Functional
classification of
proteins by pattern
discovery and
top-down clustering
of primary sequences

Given a functionally heterogeneous set of
proteins, such as a large superfamily or an entire
database, two important problems in biology are
the automated inference of subsets of
functionally related proteins and the
identification of functional regions and residues.
The former is typically performed in an
unsupervised bottom-up manner, by clustering
based on pair-wise sequence similarity. The
latter is performed independently, in a
supervised top-down manner starting from
functional sets that have already been identified
by either biological or computational means.
Clearly, however, the two processes remain
inextricably linked, because functional motifs and
residues are related to corresponding functional
clusters. This paper introduces a high-
performance, top-down clustering technique and
the corresponding system that determines
functionally related clusters and functional motifs
by coupling a pattern discovery algorithm, a
statistical framework for the analysis of
discovered patterns, and a motif refinement
method based on hidden Markov models. Results
are reported for the G protein-coupled receptor
superfamily. These show that a significant
majority of well-known functional sets and
biologically relevant motifs are correctly
recovered. They also show that a majority of the
important functional residues reported in the
literature occur in the inferred functional motifs.
This technique has relevant implication in
functional clustering and could be used as a
highly predictive aid to mutagenesis experiments.

t has been shown' that the combination of an ef-
ficient, deterministic pattern discovery algorithm,
SPLASH,? and a framework for the assessment of the
statistical significance of the discovered patterns? has
a high probability of identifying biologically signif-
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icant protein motifs, defined as highly conserved, un-
gapped regions of a protein or DNA (deoxyribonu-
cleic acid) sequence.* Biologically significant, in this
context, means that mutations of some of the res-
idues that are highly conserved in one of these mo-
tifs are likely to result in the loss of biological func-
tion, due to modifications in either the structural or
the physiochemical properties of the protein.

The rationale behind this approach is that mutations
that would result in a critical loss of biological func-
tion are less favored by evolution and, consequently,
functionally and structurally relevant regions tend
to be highly conserved across a corresponding pro-
tein family. This conservation can be detected as a
pattern of conserved residues that would be unlikely
to have occurred by chance. Complex protein fam-
ilies, consisting of several domains, each character-
ized by specific physiochemical properties, will there-
fore be characterized by large numbers of such
statistically significant patterns.

This paper extends this approach to a top-down clus-
tering method that can be used to organize large pro-
tein sets into subsets that are functionally related.
For simplicity, we refer to protein sets identified by
experimental means as protein or functional groups
and those identified by computational means as pro-
tein or functional classes. This procedure is expected
to separate the original sequence set into smaller and
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Figure 1  Venn diagram representation of a superfamily and
a functional subfamily

P SUPERFAMILY

smaller subsets, characterized by an increasingly
higher degree of functional relatedness. This is tested
and reported in the results section against a man-
ually generated taxonomy for the set of G protein-
coupled receptor (GPCR) proteins (ground truth). It
is also reported, in the section on related work,
against the results of running ProtoMap,’ a bot-
tom-up clustering method, on the same set of pro-
teins. Our results are found to be in substantial agree-
ment with the ground truth and to outperform
ProtoMap on the number of false positives and false
negatives, as well as on the ratio between the num-
ber of approximately matched and the total number
of identified classes.

Let us assume that P is a set of protein sequences,
such as a large superfamily, consisting of several func-
tionally distinct subfamilies, each one with a signif-
icant number of representatives. From the results
of Hart,' the single most statistically significant reg-
ular expression pattern in the set, 7, is expected to
correspond to a motif that is both biologically sig-
nificant and discriminative. That is, sequences match-
ing the motif would be likely to be functionally dis-
tinct from those that do not match it. In this context,
given a model of the motif, derived from the regular
expression, such as a position-specific scoring ma-
trix (PSSM)® or a profile hidden Markov model
(HMM),” and a corresponding statistical criterion,
such as a P-value or E-value,® a sequence is said to
match the motif if it satisfies the corresponding sta-
tistical criterion.

Based on such a motif-criterion combination, one can
split the family P into two subsets: P, with sequences
that match the motif, and P,, with sequences that
do not match the motif. This is shown in Figure 1.
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P, can be smaller than or equal to P, while P, is typ-
ically strictly smaller. This paper tests the hypoth-
esis that an exhaustive, iterative application of this
method leads to the simultaneous identification of
both a significant number of subsets of functionally
related sequences and their corresponding functional
motifs.

We visualize the evolutionary process for a protein
superfamily via a basic model, where a common an-
cestral gene evolves into a hierarchical gene family
through recursive gene duplication and divergence
events. The output of this model is a gene tree. Based
on this model, the procedure in Figure 1 should be
repeated iteratively on both P, and P, after “mask-
ing” the residues of 7, in the sequences of P, to avoid
discovering the same exact pattern again. The pro-
cedure can be stopped when either the set size be-
comes lower than a preset threshold or a statistically
significant pattern can no longer be discovered.

This procedure can be used to construct a binary tree
where each successive node corresponds to an in-
creasing degree of functional similarity. An edge in
the tree corresponds to the presence or absence in
the child node of the motif identified in the parent
node. This is shown in Figure 2A. By collapsing all
edges that do not correspond to a match and lead
to an internal node of the tree, a tree of variable
“arity” can be produced such that internal nodes cor-
respond only to the presence of a corresponding mo-
tif. This is shown in Figure 2B.

The advantages of this approach are threefold. First,
functional sets are directly inferred from and related
to specific motifs in sequence space. This offers im-
portant clues as to the functional relevance of the
individual motifs. Second, high similarity in nonfunc-
tional regions does not interfere with cluster selec-
tion. That is, two sequences that are highly similar
may have a critical difference in a functional region
and therefore not share a common function. Third,
the procedure is extremely efficient because it relies
on a hierarchical “divide and conquer” approach.
The system constructs a tree during the clustering
process, and all the nodes at the same level of the
tree are independent of one another and thus can
be “conquered” at the same time. Large superfami-
lies, with thousands of members, can be clustered in
a few hours on workstation-level hardware. For this
reason the method could be applied to the unsuper-
vised clustering of large-scale databases.
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Figure 2 Venn diagram of a superfamily and several increasingly smaller functional subfamilies

There are, however, several issues that may lower
the performance of the approach when measured
against known functional-family classification
schemes. First, entire or partial domain insertion,
rather than point mutation, may occur during evo-
lution. Therefore, several functional properties may
be highly intertwined across multiple families, and
the best representation of functional relationships
may not be a tree. This is addressed by a modifica-
tion of our approach that represents functional re-
lationships through a tree-graph combination. We
report on this in a later section.

Second, those parameters of our system effective dur-
ing the pattern discovery phase determine the types
of patterns that will be discovered. Therefore, sub-
tle, flexible,’ or very small motifs, such as an indi-
vidual catalytic residue, may be missed by the pat-
tern discovery procedure. In a later section we study
the parameter space to determine the robustness of
the algorithm. Third, the use of any statistical cri-
terion to determine class membership will result in
some false-positive and false-negative results. There-
fore, some functional family members may end up
in erroneous branches of the tree. A “fuzzy” clas-
sification algorithm that attempts to minimize this
effect is introduced in the methods section. Finally,
one should consider that manual functional classi-
fications of a large protein family typically show sig-
nificant disagreement and that some functional sets
may have a semantic rather than functional basis.
This aspect is covered in detail in the results section.
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This top-down clustering method is quite distinct
from traditional approaches, such as COG,"
DOMO, 2 HHS/MST, * ProDom, * and ProtoMap°—
where shared functionality is inferred from pair-wise
sequence homology. A top-down use of pattern dis-
covery for the construction of motif dictionaries has
also been proposed by Rigoutsos.' This approach
is based on the discovery of exact regular expressions
without statistical analysis or pattern refinement, and
no exhaustive comparison of the functional motifs
or of the functional residues to existing literature is
reported.

To measure our method’s performance, a suitably
large protein sequence set has been analyzed, where
the functional nature of the member proteins is
known a priori—the G protein-coupled receptors
(GPCRs). The GPCR superfamily comprises an impor-
tant, large, and functionally diverse set of proteins
that mediate the cellular responses to an enormous
number of unique signaling molecules across the
plasma membrane. They play fundamental roles in
regulating the activity of virtually every body cell.
Therefore, they constitute an almost ideal candidate
set for this exercise.

Furthermore, studies of the deduced amino-acid se-
quences indicate that these proteins have marked
homology and share a common membrane topology
consisting of seven transmembrane helices. Upon
binding of extracellular ligands, GPCRs interact with
a specific subset of heterotrimeric G proteins that
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can then, in their activated forms, inhibit or activate
various effector enzymes and ion channels. This
means that, although these proteins have a common
action mechanism, they are highly specific in their
targets. This selectivity (of both ligands and G pro-
teins) should result in a number of highly selective
motifs responsible for the binding of the specific mol-
ecules. A great wealth of information on these func-
tional regions exists in the literature from site-di-
rected mutagenesis experiments and other biological
assays.'°"? This information can also be used to as-
sess the method’s performance.

Finally, molecular cloning studies have shown that
GPCRs form one of the largest protein families found
in nature. In fact, more than 200 functionally dis-
tinct receptors in this gene family have been cloned
and more than 1000 sequences or sequence frag-
ments are available in the SWISS-PROT database.?
This is again ideal for this analysis because distinct
functional families are represented by a significant
number of members.

The next section of the paper describes the meth-
odology in detail. In particular, it describes how pat-
terns discovered by SPLASH can be used to generate
highly sensitive profile HMMs’ and how these in turn
are used to infer functional relationships. The fol-
lowing section describes the comparison of the re-
sulting functional clustering against taxonomies re-
ported in the literature and the comparison of the
putative functional motifs against residues for which
biological activity is also reported in the literature.
The final section covers related work.

Methods

This section is devoted to a description of the pat-
tern discovery and clustering steps.

Pattern discovery. SPLASH,? a novel pattern discov-
ery algorithm, is used to identify conserved patterns
in sets of protein sequences. This algorithm discov-
ers all rigid regular expressions that occur in a set
of sequences subject to the following constraints:

1. The characters of the regular expression are from
an alphabet of amino acids, amino acid similarity
classes, and a “don’t-care” symbol. Similarity
classes, such as [ILMV], are defined as sets of
amino acids that score above a given threshold
with respect to the first amino acid in the simi-
larity class, using a predefined scoring matrix such
as PAM?!' or BLOSUM. * Individual amino acids in
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the regular expression match only an exact occur-
rence in the sequence; similarity classes match an
occurrence of any of the amino acids in the sim-
ilarity class; a “don’t-care” symbol matches any
residue. For instance, C..[ILMV].[DE] matches
ACRKMVDQP, starting at the second amino acid, with
M matching [1LMV] and D matching [DE].

2. Patterns must occur at least j, times in the se-
quence set or in at least j, distinct sequences. In
this paper, the former definition is used, even
though more than one match in a single sequence
occurs infrequently.

3. Patterns must satisfy a density constraint. That
is, any substring of length /, in the pattern that
does not start with a “don’t-care” symbol must
contain at least k, tokens, which are letters, sim-
ilarity classes, but not “don’t-care” symbols. If the
pattern is shorter than [, it must contain at least
k, tokens.

. Patterns must contain at least ¢, tokens.

. Patterns must be maximal. That is, no token can
be added to the pattern without reducing its “sup-
port,” defined as the number j of occurrences in
the set.

W

The stability and performance of parameters such
asj,ly, ko, and ¢, are examined in the methods sec-
tion.

Patterns are assigned z-scores computed from the
mean number and standard deviation of equivalent
patterns that should have been discovered in a ran-
dom database of similar composition.? Patterns are
considered equivalent if they have the same support
J, length k (number of full characters), and span /
(total number of characters including “don’t-care”
symbols). Equivalent patterns are assigned identi-
cal z-scores. As reported by Stolovitzky,® z-scores are
inversely proportional to the corresponding P-val-
ues of the pattern. Hart! shows that high z-score pat-
terns tend to be biologically significant.

Given a set of sequences P, and a set of parameters
as described by Hart,! SPLASH is run repeatedly un-
til a minimum number, N_, of statistically significant
patterns are discovered. The algorithm starts by look-
ing for patterns that occur in 100 percent of the se-
quences. The minimum support j, is then gradually
reduced, by 5 percent of the number of sequences
each time. For every new minimum support, both
the density as specified and one-half of it (by dou-
bling the window length) are attempted. These steps
are repeated until a good sample of at least N_ sta-
tistically significant patterns is obtained or until a
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minimum support j, = 0 is reached. As soon as at
least N_ patterns are found, the most statistically sig-
nificant one is selected.

Pattern refinement. The amino acid classes described
in this section are not context-specific. That is, they
are not likely to realize all the possible substitutions
that would preserve function in a particular family.
This may result in incomplete patterns. To minimize
this effect, a pattern is extended by examining both
the left- and right-flanking regions of all the occur-
rences of the pattern in the sequence set. The goal
is to detect additional significant residue conserva-
tion that would not be discovered based on the sim-
ilarity class definition. Given a pattern, sequences
that match it are first rigidly aligned according to
where the pattern occurs, as shown in Figure 3. For
each position relative to the sequence multiple align-
ment, the residue statistics are analyzed to determine
if there is substantial conservation. This is accom-
plished by computing the amino acid entropy over
a small window and then by sliding the window, as
shown in Figure 3, until the entropy increases by
more than a predefined amount, AE. The window
is initially positioned inside the pattern at its left or
right boundary depending on the direction of the ex-
tension. The entropy is computed as:

w20

E=X2 —p;logp; (1)

i=1j=1

where p; is the probability of seeing the jth amino
acid at the ith window position, computed from its
frequency in the aligned set. The first sum is over
all positions of the sliding window; the second is over
the 20 amino acids. At the end of this process, pat-
terns are extended both left and right all the way to
the outer edge of the window, at the last window po-
sition considered before the entropy threshold was
exceeded. For results reported in this paper, w =
10 and the cutoff delta AE is computed as:

AE = (E., — E)/16 (2)

max
where E is the entropy computed over the first slid-
ing window position, when it is still completely con-
tained within the original pattern; E ,,, is the max-
imum possible entropy based on the database
composition; and 16 is a heuristic factor.

As discussed in Califano,” regular expressions pro-
duced by the pattern discovery algorithm should be
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Figure 3  Pattern extension
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used only as seeds for sounder statistical models such
as PSSMs or profile HMMs. The latter have the ad-
vantage of being based on a formal statistical frame-
work,” which provides a consistent theory for scor-
ing insertions and deletions. For this reason, they
are the model we chose. For practical HMM construc-
tion and scoring purposes, the package HMMER has
been used. This software is available at http:/
hmmer.wustl.edu/.

A profile HMM is obtained by running HMMBuild
on the set of occurrences of the extended pattern
resulting from the previous step. This is a set of
aligned, ungapped sequences. HMMBuild constructs
a profile HMM using the maximum a posteriori
(MAP)* construction algorithm to determine the
length of the main model, and the maximum like-
lihood estimates® with Dirichlet mixture priors to
estimate pseudo counts.** HMMCalibrate is then
used to obtain close estimates of the score proba-
bility densities for the computed HMM model. This
is performed by scoring a large number of synthetic
random sequences with the profile HMM and by fit-
ting the resulting score histogram with an extreme
value distribution (EVD).%?

HMMSearch is then used to identify all the se-
quences that contain regions similar to the extended
occurrences of the pattern discovered by SPLASH.?
The input is the entire set of sequences that was used
in the pattern discovery phase at the current level
of iteration. This set of sequences has not been pre-
viously aligned, and its alignment may contain gaps.
The program generates a log likelihood ratio > for
every sequence examined that indicates how well it
aligns with the profile HMM compared to a random
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set of sequences of similar size and composition. The
value that the program reports for every sequence
is an E-value, which is an estimate of the number
of sequences expected to have an equal or greater
log likelihood ratio in the random set.” The E-value
accounts for the different statistics of sequences of
different lengths according to the extreme value dis-

Sequence conservation
across families is directly
related to the functional
or structural relevance
of the conserved region.

tribution. Sequences with an E-value equal to or be-
low a first threshold e, are considered matches, while
those with E-values above a second threshold e,
(e, = e,) are considered mismatches. A given set
of sequences can thus be divided into a subset P,
containing the mismatching sequences, and a sub-
set P, containing the matching ones.

In theory, further pattern refinement can be per-
formed by iteratively refining the statistical model.
For any of these iterations, another profile HMM
would be obtained by running HMMBuild on the
subset of sequences matching the profile HMM ob-
tained in the previous iteration. HMMCalibrate and
HMMSearch would then be run in exactly the same
way as described previously. Notice that the first pro-
file HMM is obtained from the set of occurrences of
a SPLASH pattern, but any of the subsequent profile
HMMs is obtained from a set of matches of a profile
HMM. That implies that the construction of a sec-
ond profile HMM may make the biggest difference.
For time concerns as well, we choose to iteratively
refine our statistical model only once by construct-
ing a second profile HMM. Some results are reported
in the next section.

Functional clustering with a binary tree. As dis-
cussed in the introduction, the fundamental idea is
that sequence conservation across functional fam-
ilies is directly related to the functional or structural
relevance of the conserved region. Therefore, the
more statistically unlikely a globally conserved re-
gion is, the more likely it is that there exists a sig-
nificant functional or structural justification for that
conservation.
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Ideally, one would want to first identify all existing
patterns, from those conserved in large subsets to
those conserved in just a handful of proteins, and
then rank order them according to their statistical
significance. This is impractical, however, because
highly conserved patterns—patterns with a high sup-
port j—would result in a huge number of close var-
iants that are conserved in subsets of the j sequences.
This number can be shown to be exponential in j.
Therefore, as described in an earlier subsection, mo-
tifs are identified starting at the highest j. We next
describe how they are subsequently masked in the
input set to prevent detection of related variants.

Binary tree-based functional clustering is performed
as follows: given any sequence set P;, pattern dis-
covery is performed as described earlier. Then, the
single most statistically significant pattern is selected,
extended, and refined. Two new sets P;, (mismatch-
ing) and P;; (matching) are then generated from P;
by comparing the computed E-values against the two
thresholds. The new sets become respectively the
right- and left-child of P, in a binary tree.

If e, = e, then the two sets have an empty inter-
section. Otherwise, the two sets may partially over-
lap over borderline cases. The first method is referred
to as exact clustering and the second one as fuzzy clus-
tering. It is evident that the setting of the E-value
thresholds determines the performance of the sys-
tem. The E-value thresholds may and probably
should vary from iteration to iteration. This is be-
cause the distribution of E-values for a specific it-
eration depends on a combination of factors, includ-
ing the database used to construct the profile HMM
and the database against which to match the profile
HMM. In this paper, however, we use constant
E-value thresholds throughout a single experiment.
Tighter thresholds (higher E-values) tend to result
in more false negatives, while looser thresholds tend
to result in more false positives. To achieve good per-
formance, we should either adjust the thresholds in-
telligently or allow fuzziness in the classification, as
in fuzzy clustering.

The procedure is repeated iteratively on each new
node in the tree until either resulting sets contain
fewer than a predefined number of sequences or sta-
tistically significant patterns can no longer be found.
The root node of the tree contains all the sequences
in the set of interest. By definition, matching sets P;,
are assigned to left branches, and mismatching sets
P,y to right branches. Finally, if for a tree node P;,
determined by a motif 7, another motif 7; is found
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Figure 4  Venn diagram representation of tree-graph pattern relationships

such that P,; = P;, then the two nodes are combined
and the rigid motifs 7r; and 7 may also be combined
into a flexible motif.

Each node in the tree can be uniquely identified by
a sequence of ones and zeros corresponding to the
set of match and mismatch events leading to it. In
the exact clustering, each protein belongs to only one
leaf of the tree. In the fuzzy clustering, a protein may
belong to more than one leaf. In the latter case, the
sequence is assigned a posteriori only to the leaf that
would result in the smallest sum of E-values over all
the left branches in the path from the root. The closer
two proteins are evolutionarily, the more instances
of common motifs they are expected to have. There-
fore, the distance between two leaves can be used
as a measure of the phylogenetic distance between
any pair of proteins in the two leaves.

Clustering with a tree-graph combination. In this
approach, we account for motifs that may be sup-
ported by partially overlapping sequence sets. Na-
ture follows specific rules in general, but never fails
to make exceptions. Ideally, we may conceive that
nature always generates a well-defined and clear-cut
gene tree. Realistically, we should expect nature to
generate an “imperfect hierarchy” of functional fam-
ilies with additional cross-branch connections, which
may have been formed via domain insertions or even
convergent evolution.

Therefore, given a set of proteins, if we consider how
different proteins may share domains in various ways
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and thus how different patterns representing those
domains may be related, we expect to observe two
situations. We illustrate them in Figure 4, where we
represent a pattern by its support set of matching
sequences in a Venn diagram. In the first situation,
sets corresponding to different patterns are either
completely contained in one another (7, and ry;
and my; m; and ) or completely separated from
one another (7; and ). In the second situation,
sets could be partially overlapping (7, and r3; ,
and ;).

Patterns that are completely contained in one an-
other in terms of their support sets will be linked by
directed edges and form a partial n-ary tree. Patterns
that are partially overlapping in terms of their sup-
port sets will be linked by undirected edges and form
a partial undirected graph. Such an overlap between
two patterns corresponds to a set of proteins that
possess two domains that are otherwise possessed
by proteins that are considered to belong to two re-
mote functional sets. The result is a combination of
a tree and an undirected graph. Based on how the
patterns overlap in terms of both their support sets
and the patterns themselves, appropriate relation-
ships can be determined for the proteins. This rep-
resentation differs from the one suggested by Rigout-
sos,”” where a directed graph representation is
suggested.

To construct the tree-graph combination, it may be
intuitive to first construct a tree and then somehow
establish the cross-branch connections. We decide
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to adopt the following cleaner approach. Given a set
of protein sequences, we simply discover one statis-
tically significant pattern as described before. We
then mask the occurrences of the pattern. In the re-
cursive processing that follows, instead of splitting
the current set of sequences into two subsets depend-
ing on whether or not the pattern occurs, we con-
tinue working with the same set of sequences. We
do so until we can no longer discover any statisti-
cally significant pattern that satisfies all the con-
straints. This is also described in Hart.! In the re-
sulting set of patterns, some may contain others while
some may overlap others, in terms of their support
sets, and a tree-graph combination could be con-
structed as described previously. Some preliminary
results for this analysis are reported in the next sec-
tion.

We discussed in previous subsections the construc-
tion of a pure tree, which can be carried out effi-
ciently. We expect the pure tree to reflect the
skeleton of the tree-graph combination or even cor-
respond to the tree part of the combination. There-
fore, on the one hand, we may use the tree to get
a quick look at the result of evolution; on the other
hand, we would want to use the graph to gain more
detail from and insight into the evolution process.
It will be interesting to examine the tree part and
the graph part of the tree-graph combination sep-
arately. It will also be interesting to investigate any
difference between the pure tree and the tree part
of the tree-graph combination.

Protein classification. Given a set of proteins, an au-
tomated and unsupervised procedure has been in-
troduced to establish a hierarchy of functional
classes. Starting with the hierarchy, functional clas-
sification of an unknown protein can be performed
in a rather straightforward way. One can either use
the hierarchy as a decision tree and traverse it until
a leaf is reached, or match the protein to the set of
all motifs leading to a leaf of the tree and establish
which branch is the most statistically significant. For
this purpose, HMMSearch can also be used to com-
pute the E-value for this protein against each one
of the derived profile HMMs.

Results

This section analyzes the performance of the top-
down clustering method against a set of GPCRs? ob-
tained from GPCRDB, ** excluding orphan, probable,
and putative sequences. GPCRs form one of the larg-
est and most functionally differentiated protein fam-
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ilies and are an ideal test set for the performance of
our method.

G protein-coupled receptors. The molecular mech-
anisms involved in GPCR function, particularly the
molecular modes of receptor activation and G pro-
tein recognition and activation, have become an ever-
increasing research focus. Mutagenesis and biophys-
ical analysis of several of these receptors indicate that
small molecule agonists and antagonists bind to hy-
drophobic pockets buried in the transmembrane core
of a receptor. In contrast, peptide ligands bind to
both the extracellular and transmembrane domains.
Meanwhile, G proteins are typically the ones that
bind to the intracellular domains.

A great wealth of information about GPCRs is avail-
able. GPCRDB'® and GCRDb' are full-fledged data-
bases specifically on the set of GPCRs. They are con-
structed manually by biologists. PRINTS' is a
database of protein sequence fingerprints (sets of
multiple alignment blocks), and it includes a com-
prehensive, hierarchical set of fingerprints for GPCRs.
The fingerprints have been shown to have strong dis-
criminative power for family membership. The da-
tabase is constructed computationally with a super-
vised learning approach. Finally, the GPCR mutant
database (GPCRMD)" is a database of mutation in-
formation on the set of GPCRs. It compiles a com-
prehensive list of mutagenesis experiments per-
formed on GPCR sequences up to 1997, detailing all
the pertinent information about each experiment.
These information sources provide a basis on which
to assess the performance of our system.

The performance of the clustering scheme is stud-
ied via three distinct methods. The goal is to show
that (1) the system produces a hierarchical decom-
position of GPCRs where the subsets are likely to over-
lap significantly with well-known functional subsets
and (2) corresponding motifs identify regions and
residues with important, family-specific functional
roles.

First method. Functional classes identified by our ap-
proach are compared against a set of functional
groups. Unfortunately, there is no agreement on a
global taxonomy for GPCRs and different databases
report partially overlapping functional groups based
on biological rather than computational classifica-
tion. For instance, PRINTS defines functional groups
according to the GPCR fact book,? unlike GPCRDB,
which organizes the set of GPCRs based on the phar-
macological classification of receptors. The corre-
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sponding hierarchical lists of GPCRs disagree consid-
erably. As a result, a combination of subfamilies
reported by either PRINTS or GPCRDB has been used
as a reference database against which to compare
the set of clusters identified by our system. This max-
imizes the number of potential functional groups that
could be matched. The two hierarchical lists are
merged by adopting the finer classification, when-
ever a discrepancy exists between them, while main-
taining consistency with both hierarchical lists when-
ever possible. The result is a set of nonoverlapping
groups, called base groups (b-groups), that cover the
entire GPCR set, and a set of combinations of the base
groups, called composite groups (c-groups), that ei-
ther contain or are contained completely by one an-
other. A list of these groups is available on the Web.*
Only groups containing at least three member se-
quences are considered in this analysis.

Each node in the tree constructed by our system,
called an f-class, is compared to the set of b- and
c-groups based on the percent overlap of the list of
member protein sequences. Any f-class that highly
overlaps a b- or c-group, in the sense that the num-
ber of false positives and that of false negatives with
respect to the group are both small, is assigned the
functional label of the corresponding group. Over-
lap is computed as:

ny

‘fr = M maxo nfn = Nipaxs Minax = MAX (round (OL : n)5 1)

)

where ny, is the number of false positives ( f-class
members not in the b- or c-group), ny, is the num-
ber of false negatives (b- or c-group members not
in the f-class), n is the total number of elements in
the b- or c-group, and « is a percent coefficient. Set-
ting n ,,,, to at least one allows some tolerance even
for very small groups. Results for & = 0.1, 0.2, and
0.3 are reported in a later subsection.

Second method. The f-motifs (those associated with
each f-class) are compared against the PRINTS fin-
gerprints (p-motifs). The latter are produced by a
supervised procedure where motifs are extracted
from manually selected functional families. Matches
provide some evidence that our unsupervised pro-
cedure is successful in identifying known function-
ally significant motifs. F-motifs that are not present
in PRINTS, on the other hand, invite further analysis
as they may be related to previously unknown func-
tional regions.
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Motifs are compared as follows: for each pair of f-
motif and p-motif, it is determined whether their re-
spective support sequence sets overlap. If they do,
it is further determined whether there is any over-
lap between the regions where the f- and p-motifs
are incident.

Third method. Individual residues in the f~-motifs are
compared against the existing database of function-
ally assayed residues reported in GPCRMD. If the res-
idues in GPCRMD are incident on f-motifs, this pro-
vides some evidence that our method is effective in
identifying functionally significant residues. In that
case, those residues in the f-motifs that are not
matched by any residues in GPCRMD present them-
selves as interesting targets for mutagenesis exper-
iments. Results suggest that this approach, called
“synthetic mutagenesis,” is universally applicable to
identify potential functional residues and as an aid
to direct mutagenesis assays.

If the GPCRMD residue occurs in a sequence (r-se-
quence) that belongs to an f-class, the documented
position of the residue is directly compared with the
position currently under consideration in any occur-
rence of the corresponding f-motif. Otherwise, a pro-
file HMM is constructed from all the occurrences of
the f-motif, the r-sequence is aligned with the pro-
file HMM by using HMMSearch, and the documented
position of the residue is compared with the posi-
tion currently under consideration in any occurrence
of the f-motif. This is useful for determining func-
tional residues that belong to regions that have high
homology to a region identified by an f~-motif but may
have been missed due to the tree-splitting procedure.

Experimental results. In this section, we report ex-
perimental results for the following studies: the ro-
bustness of our method based on an exploration of
the parameter space, the clustering performance
based on the number of b- and c-groups that over-
lap with f-classes, PRINTS comparison results, and
functional residues analysis. Also, for each f-motif,
the locations of its occurrences are annotated with
putative structural (transmembrane, intracellular, or
extracellular) information. The functional signifi-
cance of each of these regions is reported. These re-
sults are available on the Web.*

Algorithm robustness. Table 1 reports the results of
the top-down clustering method for various values
of the parameters. Some of the rows in the table are
shaded for grouping purposes. The most relevant pa-
rameters of the system are the following:
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Table 1 Results of parameter space analysis 1. Density constraint parameters, k, and /,. These

Row kyly ty N. e,ey Nywitha= Np Nye are studied in rows 5 to 7.
Index 0.1,0.2,0.3 2. Minimum number of tokens, #,. This is studied
in rows 1 to 4.
Exact Clustering 3. E-value thresholds for HMMSearch, ¢, and e,.

In the exact clustering case, e; = e,, and the sin-

1 4,8 4 3 1,1 53,58,74 854 338 . .
gle E-value threshold is studied for three sepa-

2 4,8 6 3 1,1 100,108,122 1042 339 rate sets with corresponding values of 01, 1, and
10.
3 48 8 3 1,1 108,121,136 1005 318 4. Minimum number of patterns required before se-

lecting one, N_ (Rows 8 to 10).
4 48 10 3 L1 115,122,139 994 347

5 412 8 3 1,1 109,116,134 1051 312 The results of the analysis are combined in the last
three columns of the table. N,, is the number of
6 612 8 3 1,1 116,123,139 1080 334 unique b- or c-groups that match an f-class with at
least three member sequences, and there are 212
70812 8 3 1,1 106,114,135 1038 357 such groups. N is the number of unique PRINTS fin-

gerprints that overlap an f-motif, and there are 1441
such fingerprints. N is the number of functional
residues in GPCRMD that are incident on f-motifs,
and there are 581 such residues. As evident from this

8 4,8 8 1 1,1 109,121,134 1072 335

9 4,8 8 10 1,1 115,128,144 1039 359

10 48 8 20 L1 120,129,149 1045 371 table, the results are quite stable with respect to the
choice of values for the density constraint param-
11 48 8 3 10,10 108,116,134 1055 319 eters and improve with larger values of the ¢, pa-
rameter and with lower values of the e, or ¢, pa-
12 412 6 3 10,10 97,107,139 1089 330 rameter. This can be understood because more
specific patterns are likely to reduce the chances that
13 412 8 3 10,10 105 113,134 1038 314 the HMMs are trained using false positive instances.

Furthermore, a tighter E-value threshold is likely to
minimize the number of false positives. It is also ev-
ident that a larger value of minimum number pat-
terns, N _, among which an optimal one is chosen,

14 4,12 8§ 10 10,10 104,108,122 1079 352

15 4,8 8§ 3 0.1,0.1 122,129,147 1083 366

16 4,8 8 20 0.,0.1 121,131,151 983 371 improves the performance of the algorithm. It is in-
teresting that N, generally goes down as N, and N g
17 48 12 3 1,1 110,118,133 1056 342 both go up. We suspect that it happens because the
patterns discovered by our system tend to overlap
18 412 8 3 01,01 116,125,138 1054 311 with the same PRINTS fingerprints repeatedly rather

than scatter around hitting regions not covered by
PRINTS fingerprints, whereas the PRINTS fingerprints

: : : might have covered a substantial portion of the en-
With lterative Pattern Refinement tries in GPCRMD.

19 4,12 § 10 0.1,0.1 111,119,139 1023 310

20 48 8 3 1,1 115,129,149 1044 323
Rows 20 through 22 report the results for those ex-

21 48 8 3 10,10 120,129,146 1029 333 periments with iterative pattern refinement for dif-
ferent E-value thresholds. As can be seen from com-

22 48 8 3 01,01 112,124,138 1040 320 paring such an experiment with its noniterative
counterpart (Rows 3, 11, or 15), the performance of

Fuzzy Clustering our system improves when the E-value thresholds

are relatively loose but does not otherwise. One of
the reasons may be that relatively tight thresholds
24 4,8 8 20 0.05,5 124,134,151 988 342 tend to increase the number of false negatives, and
a refined profile HMM built from a more selective

23 4,8 8§ 3 0.1,10 112,121,140 1009 341
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subset of sequences tends to further increase the
number of false negatives.

Finally, the last two rows report the results for the
fuzzy clustering method. There appears to be mod-
erate but not significant improvement over the cor-
responding exact clustering technique. Notice, how-
ever, that with the fuzzy clustering, the size of the
tree tends to be bigger and thus N, is expected to
be larger as well.

Identification of functional residues. As opposed to
a supervised learning model, such as that used for
generating PRINTS fingerprints, our technique makes
no assumptions on the functional relatedness of a
set of sequences and infers it based only on motif
conservation. Since the functional clustering pro-
posed in this paper is based on the occurrence of
individual motifs, it is reasonable to assume that if
the clustering is relatively successful in recovering
functional groups, as shown by Table 1, then the cor-
responding motifs will contain at least some residues
that have a functional nature. This is shown to be
the case in Hart,' where the three catalytic residues
of trypsin (a serine, a histidine, and an aspartic acid)
belong, respectively, to the three most statistically
significant patterns discovered from a set of 348 tryp-
sin sequences.

Table 1 shows that a large majority of the 581 func-
tional residues reported in GPCRMD correspond to
sites on the f-motifs. There are a few cases where
aresidue reported in GPCRMD corresponds to a res-
idue in an f-motif that does not occur in the r-se-
quence of the residue, but its set of occurrences align
well with the r-sequence. As discussed earlier, this
can happen if a sequence is misclassified in a node
closer to the root of the tree, thus ending in the wrong
branch. In this case, direct alignment with the f-mo-
tif usually shows that a match actually exists. A list
of all residues reported in GPCRMD and all the rel-
evant information, such as their biological literature
and incident f-motifs, are available on the Web.*

In total, up to 64 percent of the functional residues
are incident on f-motifs, for the best-match param-
eters. This result supports the claims about the use-
fulness of this technique as an aid to directed site
mutagenesis experiments.

Best set of results so far. The best set of results from
all the experiments performed is shown in Row 16
in boldface. It corresponds to the identification of
121 to 151 functional families out of 212, or 57 per-
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cent to 72 percent, depending on the group-match
threshold. More results for this experiment are avail-
able on the Web.*

Tree-graph model. In Figure 5, we show a graphical
representation of the proteins that do not contain
the well-known DRY motif.?”” Individual proteins are
identified by the corresponding gene names. Differ-
ent colors are used to separate biologically different
subfamilies.

Related work

A number of alternative approaches to construct var-
ious phylogenetic tree representations for various
subsets of the GPCRs have been reported. GPCRDB
organizes the set of GPCRs based on the pharmaco-
logical classification of receptors, as described pre-
viously. It then constructs a phylogenetic tree for each
group of proteins at the lowest level of the classi-
fication, based on pair-wise alignment and a neigh-
bor-joining algorithm via WHAT IF.* Results of this
analysis are reported at http://www.gpcr.org/7tm/
phylo/phylo.html. GCRDb’ starts from a manually as-
sembled high-level functional classification of the set
of GPCRs. It then also constructs a phylogenetic tree
for each group of proteins at the lowest level of the
classification using the accepted-mutation parsimony
method. In contrast to these partially supervised ap-
proaches, our proposed method attempts to build a
tree for the entire set of GPCRs in an unsupervised
manner.

There also exist a variety of sequence-based, auto-
matic protein classification systems of varying scope
and emphasis. Our system adopts an unsupervised
learning approach, which means that classification
is performed in the absence of any prior knowledge.
This is an inherently more difficult problem than su-
pervised learning. COG,'® DOMO, "2 HHS/MST, ** Pro-
Dom,'* and ProtoMap?® are among those that adopt
an unsupervised learning approach. All of these sys-
tems, however, adopt a bottom-up or agglomerate
approach, constructing small classes first using pair-
wise local alignment methods and iteratively merg-
ing them to form larger classes based on various link-
age rules. This is a rather ad hoc process and is
critically dependent on parameter selection. While
our system naturally generates a complete hierar-
chical classification, all of these systems except Pro-
toMap " focus on sets of highly related proteins and
generate classes only at the bottom level. Therefore,
they automatically stop constructing larger classes
by merging existing smaller classes when the result-
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Figure 5 Example of a tree-graph combination

CALR CD97 CGRR CRF2 CRFR DIHR

EMR1 GIPR GLPR GLR GRFR PACR

PTH2 PTR2 PTRR SCRC VIPR VIPS
CB1A CB1B CB1R CB2R YOW3 YQ44
CASR MGR MGR1 MGR2
MGR3 MGR4 MGR5 MGR6
MGR7 MGR8

MGR MGR1

MGR2 MFR3
MGR4 MGR5
MGR6 MGR7
MGR8 STE3

PF2R CASR MGR MGR1

MGR2 MGR3 MGR4 MGR5
MGR6 MGR7 MGR8 SECRETIN LIKE
METABOTROPIC

GLUTAMATE LIKE CALR CGRR CRF2CRFR DIHR GIPR

GLPR GLR GRFR PACR PTH2 PTR2
PTRR SCRC VIPR VIPS YOW3 YQ44
CASR MGR MGR1 MGR2

MGR3 MGR4 MGR5

MGR6 MGR7 MGR8

CALR CGRR CRF2CRFR

DIHR GLPR GRFR PACR
gﬁgg %ﬁ%’; PTH2 PTR2 PTRR SCRC
BACT PTH2 PTR2 PTRR SCRC

H218 CRF2 CRFR

BAC1 BAC2

CASR MGR MGR2
MGR3 MGR4 MGR6

MGR MGR1 MGR2
MGR3 MGR4 MGR5

MGR7 MGR8

I MGR6 MGR7 MGR8

MGR MGR1 MGR2
MGR3 MGR4 MGR6
MGR7 MGR8

MGR1 MGR4 MGR5
MGR6 MGR7 MGR8

BACTERIORHODOPSINS

CB1ABC1B
CB1R BACH

MGR MGR2 MGR3
MGR4 MGR6 MGR7
MGR8

MGR4 MGR6
MGR7 MGR8

PHEROMONE

cAMP RECEPTORS

CAR1 CAR2 BBR1 MAP3 STE3 BAR1
CAR3 BAR3 PRA1 PRA2

ing classes no longer contain only proteins that are
highly related to one another. Rigoutsos® also
adopts an unsupervised learning approach, and fur-
thermore, the approach uses a pattern discovery
method in building a dictionary of motifs. However,
it focuses on sets of highly related proteins and does
not attempt to build a model of relationships that
may exist among the proteins sets.

Our system identifies and manipulates local, discon-
nected, but conserved regions in protein sequences
such that all the proteins assigned to one protein class
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CFFR PACR
SCRC VIPR VIPS

CB1A CB1B CB1R CB2R
EDG2 EDG3 H218 MC4R
PE21 PE23 PF2R

RHODOPSIN

EDG2 EDG3
H218 MC4R
PE21 PE23 PF2R

CB1A CB1B CB1R PE21 PE23
CB2R EDG2 EDG3 PF2R
H218 MC4R

CB1A CB1B
CB1R CB2R
EDG2 EDG3

share the same set of conserved regions. We do so
in the hope that the conserved regions correspond
to functionally significant areas or particular protein
domains. However, our scheme does not attempt to
specifically delimit the potential protein domains and
thus identify their exact boundaries and locations.
In this sense, our system identifies “partial domains”
that describe all the proteins in a protein class, just
as PRINTS %2 and BLOCKS. ***** poMoO, "> SBASE, *
and ProDom™ attempt to identify complete do-
mains, although not necessarily all the proteins as-
signed to one protein class share the same set of po-

IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001



tential domains. The other systems tend to consider
all the proteins assigned to one protein class to be
globally related, where the global relationship may be
formed via transitivity through sharing partial domains.

Our system uses profile HMMs to represent short, dis-
connected, but conserved regions, which are effi-
ciently identified by discovering regular expressions
in the full-length sequences. This allows for a com-
bination of the statistically sound and sensitive HMM
technique and an efficient pattern discovery method,
such as SPLASH.? Pfam* is the only other system that
uses profile HMMs to characterize protein classes. Un-
like other model-based systems, however, it uses the
full-length sequences as a training set. This results
in a significant computational load, both during train-
ing and during the matching phase of the approach.

Our system produces a binary tree, where each node
in the tree potentially corresponds to a protein class.
Each left (matching) node in the tree is associated
with a set of patterns represented by profile HMMs,
which can be used in a statistically sound way to char-
acterize all the proteins assigned to the correspond-
ing protein class. The binary tree can then be used
directly for sequence annotation. It can also be used
directly for classification as a decision tree driven by
the E-values generated by the profile HMMs at a node.
PIMA®*” and ProtoMap? appear to be the only other
systems that consider statistical significance in an ex-
plicit and consistent way. In particular, ProtoMap
produces a full hierarchy of classes from the bottom
up, by considering different thresholds of statistical
significance (tighter thresholds corresponding to
higher statistical significance result in lower-level
functional classes) and always forming new classes
at the current threshold level from the classes formed
at the previous, higher threshold level.

Since ProtoMap is the only other automated, bot-
tom-up clustering method that organizes a given set
of proteins into a hierarchy of functional classes, and
ProtoMap has been run on the set of GPCR proteins,
we have carried out a performance comparison be-
tween the results generated by ProtoMap and those
generated by our system. Specifically, we computed
the number of total classification errors (sum of false
positive and false negative errors with respect to a
group) for these methods, and we did so both in
terms of the percentage of matched groups and that
of distinct matched classes. In this case, we refer to
a protein set identified by either ProtoMap or our
system as an f-class. There are about 25 percent more
groups with low error rate (from one to five errors)
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reported by our system and, conversely, 25 percent
more groups with high error rate (more than five er-
rors) reported by ProtoMap. Also, the percentage
of distinct matched f-classes is much smaller for Pro-
toMap (10 percent vs 40 percent), because this
method reports a much larger number of f-classes
(more than 700) and only 212 b- and c-groups can
be matched. In other words, while ProtoMap gen-
erates many more f-classes, fewer are matched with
low error rate to the biologically determined groups.

Conclusion

It has been shown that a combination of regular ex-
pression-based pattern discovery, pattern discovery
statistics, and hidden Markov model-based pattern
refinement and classification can be used to effi-
ciently and accurately identify functional protein
clusters in a top-down manner. Experimental results
show that the approach is well-behaved with respect
to the choice of parameter values and that a signif-
icant set of known functional families are success-
fully identified from the large, functionally differen-
tiated GPCR superfamily. Due to the efficiency of the
process and its parallel nature, this could be per-
formed on larger databases such as SWISS-PROT.

Furthermore, it has been shown how the identifica-
tion of functionally relevant regions in protein can
lead to the identification of potential functional res-
idues with high probability. This process, which we
call synthetic mutagenesis, could be used to guide
the reduction of cost, complexity, and time require-
ments of real mutagenesis experiments.
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