident that the distribution is skewed.
Since as with squared velocities of gases there are
no zero values, the property shares a general form
with chi-squared, Maxwell-Boltzmann-like distribu-
tions (but corresponding to the absolute value, not
the square). In such distributions, 18 percent cor-
responds to the zeroth cell and 36 percent to the max-
imum. Considering products of runs of N primes,
the case of one prime corresponds to N = 1. For
comparison, the possible ranges per cell for one mil-
lion samples in cases N = 2 are 10-24 percent, N =
3:1-17 percent, and N = 10: 1-5 percent. The av-
erage finger matrix elements (not difference matrix)
F(i,j) for log productsof N = 1 ... 10 primes, ran-
domly selected from the first to the tenth prime (av-
erage of one million random generations for each
of N =1...10) are shown in Table 1.
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From this it can be seen that two F(i, j) will tend
to differ by about two nats (mean = 2.05 N nats)
for each extra log prime. For minimal confusion be-
tween identical log products of primes, the spread
for each number should be less than one nat. The
standard deviation (s.d.), for F(i, j) with the same
number of primes, is in fact half F(Z, j) (s.d. = 1.08
N nats). The mean of values less than the mean is
2.701 and of those greater than the mean is 2.573.
Correspondingly calculated s.d. is also shown and the
renormalized sum of the component means as cal-
culated is within 4 percent of the customary mean.
The skew is not particularly severe, but (1.068) —
1.454 does not imply the existence of a negative value,
which is impossible.

Since distributions of amino acids are not random,
it is useful to explore situations in actual context of
use, or at least taking into account known distribu-
tion features. These are explored in the section on
results, but some general observations follow. That
useful information is carried, in the compression
along W, can also be demonstrated empirically by
comparing it with a simpler technique (“1DIST fin-
ger”) that records only the shortest distance per el-
ement rather than compressing together in one
number from many distances (see the section on re-
sults). Conversely, initial comparison with explicit
(uncompressed) 20 X 20 X W matrices shows the
information loss compared with the uncompressed
case. The relative loss from the use of the 20 X 20 X
W matrix is not so distinct for very short sequences,
as there will be most commonly zero or one primes
(the logs of single primes being distributed as pre-
viously mentioned). The proportion of ambiguous
prime products is also smaller for both shorter se-
quences. In one typical study, using W = 10, three
or four of the ten separations of specified types of
pairs (e.g., A-S) that are one to ten apart will occur
about once in a sequence, the rest zero, one, or two
times, and about a third of the information is lost.
In assessing the frequencies of pairs a priori, one
should note that the relative abundance of the 20
types of amino acid residues are Zipf’s law ! (approx-
imately exponentially) distributed, but they are not
so extremely distributed that high and low occur-
rences are distinguished by orders of magnitude. Fig-
ure 1 shows the frequencies in vertebrates.

Also, as long as we do not partition these by, for ex-
ample, function site or secondary structure, the pair
distributions are in reasonable accord with these sin-
glet occurrences. A type of pair at an unspecified sin-
gle separation will tend to occur with a probability
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Figure 1  Frequencies of amino acid residue types in vertebrates (percent)

Table 1  Average finger matrix elements for log products of N primes

N Primes <mean> Plus or Component Less Component

Minus Standard Than Mean Greater Than
Deviation Mean

1 prime <2.053>+/-1.079 <1.068>—1.454 <2.873>+0.926
2 primes <4.108> +/—2.158 <2.865>-2.175 <5.289> + 1.642
3 primes <6.161> +/—3.238 <4.628>—-2.906 <7.555>+2.248
4 primes <8.213>+/-4.316 < 6.455>—3.549 <9.823>+2.817
S5 primes <10.267> +/-5.397 <8.325>-4.173 <12.075>+3.372
6 primes <12.323> +/— 6.468 <10.205>—4.763 <14.305> +3.904
7 primes <14.378> +/—17.553 <12.101>-5.343 <16.523> +4.437
8 primes <16.431> +/—8.634 <14.003>—5.922 <18.724> + 4.955
9 primes <18.485>+/-9.720 <15.917>—-6.475 <20.923> +5.471
10 primes <20.538> +/—10.801 <17.837>-17.026 <23.111>+5.973

of 0.0002 for tryptophan—tryptophan pairs (W-W)
to 0.007 for serine—serine pairs (S-S).

Method

The principal method explored in this study uses a
20 X 20 matrix of amino acid residue pairs, with sin-
gle numbers for each element. Using the principles
described in the section on theory, these single num-
bers actually stand for several quantities, namely the
specific separations encountered for such a pair of
residues. This preferred embodiment of the theory
is described here. However, alternative approaches
are possible that are, to varying extents, of similar
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spirit. These were compared in preliminary studies,
and so are also described for comparison.

Scaling to produce final preferred method. There
are several potential scaling options. One possible
type of “normalization” for this purpose considers
the ratio 2 [, (i, /) — Fy(i,/)[/| Fa(i.]) + Fu(i.j)|.
This is not a true normalization, but may be iden-
tified as an indication of the deviation of the vari-
ance from that expected, conditional on statistics re-
lated to specific corresponding elements of the
matrix. However, while these kinds of normalization
are useful, it may be argued that it is an absolute
measure of pattern difference that is of interest here,
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and that any normalization or rescaling should pre-
serve information about sequence length differences,
different abundance of amino acid residues, etc., and
any other features that may be construed, from one
perspective at least, as “pattern difference.” It is con-
venient to define a rescaling that would give an in-
dex, for most cases of interest, within the 0. . . 1 in-
terval, but that nonetheless is not normalized with
respect to the factors just mentioned.

A more convenient normalization is to divide by the
number of elements (20 X 20 = 400) and then by
the measure that is expected for maximum possible
distance. The amino acid residues are Zipf’s law (ap-
proximately exponentially) distributed. The frequen-
cies of amino acid residues in vertebrates presented
in Figure 1 are required for this calculation. A rea-
sonable upper limit for the difference between two
large random sequences is that the number of oc-
currences of every separation, averaged over all the
ten separations, is about one (typically some zero,
some more than one). Thus the value at each ele-
ment is further divided by 2, A(m) = 22.590,
the sum of A values for separations 1,2, 3, ... 10 all
occurring once. There is no reason a priori that a sep-
aration of one is “closer” in any physicochemical
sense than is a separation of ten (that is, with the
important caveat that an increased chance of an in-
sertion or deletion at larger separations justifies a
window limit, which is the reason for not consider-
ing larger separations). Note, however, the phrase
“a priori”: there are differences observed in practice
and these are particularly significant when we dis-
tinguish different aspects of structure, such as sec-
ondary structure. Indeed the present method has
been applied to the secondary structure letters “H,”
“E,” and “C” as actually assigned from the exper-
imental structures of the proteins, as opposed to the
20 residue types. This reveals rather similar degrees
of relationship from the (secondary) structural view-
point, since there is strong, if complex correlation
between residue pair patterns and secondary struc-
ture, as will be shown. Most of all, we are concerned
here with differences between sequences and, as
noted, the increased chance of spanning an inser-
tion or deletion increases with separation.

The final preferred formulation for the scalar dif-
ference measure, for present purposes, is thus

f=2 2 FA73/2=2 Z |F((i, ) —Fs@,)DlIZ  (6)

L L
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Here F, 5 = |F4(i,j) — Fs(i, /)| is the difference
matrix for proteins 4 and B as described, and Z =
21w A(m) X 400.

Whereas normal values for comparison of very dis-
similar sequences of similar length lie conveniently
close to unity, the measure will continue to increase
if we consider that, for example, new domains con-
taining novel pattern features are progressively
added to one or both features. At the same time,
the limited capacity of the compression method to
hold separation information (and so return signif-
icant values on taking the difference between two
finger arrays) leads to hyperbolic curves with atten-
uating dependence on difference as sequences be-
come very long.

Alternative embodiment: Implementation of weighted
finger matrices. Although this is not explored in the
present study, there are several reasons why the
terms of the difference matrix might be differentially
weighted. As noted in the section on theory, the
amino acid residues do not occur with equal prob-
ability, and there is a case that the rarer ones should
be more heavily weighted accordingly. This is on the
argument that the rarer ones carry more informa-
tion (by virtue of that rarity) and indeed, as with the
catalytic role of H, perform specific functions that
may earmark a relationship. The appropriate weight-
ing for pairs can be calculated from the correspond-
ing product, or more correctly, from express deter-
mination of the occurrence of the pairs. Also, one
might choose to emphasize amino acid residues that
possess some single specified property, such as hy-
drophobicity, or helix- or sheet-forming character.
Related to this is the idea that the most general for-
mulation of interest for present purposes is not con-
fined to the 20 X 20 matrix but can handle pooled
sets of amino acids (i.e., symbols representing a more
generalized type of amino acid, such as acidic: as-
partate and glutamate). The summation over the
F,_p cells of the amino acids that are to be pooled
will then proceed before their absolute value is taken.
As part of that procedure, a term w(i, j) can be con-
sidered as normalizing the entries to allow for sim-
ilar contribution of similar amino acid residues.

Thus in principle there is a more general treatment
represented by

20 20

=2 20 [w(i, j) - (F, j)—Fs(, j))| (7)

i=1j=1
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The value w(i, j) = 1 is used throughout this study.
The use in Equation 7 of f’ rather than f indicates
that the quantity is not yet conveniently scaled.

Alternative implementation as the 20 X W finger ma-
trix method. This alternative is presented briefly, in
order to demonstrate that the 20 X 20 matrix ap-
proach (or reductions thereof by combining amino
acids into sets) is not the only one possible. We can
“permute” the dimensions and decide to retain de-
tails of separation and instead compress information
about one of the amino acid residue types of a pair.
Now logarithms of prime numbers can be assigned
that relate to trends in physicochemical or evolution-
ary properties of amino acid residues. In practice,
for symmetry, the specified amino acid is regarded
at the center of each row at separation m = 0, the
elements of each row representing 2W + 1 sepa-
rations (m = —W, ..., +W). Each element is no
longer A(m) summed over separations m, but A(r)
summed over 20 types of amino acid residue r.

The important feature is that this now provides an
opportunity to order the A(r) onr in a way that was
not possible for A(m) on m, that is, such that the
value relates to amino acid type, not separation dis-
tance. The more similar are two amino acids, the
more similar will be their A(r) values. Following a
notation analogous to that of the standard Perl com-
puter language for hashed or associative arrays in-
dexed by text strings, let A{’X’} = log(m) be the
value associated with amino acid residue of type X,
andletm andn in A{’X,’} = log(m) and A{’X,’} =
log(n) be chosen to be similar values when X, and
X, are similar amino acids.

The method of assignment of values to the amino
acid residues is empirical, by an optimization pro-
cedure. The starting configuration of values was the
logarithms in the set of prime numbers that would
best preserve the substitution distances (distances
in terms of normalized number of accepted substi-
tutions) of the 20 amino acids attained by multidi-
mensional scaling, such that distances reflect the de-
gree of dissimilarity in evolutionary terms (see
French and Robson ' for results and details). Though
there is an element of arbitrariness, the final assign-
ment of parameters is a complex balance in which
the effects of multiple occurrences of the same pair
at the same separation distance also have to be con-
sidered, in conjunction with the stress in departing
from the dissimilarity of residues in terms of the num-
ber of accepted mutations. Starting from logs of
prime numbers that are early in the series, e.g., log(2),
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log(3), log(5), or too high in the series, e.g.,
log(10079), log(10091), 10g(10093), allows less ready
distinction. In the first case, multiple occurrences of
low values become confused more readily with a very
few occurrences of high values. Note that, in eval-
uating any 20 X § Fastfinger matrix, when a par-
ticular amino acid residue is observed for the nth
time at the specified separation, say six, then the same
value A (m) for that amino acid residue will be added
in for the nth time. In the second case, greater pre-
cision is used to distinguish types as log(N) and
log(N + d) converge for large N and small d. The
following set, although not guaranteed to be fully
optimal assignments, nonetheless performed well
when the 20 X § Fastfinger matrix was employed
to identify distant sequences:

AW’} = log(211);

A{F} = 1log(197);
A{M’} = 1og(191);
ALV} =1og(179);
A{T} = log(151);
AL A’} = 1og(139);
A{’P’} = log(131);
A{Q’} = log(107);
A{’D’} = log(101);
ALK’} = log(73);

ALY’} = 1og(199);
A{’L’} = log(193);
A{T} = log(181);
A{C} = log(167);
A{’S’} = log(149);
A{'G’} = log(137);
A{'N’} = log(109);
A{E’} = log(103);
A{'H’} = 1log(79);
A{'R’} = log(71).

Shifted window W. We still make use of the same
prime numbers 2 through 29, but use these to relate
to larger separationsuchas1 ... M, 1... M + 1,
1...M + 2, ..., without loss of precision. Here
one residue is envisaged as fixed and the others are
in awindow M locations away. This is called a “shift-
ed,” as opposed to a simply “widened,” window. A
trend in the measures when M increases, and when
insertions and deletions are responsible for losing
correlation, can help demonstrate the relative sig-
nificance of the pattern agreement as normally mea-
sured up to W = 10. The trend can also help dis-
tinguish cases where there are different matching
domains at different locations in two sequences.

Nonprime Fastfinger methods: Estimated percent-
age identity without alignment. Some studies (e.g.,
see the section on results, Table 4, later) required
selection of sequences with approximately the same
percentage residue identity. The following alterna-
tive nonalignment method was used to rapidly com-
pare sequences to determine which might lie in the
appropriate range, and this was then checked by a
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more exact calculation, involving alignment. This
method, EST%ID, replaces compression by use of
primes with other kinds of approximations that sac-
rifice information. This is achieved by thinking of a
more classical L X M table for comparing two se-
quences of length L and M, and estimating from all
the elements what the identity percentage would be
after alignment, solely from that table.

In brief, let N(m) be the number of times that the
same pair of amino acids is found at the same sep-
aration m, when every possible pair at separation m
is compared in the two sequences. N’ (m) is the cor-
responding number of nonmatching comparisons.
The full field of comparison is the Lp X Lt matrix
for studying correlation of two sequences (probe and
test) of lengths Lp and Lt. In practice, the summa-
tion is also over a range of values of m, say M, typ-
ical choices being with the first member amino acid
residue of the pairatjandm =j + 1...j + 10,
m=j+21...j+30,m=j+51...j+ 60,
m=j+101...j+110,andm =j + 201 ...j +
200. That is, the N(m) and N’(m) are pooled over
these ranges of m. These ranges can be arbitrarily
defined as short, proximate, medium, long, and re-
mote-range neighbors in the sequence. The summa-
tions over selective ranges (m = M ... 10) are called
N(M) and N’(M) for the matching and nonmatch-
ing cases, respectively. The ratioK = 3, N’(M)/%.,,
N(M) is the key quantity calculated. K is scaled to
achieve a form of normalization by dividing the ra-
tio K by Ky = (number of matches expected for 100
percent sequences)/(number of mismatches expected
for 100 percent sequences). This is done for pairs
throughout the Lp X Lt matrix.

The scaling factor 1/K is determined as follows. The
number of possible pairs available for comparison
ism=(Lp — W+ 1)(Lt — W + 1) where W is
the maximum separation of pairs considered. An ap-
proach to a perfect match for a large number of dif-
ferent amino acid types, without any spurious
matches of pairs, would be one for each entry on the
diagonal and zero for each entry off the diagonal,
andhenced = (Lp — W+ 1) + (Lt — W+ 1)/2
for corresponding limit Lp = Lt. The limit is
(1 —0)im — d)/(d + 6-(m — d)) for the real
case, where 6 depends on the statistical distribution
of amino acid residues and pairs. The measure § =
K-(d+6-(m—d))/(1— 0)(m — d) attempts
to be the adequate scaling condition, including count-
ing multiple separations when summation of N’ (M)
and N(M) is taken over “hits” between matching
pairs for all ranges fromm = 1 tom = W. fis cal-
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ibrated, as from the probe sequence, such that § =
K-(d+6-(m—d)/(1— 60)m—d)=1.Thisis sat-
isfied by taking 6 as 0 = K- ((m — d) — d))/(K+ (m —
d) — d + m)). In practice, several 6,, are determined
from the probe against itself, one for each range M.
Hence Sy, = K+ (d + 6y, - (m — d))/(1 — 6y)(m — d)
is determined for each range M. In practice, the mea-
sure S ranges from 0.4 to 1, or 4-100 percent. For con-
venience, this may be further rescaled as S” = 20 +
(80/60) - (S — 40), approximating the 20 percent for
random matches and 100 percent for complete matches
encountered in aligning sequencing and scoring cor-
responding residues.

Use of public domain methods for comparison. The
E-value (expectation value) of BLAST was used with
standard settings (using gapped alignment, compar-
ison matrix BLOSUMG62,11,1 [0.85])." The studies
used three sequence data sets. First, for studies in
percentage identity, the lysozymes plus a-lactalbu-
mins, cytochromes, globins, and serine proteases
were used for clearly similar sequences (in the range
of 35-100 percent identity). The families were not
chosen because Fastfinger performs particularly well
(or badly) with them, but simply because they are
large sample families, well researched for the con-
struction of evolutionary trees, and well understood.
Second, this was extended by a further set of 75 pro-
teins that include some subtle but classically recog-
nizable homologies by application of standard meth-
ods. This set is listed in, for example, Garnier and
Robson. ! This was well researched by the authors
and their colleagues. It was the standard early train-
ing set to compare various classes of secondary struc-
ture prediction, some of which benefited from, and
even exploited, homology between test sequence and
one or more entries on the database, and some that
sought to avoid that bias. This also aids interpreta-
tion of the correlation between residue pairs and sec-
ondary structure. Third, to ensure an unbiased com-
ponent, the set of more than 200 nonhomologous
proteins was used for the routine working set shown
later in the results section, Table 3. A larger set of
500 has also been used, but pairs with significant ho-
mologies were not well purged; results were none-
theless similar.

In comparing percentage identity, pairs of sequences
were first selected by the EST%ID method, followed
by Smith-Waterman and CLUSTALW. A computer ex-
periment to optimize the f score by reasonable vari-
ations in alignment demonstrated that the value of
f is not sensitive to the choice of pairs by this method.
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Results

In general, the method is not yet of the caliber of
standard methods for routine sequence searching
but, particularly in view of the losses of information
due to compression, it was found to perform surpris-
ingly well and may have merits in certain specific ap-
plications. Depending on hardware, algorithmic de-
tails of preliminary parallelization over several
component tasks, and programming language, the
method was found to be some 3-12 times faster in
research codes for earmarking similar sequences
when reading data blocks of fixed length and in par-
allel processing. This is largely because the matrices
are all of the same length, while sequences are not;
indeed other “tricks” using the same 20 X 20 data
representation could theoretically achieve much
higher speed gains, but they have not yet been dem-
onstrated. As described in this section, there may also
be useful behavior and even benefits in cases of more
subtle sequence relationships, despite significant in-
formation losses due to compression, and these con-
siderations form the major part of the present study.

Relation between scores and classical methods. Fig-
ure 2 gives a typical example result for a small da-
tabase corresponding to that of 75 proteins from Gar-
nier and Robson' (see previous section for
discussion), again using window W = 10. In report-
ing results of simulations, FI (“f index™) is equiv-
alent to 100 times f as described in the theory and
methods sections. Full output examples have been
omitted for brevity, but it is worth noting that they
include statistical analysis and various analyses as de-
scribed in this paper; they also include use of H, E,
and C (observed) secondary structure symbols as
an alternative to amino acid residue assignments
(discussed later). Again for brevity, straightforward
nonmatching cases in which the sequence match is
deemed insignificant by BLAST and FASTFINGER, with
FI > 65 or more, are excluded. This is with the ex-
ception of retaining a few cases that illustrate some
feature of interest.

The arbitrary sample set well reflects the quantita-
tive situation for false positives and negatives—the
cause of a number of typical difficulties as well as
curious features worthy of future study. Notably, it
is impossible to avoid false positives or false nega-
tives. In this example, all scores with 55 percent or
less are also various types of proteases, with the ex-
ception of immunoglobulin (human myeloma chain
2), which has a BLAST E-value of 0.011 with respect
to the probe (heavy chain gave 6.0). It is interesting
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that on such a BLAST score a protein might be con-
sidered as a possible template for homology mod-
eling, in the absence of any template of more ob-
vious structure. Note that several of the serine
proteases did not score under the threshold of 55,
for example, 2ALP1E Alpha Iytic protease (FI = 61),
3RP21E Serine proteinase (FI = 65), ITPO1E Beta
trypsin (FI = 58), and 2EST1E Elastase (FI = 63).
These actually illustrate the limitation that Fastfin-
ger requires sequences to be roughly the same length
as the template, since the lengths differ significantly.
However, as is typically the case, the scores may still
be regarded as low enough to be worthy of further in-
quiry. An example of such a further inquiry would be
a “scan” of the matrix of the shorter sequence of length
L against the matrix of progressive sections 1...L,
2...L+1,3...L+2,...ofthelongersequence.
(This need not cover every extracted segment of
probe sequence length, but, for example, be in jumps
of ten residues: L ... 1, L + 11, L + 21 ...).

In many such studies, the range 55 < FI < 66 rea-
sonably indicates “potentially interesting.” These are
marked “<” in Figure 2. It is evident that arbitrary
increase of the threshold usefully catches these and
several more proteases, but brings in a number of
false positives.

Several of the positive hits (i.e., FI less than 55) are
proteases, but not serine proteases. For example,
3TLNIM (Thermolysin, FI = 53) is a Zinc-depen-
dent metalloproteinase, and 2ACT1M (Actinidin,
FI = 55) is a sulthydryl proteinase. Hence, some pro-
teins with a proteolytic function but different folds
do not behave very differently from proteins of weak
sequence homology and the same fold. Should these
be considered false positives? Rather than being a
difficulty, the possibility that a common pattern ac-
tually exists (in the sense of pattern in the present
method), and identifies function, would be interest-
ing and useful. Another sulthydryl proteinase,
1PPD1M (Papain sulthydryl proteinase, FI = 64),
differs significantly in length and was not initially con-
sidered a positive hit, but it does of course show up
on the potentially interesting list (i.e., FI = 65 or less).
This would make sense if there was either (1) a com-
mon ancient ancestor but an extensive differential
change in protein architecture or (2) an effect of con-
vergent evolution of pattern features essential for
function; it might be that specific sets of separations
of key residue types were favored by the common
function. In addition, several immunoglobulins share
pattern features. Be that as it may, Fastfinger “flags”
the matches as worthy of further study.
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Figure 2  Fastfinger example result

4APEIE ACID PROTEINASE ENDOTHIAPEPSIN

4APE1E ACID PROTEINASE ENDOTHIAPEPSIN

2APP1E ACID PROTEINASE, PENICILLOPEPSIN [HYDROLASE: PROT
2FB42E IMMUNOGLOBULIN FAB (HUMAN MYELOMA ) LIGHT CHAIN
3TLNIM THERMOLYSIN [HYDROLASE: NEUTRAL METALLO-PROTEINAS
5CPAIM CARBOXYPEPTIDASE A [C-TERMINAL AMINO ACID HYDROLA
2ACTIM ACTINIDIN [HYDROLASE: SULFHYDRYL PROTEINASE] {KIW
1SBTIM SUBTILISIN BPN' [HYDROLASE: SERINE PROTEINASE] {P
2SGALE PROTEINASE A (SGPA) [HYDROLASE: SERINE PROTEINASE
IMCP1E IMMUNOGLOBULIN FAB IGG (MOUSE) CHAIN 1

IMCP2E IMMUNOGLOBULIN FAB IGG (MOUSE) CHAIN 2

1TPO1E BETA TRYPSIN (BOVINE) ORTHOROMBIC

4SBVIE SOUTHERN BEAN MOSAIC VIRUS COAT PROTEIN

5CHALE ALPHA CHYMOTRYPSIN A (BOS TAURUS) CHAIN 1

2CABL1E CARBONIC ANHYDRASE FORM B HUMAN ERYTHROCYTES
2RHE1E BENCE JONES PROTEIN LAMBDA VARIABLE DOMAIN (HUMAN
1ECDIH HEMOGLOBIN (ERYTHROCRUORIN, DEOXY) [OXYGEN TRANSP
2ALP1E ALPHA LYTIC PROTEASE [HYDROLASE: SERINE PROTEINAS
2LHBIH HEMOGLOBIN V (CYANO,MET) SEA LAMPREY

2EST1E ELASTASE PORCINE PANCREAS

1PPDIM PAPAIN SULFHYDRYL PROTEINASE (PAPAYA FRUIT LATEX)
2SOD1E CU,ZN SUPEROXIDE DISMUTASE [OXIDOREDUCTASE: SUPER
1REI1E BENCE-JONES IMMUNOGLOBULIN VARIABLE PORTION (REI)
1LH11H LEGHEMOGLOBIN (ACETATE,MET) [OXYGEN TRANSPORTI {Y
2PKA2M KALLIKREIN A (PORCINE PANCREAS) CHAIN 2

3DFRIM DIHYDROFOLATE REDUCTASE [OXIDOREDUCTASE: NADPH/DO
3RP21E SERINE PROTEINASE (RAT MAST CELL PROTEASE)

2STVIE COAT PROTEIN OF SATELLITE TOBACCO NECROSIS VIRUS
8ATCIM ASPARTATE TRANSCARBAMYLASE (E. COLI) CHAIN 1
1CPV1IH CALCIUM-BINDING PARVALBUMIN B [CALCIUM BINDING PR
1LDEIM APO-LIVER ALCOHOL DEHYDROGENASE [OXIDOREDUCTASE:
8ATC2M ASPARTATE TRANSCARBAMYLASE (E. COLI) CHAIN 2
1AZA1E AZURIN ELECTRON TRANSPORT PROTEIN

2PKA1E KALLIKREIN A (PORCINE PANCREAS) CHAIN 1

3ICB1IH CALCIUM BINDING PROTEIN BOVINE INTESTINE VIT. D D
2ABXIM BUNGAROTOXIN BRAIDED KRAIT VENOM

3WGAIM LECTINCAGGLUTININ) WHEAT GERM

8CATIM CATALASE BEEF LIVER

BLAST=0
BLAST=0.
BLAST=0.
BLAST=0.
BLAST=0.
BLAST=0.
BLAST=0.
BLAST=0.
BLAST=4.
BLAST=0.
BLAST=1.
BLAST=1.
BLAST=0.
BLAST=0.46
BLAST=3.3
BLAST>100**
BLAST=0.04
BLAST=2.6
BLAST=2.8
BLAST=0.13
BLAST=0.19
BLAST=0.96
BLAST=1.6
BLAST=1.7
BLAST=1.8
BLAST=4.6
BLAST=6.3
BLAST=0.5
BLAST=55
BLAST=0.18
BLAST=1.5
BLAST=3.9
BLAST=0.66
BLAST>100**
BLAST=0.31
BLAST=2.1
BLAST=0.54

6

Figure 3, a report for the principal match detected, gives
some feeling for the relationship between the score
for the case of approximately 50 percent identity.

The Fastfinger score f correlates with percentage
identity, although the relation is not exact because
of the way in which f includes contributions from
the insertion regions; these count as a component
of pattern difference. In Figure 2, a score of f = 0.36
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(FI = 36) conforms to a case of 53 percent sequence
identity, a clearly homologous case. Table 2 shows
the overall correlation in terms of curve fit to syn-
thetic and real structures, and Table 3 shows the ex-
tent to which percentage identity can be deduced
from f (without alignment) for real protein se-
quences. Both use a maximal separation window of
W = 10. The form is less linear and more parabolic
in the range 20-100 percent identity in circumstances
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Figure 3  Report: Significant homology/identity hits (Frankenstein Internal Fastfinger 1.0) 4APE1E ACID PROTEINASE
ENDOTHIAPEPSIN vs 2APP1E ACID PROTEINASE, PENICILLOPEPSIN (HYDROLASE: PROTEINASE) 53 percent
residue identity

12345678901234567890123456789012345678901234567890
-STGSATTTPIDSLDDAYITPVQIGTPAQTLNLDFDTGSSDLWVFSSETT
AASGVATNTP-TANDEEYITPVTIGGTTLNLN--FDTGSADLWVFSTELP

* kk k% * *kkk Kk Kkk * Kk kkkk Kk kkkkkk K

ASEVDGQTIYTPSKSTTAKLLSGATWSISYGDGSSSSGDVYTDTVSVGGL
ASQQSGHSVYNPS— -ATGKELSGYTWSISYGDGSSASGNVFTDSVTVGGV

* * k% * ok kkk kkkkkkhkkhkkkAk kk ok kk &k kk%k

TVTGQAVESAKKVSSSFTEDSTIDGLLGLAFSTLNTVSPTQQKTFFDNAK
TAHGOAVOAAQQISAQFQQDTNNDGLLG LAFSSINTVQPQSQTTFFDTVK

* *kk Kk * *kkkkhkkkkk *k*x K * kkkk *

ASLDSPVFTADLGYHAPGTYNFGFIDTTAYTGSITYTAVSTKQGFWEWTS

SSLAQPLFAVALKHQQPGVYDFGFIDSSKYTGSLTYTGVDNSQGFWSENY

*k * K * *k Kk kkkkk *kkk Kkkk K * kKK

TGYAVGSGTFKSTSIDGIADTGTTLLYLPATVVSAYWAQVSGAKSSSSVG
DSYTAGSQSGDGFS- - GIADTGTTLLLLDDSVVSQYYSQVSGAOQDSNAG

* ** * *khkkkkhkkkhkkkk K *k*x * *kkkk *

GYVFPCSATLPSFTFGVGSARIVIPGDYIDFGPISTGSSSCFGGIQSSAG
GYVFDCSTNLPDFSVSISGYTATVPGSLINYGPSGDG-STCLGGIQSNSG

*kkk kk kkk K

* ** * Kk ok kkkk*k *

IGINIFGDVALKAAFVVENGATTPTLGFASK-
IGFSIFGDIFLKSQYVVFDSDG-PQLGFAPQA

*k * kKK * % * kK

where there is greater information loss in transform-
ing the sequence information into a matrix. Such in-
formation loss occurs when there are longer sequences,
and the effect becomes significant for sequences of 500
residues or less. Information loss also occurs for alter-
native methods that deliberately discard some infor-
mation from the outset. For example, 1DIST(1) is a
simpler 20 X 20 matrix approach included for com-
parison. Only one of the separation distances is re-
tained, and it holds the minimum separation encoun-
tered for a pair of residues (that is, if separations
between residue pairs of the specified type are 3, 5, 7,
8, only 3 is retained). For clarity, data for the simpler
method are not shown in Table 2, but the value fmax
of the hyperbolic fitted function f = fmax/(1 +
Pi—imax2/P), where P is percentage identity, has been
fitted to the mean and 90 percent density contour lev-
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* kkkk

els of the scatter plot of f vs percentage identity. The
half maximal value P;_,., varies from 60—80 percent
in the different study cases. Table 3 does include re-
sults from 1DIST(1) because it emphasizes that Fastfin-
ger does contain more information, corresponding to
that specifically excluded from 1DIST(1), despite the
compression process.

The relation between Fastfinger and log (base 10)
of E-score of BLAST, which is routinely used in rapid
scans for related sequences in large databases, is in-
dicated in Figure 4. Values less than f = 0.5
(i.e., FI = 50 percent) are promising also by BLAST
standards, and f values of 0.65 (FI = 65 percent)
or less are worthy of further study. Note that only
sequences within 30 percent comparable length were
used. However, this selection applied only to total
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Table 2

Best-fit-curve properties of 20 x 20 preferred method (compressing information for multiple separations of a pair of
residue types into a single scalar quantity). A high-quality fit requires a higher degree polynomial, but curves of f vs
(100 - percentage identity) are approximately parabolic. They are also sufficiently close to linear f = slope x (100 —
percentage identity) + intercept, for most purposes, except for high f and weak identity less than 20 percent, with
only about 3 percent stress. This roughly linear form, with an intercept close to zero, is convenient: for sequences of
similar length, multiplying T by 65 and subtracting from 100 percent will give a rough indication of identity.
“Randomized sequences” means that one of a pair of identical sequences is randomly “mutated” to create identities
from 100 to 20 percent.

Curve Fitted to Scatter Plot of f vs Slope Intercept fmax 1DIST(1)
Percentage Nonidentity of Pairs of (Ps _ tmaxs2 Varies
Sequences, in Region of Greater from 60 to 80 Percent)

Than 20 Percent Identity

Best-fit curve to T vs percentage nonidentity of 0.65 ~0 0.9
sequence pairs

Upper 90 percent contour of randomized 1 0.13 0.95
sequences
Lower 90 percent contour of randomized 0.55 0 0.85
sequences
Upper 90 percent contour of real sequences 0.75 0.26 0.95
Lower 90 percent contour of real sequences 0.5 ~0 0.65

Table 3
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How f varies with percentage identity, studied over many sequences, and expressed in terms of the percentage
identity implied by the f measure. The relationship is not a one-to-one mapping, so one value of f can imply a range
of percentage identities (and vice versa). The third column shows the performance of the standard recommended
method (compressing information on multiple separations of a pair of residue types into a single scalar quantity). For
comparison, the second column shows results for 1DIST(1) (which does not use this compression) and retains only
the minimum separation encountered for a pair of residues. This reduced method is less informative for more distant
sequences with poorer degrees of identity: the correlation with f is much poorer, and the ranges of percentage
identity overlap broadly. Clearly more separation distance retains more information for the more distant relationships
despite the compression process, which is based on the prime factorization theorem.

f Percentage Identity of Percentage Identity of
Sequences Implied: Sequences Implied: 20 x 20
1DIST(1) Method
0.65-1.00 0-60% 0-20%
0.35-0.45 55-87% 20-65%
0.25-0.35 70-90% 40-80%
0.0-0.15 90-100% 80-100%
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Figure 4  Relationship between Fastfinger and BLAST, where natural log of the BLAST E-value is greater than —73

number of residues per sequence, and so sequences
with insertions and deletions of very considerable
length in different regions were allowed. Also, since
for close homologues BLAST E-values have large al-
gorithmic values, only points where the natural log
of the BLAST E-value is greater than —73 are in-
cluded. Fastfinger and BLAST methods essentially
agree on the idea of close relatedness when f < 10,
which is an important consideration for rapid iden-
tification of related sequences in a large database,
including differences due to sequence errors, poly-
morphisms, or species variations. The divergence for
higher values is not surprising, however, in view of
the differences in philosophy. BLAST better distin-
guishes closely related proteins, while Fastfinger re-
solves sequences in the E-value “twilight zone” of
around zero. Whether these are “false positives” in
terms of biologically or physically meaningful res-
olutions remains to be determined, but they repre-
sent real differences in pattern, at least in the spe-
cific terms of this study, and hence similarities and
differences so resolved are at least worthy of further
study.
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In a computer experiment, a similar study to that
shown in Table 3 was done, except that for the ma-
trices only three symbols, H, E, and C, of the ob-
served secondary structure were used. The method
has some resolving power, which relates to second-
ary structure threading and will be described else-
where. For proteins of 40— 60 percent customary se-
quence identity, 1DIST(1) obtained a secondary
structure-based f of 0.5-0.75. The f value obtained
for the same proteins from the recommended 20 X
20 matrix method was 0.3-0.43.

Contribution of “domains.” The finger arrays are ad-
ditive, such that a protein sequence that can be con-
sidered as composed of two parts, say AB, can be
compared with two smaller proteins, or fragments
of sequence, separately. This makes them well-suited
to the study of domains, or segments found in dif-
ferent proteins in different orders and contexts.

First, it may be demonstrated that the method is in-
sensitive to the order in which domains or any other
segments may occur, provided that the length is
greater than the window length . While we are in-
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Table 4 Effect of altering order of segments of sequence

Previous f f after “Mixing”

Unchanged f =0.000 f=10.000
Reverse order of 160 residue segments f =0.000 f=0.032
Reverse order of 80 residue segments f =0.000 f=0.053
Reverse order of 20 residue segments f =0.000 f=0.148
Reverse order of 20 residue segments, averaged over cases with <f>=0.366 <f>=0.384
45-55 percentage sequence identity

Reverse order of 20 residue segments, averaged over cases <f>=0.559 <f>=10.575

with 15-25 percentage identity having a common fold

terested in a difference “penalty” measure and in
measuring new pattern content, say due to one se-
quence having domains or loops not present in the
other, the “shuffling” of existing patterns does not
constitute new pattern. Table 4 confirms that the or-
der does not greatly affect the f measure between
two sequences. The shuffling method is shown in the
table. “Reverse order of 80 segments,” for example,
means that the sequence is broken up into segments
of length 80, then the segments are rejoined except
that their order is reversed. In order to compare ex-
amples where f was initially nonzero, the study se-
lected two different sequences and performed the
shuffling operations on just one. The average of cases
with 45-55 percent sequence identity were used, and
also of 15-25 percent sequence identity, provided
they were known to have a common fold.

Second, appropriate behavior with respect to com-
parison with parts from several other sequences can
be demonstrated. The operation of subtraction can
be performed more than once, and the absolute value
of the difference for each element is taken when the
operations are completed. In the method described
previously, the matrix F,_p = F, — F3. In this use,
the operation of subtraction also indicates that the
absolute value of the difference of the two corre-
sponding elements is taken. In the same notation,
the difference between probe sequence A and two
proteins or protein fragments B and C might be rep-
resented by F, 5z - = F, — Fz — F. This is dem-
onstrated for the case where B = C by preparing
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a dimer sequence 4, which is the same sequence ex-
tended once by a copy of itself. The above theoret-
ical considerations would predict that the score for
F,_z_- would be close to zero in such a case. Table
5 shows the final scores. Here 4APEIE is an en-
dothiapepsin and 2APP1E is a penicillopepsin. These
are acid proteases and weakly related.

Note that a low score of 0.017 is obtained if Fj is
subtracted twice, reflecting the fact that two copies
of sequence B are found in the probe protein se-
quence dimer A. The value is not exactly zero be-
cause new pattern components appear in the region
where the two sequence copies are spliced together.
Note that these proteins, prior to the artificial dou-
bling in length, already naturally consist of two
weakly related domains—the first half and second
half of 4APEI1E relate to each other with a score of
0.276 and the first half also relates to the first and
second halves of 2APP1E, of corresponding length,
with scores of 0.219 and 0.2843, respectively. The
method can be readily extended to simultaneous
comparison with more than two proteins or protein
fragments by generalizingtoF,_z _p_. ... The gen-
eral problem is to find the solution of the coefficients
(i.e., weights) of the component terms that can be
determined by optimization or by successive testing
of each test protein or protein segments, with respect
to their f score.

Statistical properties of finger matrices. Of partic-
ular interest is the underlying cause of the spread of
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Table 5 Example of identification of domains and repeated domains

Target = 4APE1E

Target = 4APE1E Target = 2APP1E

Dimer
F[4APE1D dimer] — F[target] 0.825 0 0.998
F[24APP1D dimer] — 2 x F[target] 0.017 1.633 0.743

f values for sequences of similar BLAST E-scores.
While differences in the number of residues of each
sequence, including insertions and deletions, play a
role, the effect remains for sequences of very similar
length and no insertions or deletions. Preliminary
results are presented in Table 6 for the data of Fig-
ure 4. Let the experimental value of an element in
a difference matrix be v, and N(v) the number of
elements within a small cell of that value. Although
seemingly at first an exponential distribution, de-
creasing with increasing value v of the difference el-
ements, a peak is apparent in the region of 2 < v <
5.

However, these features vary significantly in differ-
ent specific instances, and particularly so for the less
related sequences. One possibility suggested by ob-
servations of a limited sequence set was that, for the
more distant relationships, statistical distributions of
the terms of the difference matrix F,_ change when
the two proteins are, or are not, of comparable sec-
ondary structure. For example, pleated-sheet-rich
proteins may have different sequences and even
rather different folds, but a distribution more closely
resembling the case 0.333 < f < 0.666 than f > 0.666
can be obtained. A similar secondary structure tends
to make the two proteins look more similar in terms
of their f score. This is interesting, because specific
pairs at various separations may be better predic-
tors of secondary structure than single residues, and
it suggests a reason why the finger matrices might
be genuinely picking up meaningful variations.

Studies relating proteins of similar and different sec-
ondary structure are available;" they support the
above hypothesis but are preliminary. The required
correlation can, however, be demonstrated directly
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as follows. The idea is that, for example, a leucine—
leucine pair in a protein, especially at separations i,
i +3andi, i + 4, is more likely to be associated
with a helical region in the source sequence. A ma-
trix derived from a sequence that is rich in such pairs,
and others indicative of helix, is likely to represent
a sequence rich in helical secondary-structure con-
tent. Difference matrices for segments of sequence
that have low values of f are likely to imply that the
two proteins are of similar secondary structure, and
of course a low f value overall will indicate a likely
common secondary structure and tertiary structure.
For example, even if a leucine-leucine interaction
was absent in one matrix, other pairs with similar
helix-forming propensity are still likely to be retained.

Figure 5 shows a 20 X 20 finger matrix for a general
probe (or test database) sequence, indicating a pri-
ori the pair separation that is most likely to occur,
given the secondary structure conformation (helix,
sheet, or loop) from which it occurred. Conversely,
it may be considered as showing the most likely sec-
ondary structure if a single pair at a known separa-
tion is encountered. The matrix is obtained by con-
structing matrices for the sequences considered in
the above studies, without compression, and count-
ing the frequencies of the occurrences. In practice,
particular information measures '>!¢ are used because
these compensate for excess or deficiency of certain
secondary structure types in a sample, evaluated as
I(X: ~X; A, B) = In(n|X, A, B]/n[~X, A, B]) —
In(n[X]/n[~X]), where n[X, A, B] is the number of
times that a pair of amino acid residues A, B occurs
in secondary state X (say helix), and n[~X, A4, B]
is the number of times that pair A, B occurs in state
other than X (say nonhelix, i.e., sheet or loop), such
measures being conditional on the particular sep-
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Figure 5  Finger matrix (20 x 20) for a test database sequence
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Table 6

Example distributions of the number of elements N(v) in a difference matrix of 400 elements, which are associated

with particular ranges of difference value v. Arbitrary examples are chosen from the ranges f < 0.333,
0.333< f <0.666, and f > 0.666, roughly indicating plausible homology, marginal evidence of homology, and no

evidence of homology.

Value N(v)
(v) f <0.333
0 135
1 28
2 34
3 41
4 20
5 18
6 13
7 12
8 11
9 9

10 7

11 5

12 6

13 5

14 4

15 3

16 2

aration (say, 4 ati and B ati + 3).'” Though Rob-
son and Garnier' originally used a more rigorous
Bayesian estimation method used for finite #, both
a rigorous approach, and simple use of terms z [ ]
(i.e., the number of occurrences of events as directly
counted) gave similar results in this study.

Numbers in Figure 5 indicate major separations m
(row residue at i, column residue ati + m) and are
specified more than once in a continuous zone only
when needed to resolve ambiguity. Color does not
relate to any notion of strength of effect but distin-
guishes the secondary structure states preferred, as
shown in the color key in Figure 5. For simplicity,
“ambiguous” regions of fine balance are in white,
though there is sometimes still a strong preference
to two states only, here indicated by pale yellow. For
example, in this sample there was a fine balance be-
tween helix (3, 4) and sheet (1, 2) for squares at (row-
column) L-I, I-L, V-L, and even I-I (though the lat-
ter has a rather clearer bias to sheet), but occurrences
in loop in all cases are very rare.
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N(v) N(v)
0.333< f > 0.666
< 0.666
80 17
27 14
38 19
23 21
14 14
21 13
15 17
16 13
14 14
11 16
0 13
9 11
8 12
8 9
6 11
6 9
4 7

Conclusions

This study explores whether a method of compress-
ing information, based on the prime factorization
principle, is of potential value in comparing se-
quences. This approach cannot yet be recommended
to replace existing methods, and any competitive
challenges to the established methods are likely to
be, at best, through substantial modifications of these
simple approaches. However, the relatively crude
compression methods used here clearly retain use-
ful information. Indeed, it is noteworthy that the in-
formation content of the method is sufficient to state
the sequence comparison conclusions in Table 7.

The biggest difficulty is that a contribution to the
Fastfinger measure arises simply because of any
length differences between the two sequences being
compared. An original intent was to proceed as fol-
lows. Let two sequences be of lengths L and M. The
contribution arising from the difference in length may
then be estimated by k| L — M| where constant of
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Table 7  Fastfinger results and likelihood of homology

FI (= 100 x f) Conclusion

FI=0..19% Homologous

FI1=20...39% Very likely homologous, probable overall significant sequence
identity

FI=40 ... 49% Possibly homologous, likely regions of significant sequence
identity

FI=50 ... 65% Possible local similarities or possible conformational relationship
without good sequence relationship; worthy of further study

FI> 65% Unlikely to be related. Reject.

proportionality k is calibrated as a constant in ad-
vance, or more specifically, estimated from the sta-
tistical properties of the log properties of prime num-
bers of the sequences involved in the comparison.
The correction method imagines that the insertion
regions do contain residues, and the net effect of the
appropriate types and separation characteristics that
would then occur is predicted. To put it another way,
the approach would make use of the idea that an
insertion contributes the log product of primes in
the normal way, and the corresponding deletion con-
tributes zero, and seek to compensate for that ef-
fect. When the approach is so expressed, however,
it becomes questionable whether such a compensa-
tion is justified within the philosophy of the method,
because all pattern differences, irrespective of
whether they can be associated with insertions and
deletions, are scored on the basis that a nonexistent
separation in the other sequence contributes zero,
without any such “compensation.” Further, from any
perspective, this method of compensation uses the
idea that one can focus on a specific region of match-
ing in which an insertion or deletion event occurs;
and for sequences with weak identity, it may not be
possible to locate such regions unambiguously, even
in principle. In the present study such compensation
has not been used, and indeed it is remarkable that
relatedness can be detected despite difficulties due
to length differences, at least to a point where a need
for further study can be identified. To achieve this
requires that we accept a number of false positive
matches, and conversely it requires that care is taken,
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and further study indicated, when sequences differ
greatly in length.

Fastfinger represents a relatively unusual class of
method, which, it may be argued, encompasses as-
pects of general homology-based methods and local
pattern-motif methods. Nonetheless, the novel phi-
losophy of the method poses some difficulties for
comparison with established methods. To overcome
some of the difficulties, one might address the con-
cept of “utility.” Utility can of course differ from ap-
plication to application, as between function iden-
tification as opposed to an interest in common
ancestry, or the issue of the extent to which sequences
have a common fold. A further method, Franken-
stein, has been developed to test very rapidly the per-
formance of Fastfinger and related variant methods
in the specific domain of protein modeling. For ex-
ample, the difficulty in modeling by homology ap-
pears to be a reasonably smooth function of the sim-
ilarity measures returned by Fastfinger. Details will
be reported elsewhere, but one observation that is
worth noting is that the amount of computation re-
quired in modeling rises roughly linearly with increas-
ing difference between sequences, at least when f
is small.

Despite these cautionary notes, it is fair to say that
the method has proven of worth, even in its present
simple form. Notably, although it is too early to make
ageneral “statistical” statement about the incidences
where there has been utility in regard to identifying

roBsoN 461



proteins of related function or fold compared with
other methods, the importance of discovering func-
tional and conformational relationships in difficult
cases, even when many false positives are generated,
is such that even occasional discovery by an extra pat-
tern comparison measure justifies its use. Hence, for
detection of potential cryptic relationships, the
“trick” is not to use the method in isolation but as
an adjunct to other methods.

As indicated by Figure 2, BLAST E-scores and per-
centage identity (or its estimation as described in the
methods section) are usually reported together. The
method modestly extends the armory of tools, and
in view of this, one may envisage implementing a
miniature “expert system” not only to compare the
techniques on their merits for each case, but also to
invoke each at its most appropriate level for filter-
ing out candidates. Last but not least, note that it
is remarkably simple to code the Fastfinger method,
compared with most of the established techniques,
and so to supplement, and explore the merits in con-
junction with, one’s own favorite methods.
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