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As genome data and bioinformatics resources
grow exponentially in size and complexity, there
is an increasing need for software that can
bridge the gap between biologists with questions
and the worldwide set of highly specialized tools
for answering them. The GeneMine system for
small- to medium-scale genome analysis
provides: (1) automated analysis of DNA
(deoxyribonucleic acid) and protein sequence
data using over 50 different analysis servers via
the Internet, integrating data from homologous
functions, tissue expression patterns, mapping,
polymorphisms, model organism data and
phenotypes, protein structural domains, active
sites, motifs and other features, etc., (2)
automated filtering and data reduction to
highlight significant and interesting patterns,
(3) a visual data-mining interface for rapidly
exploring correlations, patterns, and
contradictions within these data via aggregation,
overlay, and drill-down, all projected onto
relevant sequence alignments and three-
dimensional structures, (4) a plug-in architecture
that makes adding new types of analysis, data
sources, and servers (including anything on the
Internet) as easy as supplying the relevant URLs
(uniform resource locators), (5) a hypertext
system that lets users create and share “live”
views of their discoveries by embedding three-
dimensional structures, alignments, and
annotation data within their documents, and
(6) an integrated database schema for mining
large GeneMine data sets in a relational database.
The value of the GeneMine system is that it
automatically brings together and uncovers
important functional information from a much
wider range of sources than a given specialist
would normally think to query, resulting in
insights that the researcher was not planning
to look for. In this paper we present the
architecture of the software for integrating
and mining very diverse biological data, and
cross-validation of gene function predictions.
The software is freely available at
http://www.bioinformatics.ucla.edu/genemine.

T he Human Genome Project and related ad-
vances in technology have drastically increased

the amount of data that can be brought to bear on
any biological or medical question. Genomics tech-
nologies are providing an almost unmanageably de-
tailed picture of cellular mechanisms and gene func-
tions. They have accelerated traditional molecular
biology techniques (e.g., sequencing, Northern blots)
by real factors of 100- to 100 000-fold. This data ex-
plosion poses major challenges for data mining, both
in terms of the sheer mass and complexity of the data
and the sophisticated scientific questions that must
be asked to make important discoveries. In this pa-
per we analyze the specific data-mining problems
characteristic of bioinformatics by means of our ex-
periences in developing and refining GeneMine, a
software system for analysis of gene functions.1–3

First, it is essential to understand the technical and
cultural background of biological research. Biology
is an extremely diverse discipline, broken into many
specialties. Until recently, biology experiments re-
quired much human labor for each unit of data. Re-
searchers had to analyze individual results by hand,
because they had little familiarity with data-mining
methodologies. Most data were either not archived
in any database or stored in one of many incompat-
ible databases. In this fragmented and heterogeneous
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environment, the Web emerged as the dominant
model for bioinformatics, in which Web pages
present the set of possible queries from which the
(knowledgeable) user can find the proper query to
answer a given question. In this “expert query”
model, a bioinformatics expert may be able to think
of the proper query, decide if it is worth the effort,
and decipher the complex and often voluminous re-
sults. A less-expert user might not even be aware of
what queries are possible. Although this Web model
made data much more broadly available and useful,
the basic modes of querying the data (e.g., BLAST,
the Basic Local Alignment Search Tool4) have re-
mained largely unchanged. Whereas genomics data
have made dramatic orders-of-magnitude advances,
most biologists are querying and analyzing those data
in much the same ways they did five years ago.

This paper analyzes these challenges and our result-
ing design choices for GeneMine in three broad ar-
eas. First, we opted to focus on information visual-
ization, providing an interactive, visual tool for
human scientists to make and validate discoveries,
as opposed to automated data-mining programs for
computers to make discoveries (e.g., Bayesian meth-
ods for polymorphism discovery5,6). GeneMine is de-
signed to assist scientific inference from multiple
lines of evidence for problems that still require hu-
man intelligence. At this early stage in bioinformat-
ics, most real questions have this character. Such
problems demand an exploratory tool that exposes
patterns to the scientist’s perception and facilitates
rapid exploration of hypotheses. Second, GeneMine
deploys a client-side approach to heterogeneous data
integration, as opposed to heavier-weight server-side
strategies used in many other successful systems.7–9

The client-side approach fits especially well to a vi-
sual, interactive tool; we discuss its advantages and
disadvantages. Third, given biologists’ unfamiliarity
with data mining and bioinformatics, we decided to
use an information push model instead of the con-
ventional pull mindset assumed in Web or database
query systems. GeneMine uses query and data-min-
ing automation to push relevant information from
many sources into the users’ view for the specific
genes on which they are working. We discuss the lay-
ers of automation and data-mining techniques used
to achieve this (data aggregation and filtering, drill-
down, cross-validation). This trio of design choices
made GeneMine unique in bioinformatics at the time
of its development (1993), and its lessons may be rel-
evant to other problem domains with similar char-
acteristics.

The problem: Discovering and validating
gene function

The explosion in genome sequencing (more than 60
completed as of November 2000) has created a mas-
sive supply of new genes whose function must be in-
ferred to discover which are involved in human dis-
ease and to address other questions of enormous
medical and economic importance. Until recently,
only about 10–20 percent of human genes had been
identified (over the previous 50 years) and studied
sufficiently even to be given a scientific name. In the
last two years researchers have obtained the remain-
ing 90 percent of genes, but do not know their func-
tions.

GeneMine was designed to help scientists rapidly in-
fer, validate, and propose experimental tests for the
likely functions of unknown genes. It deploys classic
data-mining techniques such as association rules,
data generalization, and classification or clustering.
However, the role of the human scientist in perceiv-
ing subtle patterns and formulating a complex sci-
entific hypothesis is paramount. Thus, GeneMine
was designed not to replace the scientist in data min-
ing, but rather to empower the scientist’s ability to
perceive, explore, and test ideas rapidly.

The need for an information push paradigm

In the “expert query” model that typifies bioinfor-
matics on the Web and database query languages,
results can only be obtained if the user actively thinks
of the appropriate query. Many results, especially
surprising results from unexpected sources, are
missed because the user never thinks of asking the
question, or dismisses it as unlikely to be worth the
effort. Most importantly, biologists are less likely to
cross the boundaries of their highly specialized fields
to look for useful queries, either because they are
unaware of what is possible or because they worry
about interpreting the significance of the results. In
an era of complete genome sequences, one of the
greatest opportunities lies in integrating information
from multiple organisms that can provide very com-
plementary kinds of functional data, e.g., yeast (gene
knock-outs, two-hybrid data, etc.), Drosophila and
C. elegans (developmental mutants, phenotypes),
mouse (genetics, animal models of disease), and hu-
man (human diseases, genomic mapping, etc.). The
barriers of expertise and the fragmentation of bioin-
formatics tools and databases discourage scientists
from exploiting this important opportunity.
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GeneMine transforms this “expert query” problem
into a visualization and data-mining problem (Fig-
ure 1). It acts as an agent collecting and filtering rel-
evant data from diverse databases, analysis programs,
and servers. By using automation to run all possible
queries on each new gene sequence introduced by
the user, GeneMine filters the results for significant
and interesting patterns and presents them in a highly
distilled form that can be explored deeply. Although
this may initially seem wasteful of CPU power, usage
data show that the limiting resource is usually not
CPU time, but rather human time. Collecting these
diverse data manually on the Web takes so much time
that scientists’ sensible instinct for efficiency makes
them reluctant to perform queries that do not have
a specific expected result. However, the real power
of diverse bioinformatics data and analyses is not to
confirm existing expectations, but rather to provide
new, unexpected connections and insights. The ben-
efit of this “information push” model over the “ex-
pert query” model is not only fast and effortless an-
swers to questions the scientist already has in mind,
but also insights into patterns that the scientist had
not even thought to look for. The effect is one of
moving from an information-poor environment to
an information-rich environment.

A client-side architecture for heterogeneous
data integration

Bioinformatics databases and services are highly
complex, heterogeneous, fragmented, and frequently
incompatible. Yet the major need is for systems that
can integrate these diverse data to make discover-
ies. How do we achieve this? Broadly speaking, het-
erogeneous database integration can be imple-
mented via server-side or client-side architectures.
In bioinformatics a number of server-side architec-
tures have been described, including databases that
seek to integrate diverse data7,10 and federated da-
tabase models based on metadescriptions of their
component database schemas.8,9

Because GeneMine has a different focus on provid-
ing an interactive, push client for visual data min-
ing, we opted for a client-side integration strategy.
This strategy had advantages of high interactivity
(low latency, because most roll-up and drill-down op-
erations can be performed directly on the client,
rather than invoking queries to one or more serv-
ers) and strong integration of heterogeneous data
in the user interface. It also allowed us to use a much
“lighter weight” architecture for integration that is
much simpler in both its implementation and usage,

Figure 1 Information push model of GeneMine that automates a conceptual set of queries to push relevant information into
the user’s view (solid lines), while filtering out irrelevant or redundant data (dashed lines)
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and which increases the scope of data sources that
can be easily integrated to encompass the entire Web.
Rather than requiring specialized architectures and
protocols such as Kleisli, 9 OPM (Object Protocol
Model), or CORBA** (Component Object Request
Broker Architecture**)11 and detailed metaschema
information for the whole federation, GeneMine
uses lightweight protocols such as HTTP (HyperText
Transfer Protocol) to connect with any server on the
Web and does not require schemas. The main dis-
advantage is its lightweight relationship to servers:
Because it does not require taking control of server
schemas, it is vulnerable to server-side changes in
schema and presentation—a common event on the
Web.

GeneMine catalogs servers in a simple “database of
databases” (Worldbase, seen in Figure 2) that com-
pletely encapsulates its lightweight integration mod-
ule. This novel approach has several benefits. Using
this plug-in architecture, any server form on the Web
(anywhere a Web browser can enter data for anal-
ysis) can be added by providing its URL (uniform re-
source locator) and other simple information. A new
server can be added in minutes, without modifying
the server to adhere to a new protocol, or without
even knowledge of its schema. There are few lim-
itations on services (e.g., Web-based query forms,
relational databases, and local executables), as long

as a client-server connection is possible (Figure 2).
In this respect GeneMine is similar to several other
systems that have adopted a “lightweight” approach
to heterogeneous database integration, such as
MAGPIE,12 PEDANT (Protein Extraction, Description,
and ANalysis Tool),13 and GeneQuiz.14 With min-
imal effort we have integrated dozens of services (see
Table 1, later, for examples), compared with the
handful typically integrated by heavyweight server-
side projects.9,15 The parallel architecture that Gene-
Mine has for performing its many queries generates
results in real time, typically initial results within 2–3
seconds. Because GeneMine acts as an information cli-
ent coordinating many simultaneous analyses over
a large number of servers, it naturally breaks up the
gene annotation process with a high degree of par-
allel processing. The main disadvantage is depen-
dence on external databases and servers.

Another innovative feature of this architecture was
its organization of heterogeneous databases into ab-
stract data types called services. This feature allowed
us to “program the Web” by creating an abstract ap-
plication programming interface (API) to its capa-
bilities, in the form of service paths instead of hard-
coded URLs. The pending proposal by the Internet
Engineering Task Force (IETF) of uniform resource
names (URNs) is similar in concept (not yet adopted
in common Web browsers or servers). Each individ-

Figure 2 Architecture and information processing flow of the automatic annotation of GeneMine
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ual plug-in can be associated with one or more named
services, a classification scheme that abstracts what
kind of information the plug-in produces. GeneMine
extends the definition of file paths to include not only
URLs but also abstract service names (with data as
arguments); thus, queries can be composed directly
in terms of what data are desired, rather than in terms
of the location or path (e.g., URL). One simple ben-
efit of this definition is automatic rollover: If a given
server fails, GeneMine automatically rolls over to a
backup server registered to the same named service.
Rollover is a natural outgrowth of GeneMine’s po-
sition as a client: it cannot assume that the servers
will actually work.

Service mapping. GeneMine analyzes paths embed-
ded in returned data and recognizes those that map
back to known data services. It automatically remaps
these paths into the abstract service form, since this
makes available all the benefits of GeneMine’s
knowledge of what can be done specifically with that
kind of data.

Filtering. Since different servers return data in het-
erogeneous formats, GeneMine provides an open
mechanism for reformatting the data into a simple
line format, using Perl, awk, or any other tool. This
mechanism makes it quite straightforward to plug
in any new source without limitations of format.

Chaining and recursion. A series of independent fil-
ter modules can be chained arbitrarily or can return
new queries (as URLs or service requests) for
GeneMine to perform recursively.

Caching. GeneMine caches many of its results to
avoid performing the exact same query redundantly
within a short period.

Batch processing. The automatic annotation pipe-
line can operate either as part of an interactive data
visualization application (i.e., GeneMine) or can be
run on a large set of data from the command line,
outputting results on standard out or transmitted to
a relational database. Once stored in a relational da-
tabase, GeneMine’s annotations over an entire da-
tabase of sequences can be queried for particular pat-
terns of overlap between desired categories of
functional information, and the results viewed with
the GeneMine visualization client.

An interactive visual data-mining tool

Bioinformatics poses special challenges to data-min-
ing methods.15 Here we analyze the application of

classic approaches such as association rules, decision
trees, clustering, and multidimensional analysis16 to
bioinformatics problems.17,18 A key issue in biolog-
ical databases is their extreme diversity and the enor-
mous breadth of data types, ranging from clinical pa-
tient databases and population genetics data to
genome sequence and expression data, to chemical
structure and activity databases (to name just a few).
Seeking association rules in such a complex data set
scales as O(N2) or worse when one considers all pos-
sible pairs of data types or higher-order combina-
tions. Fortunately, this galaxy of data types can be
resolved into a simple star topology by taking ad-
vantage of the central role of DNA (dioxyribonucleic
acid) in biology. Since nearly all biological activities,
structures, and properties derive from one or more
genes, these data can be reorganized to use the gene
sequence as a “hub” that connects all the diverse
data.

The visual data-mining environment of GeneMine
is organized on this principle (Figure 3). Its sequence
window seen at the bottom of the figure is the cen-
tral starting point for nearly all analysis, where DNA
and protein sequences, as well as annotations from
GeneMine, are shown. Around this window are the
structure window at upper left (for three-dimensional
atomic structure and molecular modeling19–21) func-
tional annotations (function features associated with
specific residue(s) of sequences), and the informa-
tion window at upper right (for drill-down, brows-
ing, and user hypertext documents containing em-
bedded views of the three previous kinds of data).
These views are completely interconnected; any ac-
tion in one is reflected in all, permitting users to per-
ceive and explore the detailed association rules of
all the data through their interconnection in the gene
sequence. This fully integrated “information hub”
design was a key innovation in GeneMine (starting
from the earliest version called “LOOK” in 1993) and
has been recently adopted by other systems such as
Cn3D.22 In addition, the sequential nature of DNA
and protein makes time-series data-mining tech-
niques very important.

As shown in Figure 3, any macromolecule structure
appearing in the structure window is also represented
as a DNA or protein sequence in the sequence win-
dow. Any number of structures can be shown, su-
perimposed, and analyzed simultaneously. Any num-
ber of sequences can be shown at once; they are
automatically aligned by dynamic programming.23,24

Annotations (e.g., in Figure 3, the secondary struc-
ture of the protein; its homologies to other protein
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familes, etc.) are shown above and below the se-
quence residues with which they are associated. An
annotation can mark an entire sequence, discontigu-
ous regions, or even individual residue(s).

GeneMine is also unique in the range of informa-
tion types that it draws together in an integrated vi-
sual mining interface, using the annotation metaphor
to attach any kind of information to specific loca-
tions in a sequence. Because nearly all biological ac-
tivities ultimately attach to an individual gene, and
frequently to a specific range or individual residue
within that gene, annotations provide a very general
mechanism for integrating extremely diverse types
of data from different sources (Figure 4 and Table
1). In Figure 4, the distinct types of data found for

a given sequence are displayed as small icons beneath
the name of the sequence (at left). The user can turn
the display of each annotation type on or off by click-
ing the icon or show or hide individual annotations
in any combination. A critical design goal was to in-
clude information all the way from the genomic DNA
level (the blueprint for the organism) to its expres-
sion as working proteins, with their complex struc-
ture-function relationships. The current annotation
types of GeneMine include genetic features (e.g.,
physical or genetic mapping, polymorphisms, open-
reading frames, exons or introns), protein structure
features (e.g., domains, secondary structure, disul-
fide bridges), functional features (active site or bind-
ing site residues, functional motifs), homology re-
lationships or patterns, gene expression information,

Figure 3 A view of the GeneMine application (displaying the rhinovirus 1a crystal structure 2HWE [PDB])
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model organism data, disease associations, and lit-
erature links from SWISS-PROT (protein database de-
veloped in Switzerland), GenBank, PROSITE (data-
base of protein families and domains), OMIM (On-
line Mendelian Inheritance in Man), FlyBase, and
other databases. The ability to integrate these diverse
data draws not only on the advantages of the light-
weight client architecture of GeneMine but also on
the tremendous efforts throughout the bioinformat-
ics community to make data available via the Web
(e.g., Table 125–35).

A number of bioinformatics data-mining systems,
such as MAGPIE,12 PEDANT,13 and GeneQuiz,14 have
integrated different aspects of these types of data but
are server-side architectures that solve different prob-
lems than GeneMine. GeneQuiz makes completely
automatic gene function predictions and stores them
in a database. User interaction is limited to HTML
(HyperText Markup Language) views of the output
tables (using a Web browser as the interface). By con-
trast, GeneMine does not try to make an automatic
function prediction but seeks instead to provide a
visual data-mining tool for a human scientist to make
his or her own inferences. MAGPIE is another server-
side solution that provides users with HTML tables
that can be viewed in a Web browser. It concentrates
on genome sequencing project management, ORF
(Open Reading Frame) identification, and metabolic
pathways, in contrast to GeneMine’s focus on gene
or protein structure-function. PEDANT also employs

a server-side architecture: It consists of a database
schema that stores the output of various analysis tools
as blobs, each of which the user can download as
static views in a Web browser. GeneMine’s focus on
visual data mining makes it complementary to these
useful bioinformatics databases.

The visual data-mining capabilities of GeneMine en-
able the scientist to rapidly explore the patterns and
interconnections within the data that frequently sug-
gest a functional hypothesis and provide a number
of separate pieces of data for validating the hypoth-
esis. Association rules can be revealed by annota-
tion roll-up or drill-down using the sequence as an
information hub. GeneMine shows icons next to each
sequence representing the types of information it has
discovered. Users can independently toggle each of
these classes of data with a single click, giving them
easy, intuitive access to the 2N possible rollups of an-
notation data. For example, a user interested in struc-
tural features could select the predicted secondary
structure (shown above the sequence in Figure 4)
and directly validate by comparing with the homol-
ogous protein structure (by clicking on the annota-
tion “Structure: Trypsin-like serine proteases”). The
ability to combine information such as disease as-
sociations, genomic mapping, protein functional fea-
tures, and structural conservation patterns (as in Fig-
ure 5 showing annotations for the human BRCA1 gene
that reveals a likely DNA-binding domain [RING Zinc
finger] corroborated by the pattern of conservation

Figure 4 GeneMine integrates many types of information from diverse sources as “annotations” attached to specific residues
or regions of each sequence
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across multiple protein families) provides a power-
ful “fast path” for identifying potential new drug tar-
gets and finding validating data (the primary appli-
cation of GeneMine to date, in a large number of
different pharmaceutical companies). Gene expression
information (Figure 4) and phenotype information
from model organisms (see Figures 3, 4, and 5) pro-
vide new connections to functional genomics strat-
egies, all within the same integrating framework of
GeneMine annotation.

Aggregation and clustering for
multidimensional analysis

Data generalization and clustering techniques are
essential in bioinformatics. The volume of results

from bioinformatics analyses can be overwhelming,
and the volume itself can obscure the important pat-
terns in the data. The redundancy (repetitions of in-
formation that are really so similar as to be effec-
tively the same) and noise (unreliable data) common
in bioinformatics results encourages a “lazy” eval-
uation style in which scientists try to find a single
“good hit” and ignore the rest of the “lower quality”
information. However, this style deprives the scien-
tist of many deeper patterns and unexpected insights
that can be extracted from the mass of data. Gene-
Mine seeks to automate this analysis through a com-
bination of filtering (to remove noise), clustering (to
reduce redundancy), and pattern analysis (to eluci-
date large-scale patterns within the total set of data).
For example, in Figure 3 filtering of FASTA (a se-

Table 1 Example of how annotations integrate data from various sources

Protein functional motifs PROSITE motif detection26

Signal peptide prediction (PSORT)31

Transmembrane regions (DAS, SOSUI, TMHMM)32

Secondary structure From structure (PDB, SWISS-PROT, PIR)
Predicted (PSSP, NNPredict)
Coiled coils prediction (PBIL)

Structure/fold recognition PDB BLAST2, ASTRAL, SCOP27

Protein domain detection SWISS-PROT30

BEAUTY, BLOCKS33

ProDom34

Protein linkage site prediction (DomCut)

Homology Genbank, Entrez BLAST4

PIR, NR, SWISS-PROT FASTA (IDEAS)

Gene expression patterns DbEST25 BLAST, tissue analysis

Protein features: active site residues, binding
sites, post-translational modifications,
disulfides

PIR, SWISS-PROT, Genbank

Protein family highly conserved residues Performed on all homology analyses, novel method developed for GeneMine2

Gene prediction ORF prediction (ALCES, NCBI)
NR BLASTX protein homology detection

Polymorphisms SWISS-PROT30

Drosophila homolog phenotypes FlyBase35

Disease associations Multiple sources

Molecular biology features Restriction sites (Webcutter)
Optimal PCR primer locations (ALCES)
Repeat detection

Genomic mapping STS matching, GeneMap99
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quence similarity search)36 protein homologies
yielded 110 significant hits (expectation score
,1022), which were reduced to just five families via
sequence clustering (with a 50 percent identity cut-
off within each family), producing a view from which
one can see the relevant functional groupings at a
glance. (Figure 5 shows a similar reduction to just
eight protein families.) For each of these families a
phylogenetic analysis of what residues are most
deeply conserved within that group yields a conser-
vation fingerprint pattern, shown with 1 symbols (e.g.,
as in Figure 5). This pattern condenses an enormous
amount of information from a full analysis of the ho-
mologs and their alignment, which would take quite
a bit of effort for the user to assemble using a com-
bination of other tools. It provides an immediately
useful guide to key functional residues and a means
for cross-validation of other information (discussed
below).

Information in GeneMine is distilled through a se-
ries of levels. First, results are filtered for significance.
An expectation score is attached to every result, and
the user can freely adjust the threshold for showing

or hiding results with lesser confidence levels. Sec-
ond, homology results are clustered into families, typ-
ically producing an order of magnitude reduction.
Third, the total set of annotations for each sequence
are condensed by type via a set of clickable icons for
each type, e.g., in Figure 3, secondary structure, ho-
mology, polymorphisms, three-dimensional (3-D)
structure, identity match; conservation fingerprints;
disease associations. Clicking each icon can either
toggle the display of all annotations of that type for
the sequence, or show a list from which the user can
select. These annotation type icons show what kinds
of information GeneMine has found, without tak-
ing up space with annotations the user currently does
not wish to view.

Drill-down

GeneMine condenses information in its initial dis-
play, but preserves the links necessary for pursuing
any piece of information that the user finds inter-
esting. In Figure 3, for example, the user might be
interested in learning more from the 3-D structure
icon that appears next to the sequence name. Click-

Figure 5 Motif, homology, and conservation fingerprint annotations for the human BRCA1 gene
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ing this icon brings up annotations on the amino acid
sequence marking regions of homology to known
structures, e.g., “viral coat and capsid proteins.”
Clicking on one of these annotations brings up a list
of all the homologous sequences detected in this fam-
ily, in this case a list of seven sequences from PDB
(Protein Data Bank) structures, with detailed sta-
tistics about their level and extent of homology,
FASTA score, expectation score, etc. Another link
shows in full detail the raw FASTA search results from
which these hits were extracted. Each of the seven
sequences in the list can also be clicked for a further
drill-down menu with links to the structural classi-
fication of that protein (from the SCOP database27),
information about its PDB structure, its ligands, etc.,
and a link to download this structure into GeneMine.
Since the information window in GeneMine is a sim-
ple Web browser, these links can take advantage of
any useful information sources on the Internet.
Downloading the structure immediately displays its
atomic coordinates and its amino acid sequence(s)
in GeneMine, which will in turn launch a new cycle
of automated alignment, analysis, and annotation of
these new sequences. In short, each new piece of in-
formation leads seamlessly to many more sources of
information; the user can easily browse these sources
as deeply as he or she wants, expanding or collaps-
ing the view of various kinds of information to ex-
plore different aspects of a problem without “losing
the connection” to the other kinds of information
that have been gathered.

Cross-validation

One of the major benefits of multiple, independent
sources of information is the opportunity for cross-
validation of predicted features and relationships.
In the expert-query paradigm, the user tries a spe-
cific query in search of a specific kind of prediction;
in GeneMine, many queries are performed against
very different kinds of information sources, which
are then assembled on the sequence as annotations.
This method is very effective at making patterns of
evidence visible, because all the data are projected
onto the sequence alignment so that relevant infor-
mation should be vertically aligned (to the sequence
region responsible for the activity, be it an active site
or entire domain) even if they come from separate
sequences. For example, the accuracy of secondary
structure prediction varies widely from protein class
to class. In GeneMine one can easily check the ac-
curacy of secondary structure predictions by turn-
ing on the auto-extend annotation mode that auto-
matically aligns and annotates a representative set

of medium-range homologs (clearly homologous but
not very similar). Comparing the predicted second-
ary structures across the entire set of aligned se-
quences clearly reveals which features are robustly
predicted across most of the members (despite their
relatively dissimilar primary sequence), whereas
other features are not consistently predicted across
the set. Since the set is chosen to be similar enough
to definitely share the same overall fold, the features
that are predicted consistently across the set are very
likely to be correct.

Figure 5 shows another example of cross-validation
opportunities in GeneMine. Typically, BLAST users
concentrate on the “best hit” in their homology re-
port (BRC1_MOUSE, on the bottom line) and often
pay scant attention to the dozens of low-homology
hits (condensed by GeneMine into eight distinct ho-
mology families). Biologists are frequently uncom-
fortable with homologies in this 20–30 percent iden-
tity “twilight zone,” wondering how to tell if they are
real. Unfortunately, the best hit is often very unin-
formative because it is so similar to the query se-
quence that it adds little information. By contrast,
distant homologies, if validated, can reveal deep
functional patterns. In GeneMine one can see at a
glance that the eight distant homology families ap-
pear to share common functional themes: gene reg-
ulation and DNA binding. An independent predic-
tion from PROSITE37 of a C3HC4 Zinc finger motif
(below) at the center of this homology region cor-
roborates this sharing. A quick drill-down view of
information about this motif shows that its key fea-
ture is a pattern of conserved cysteines.38 The con-
servation fingerprints of GeneMine for the eight pro-
tein families (shown as 1 signs marking the 10
percent most deeply conserved residues within each
of these families) directly confirm this prediction by
clearly highlighting three cysteines (positions 24, 27,
and 39), a histidine (position 41), and four cysteines
(positions 44, 47, 61, and 64) as the key functional
residues in all eight families, and conserved in our
sequence, even outside of the region identified by
the PROSITE motif. Finally, mutation data for BRCA1
show that mutations at cysteines 61 and 64 actually
lead to breast cancer,39,40 confirming that they are
essential for the normal function of this protein.

This is just one small example of the kinds of cross-
validation that are possible when many different
kinds and sources of information are integrated,
aligned, and available for the scientist to explore eas-
ily and rapidly.
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The visualization and modeling component of
GeneMine (LOOK) was first developed by Lee in 1993
and has been used in many molecular modeling stud-
ies; for a small sample see References 41 and 42. The
automated gene analysis and annotation system was
developed in 1995. The software has been used ex-
tensively by commercial and academic researchers;
for a small selection of recent papers see References
43 through 46. Subsequent to Lee’s move to the Uni-
versity of California in January 2000, GeneMine was
made freely available to academic researchers and is
available for LINUX**, SGI, and Solaris** (see http://
www.bioinformatics.ucla.edu/genemine for down-
loads or other information). The software may be
used (via X-Windows**) on a PC or Macintosh** ac-
cessing a UNIX** server.

Acknowledgments

The authors wish to thank B. Modrek and A. Resch,
who participated in mapping exons onto protein
structure, and P. Thomas and R. Peccei for enabling
the GeneMine software to be made freely available
to academic researchers. The authors also wish to
thank the many people who contributed to the evo-
lution of the GeneMine software, including T. Tver-
sky, P. Gentry, and A. Dalke, who wrote a number
of sequence analysis and utility routines in the pro-
gram; M. Mueller and T. Hatton, whose suggestions
were always invaluable; C. Wang and H. Qin, who
performed extensive testing of the software; and spe-
cial thanks go to M. Levitt, whose SEGMOD homol-
ogy modeling program works integrally with Gene-
Mine.

**Trademark or registered trademark of Object Management
Group, Linus Torvalds, Sun Microsystems, Inc., Massachusetts
Institute of Technology, Apple Computer, Inc., or The Open
Group.

Cited references

1. C. Lee, LOOK: A Software System for Integrated Macromo-
lecular Sequence—Structure Analysis and Modeling, Molecu-
lar Applications Group, Palo Alto, CA (1993).

2. M. Mueller and C. Lee, The GeneMine System for Automated
Gene Function Analysis and Rich Structure-Function Anno-
tation, Molecular Applications Group, Palo Alto, CA (1995).

3. C. Marcazzo et al., “Identifying Gene Function and Features
Through Comprehensive Automated Analysis,” Hilton Head
Conference (1997).

4. S. F. Altschul et al., “Basic Local Alignment Search Tool,”
Journal of Molecular Biology 215, 403–410 (1990).

5. K. H. Buetow, M. N. Edmonson, and A. B. Cassidy, “Reli-
able Identification of Large Numbers of Candidate SNPs from
Public EST Data,” Nature Genetics 21, 323–325 (1999).

6. K. Irizarry et al., “Genome-Wide Analysis of Single-Nucle-

otide Polymorphisms in Human Expressed Sequences,” Na-
ture Genetics 26, 233–236 (2000).

7. R. Durbin and J. Thierry Mieg, A C. elegans Database, Med-
ical Research Council, Cambridge, UK (1991).

8. V. M. Markowitz and O. Ritter, “Characterizing Heteroge-
neous Molecular Biology Database Systems,” Journal of Com-
putational Biology 2, 547–556 (1995).

9. S. B. Davidson et al., “BioKleisli: A Digital Library for Bio-
medical Researchers,” Journal of Digital Libraries 1, 36–53
(1997).

10. L. C. J. Bailey et al., “GAIA: Framework Annotation of Ge-
nomic Sequence,” Genome Research 8, 234–250 (1998).

11. A. Kosky, E. Szeto, and V. M. Markowitz, OPM Data Man-
agement Tools for CORBA Compliant Environments, Lawrence
Berkeley National Laboratories, Berkeley, CA (1996).

12. T. Gaasterland and C. W. Sensen, “MAGPIE: Automated
Genome Interpretation,” Trends in Genetics 12, 76–78 (1996).

13. D. Frishman and H.-W. Mewes, “PEDANTic Genome Anal-
ysis,” Trends in Genetics 13, 415–416 (1997).

14. M. A. Andrade et al., “Automated Genome Sequence Anal-
ysis and Annotation,” Bioinformatics 15, 391–412 (1999).

15. V. Brusic and J. Zeleznikow, “Knowledge Discovery and Data
Mining in Biological Databases,” Knowledge Engineering Re-
view 14, 257–277 (1999).

16. M. S. Chen, J. Han, and P. S. Yu, Data Mining: An Overview
from Database Perspective, IBM T. J. Watson Research Cen-
ter, Yorktown Heights, NY (1996).

17. M. Hansen, D. Meads, and A. Pang, “Comparative Visual-
ization of Structure-Sequence Alignments,” IEEE Conference
on Information Visualization, Research Triangle Park, NC
(1998).

18. D. A. Payne et al., “OmniViz Pro: Applying Multiple Inter-
active Visualizations for the Life and Chemical Sciences,”
IEEE Conference on Information Visualization, Salt Lake City,
UT (2000).

19. C. Lee and S. Subbiah, “Prediction of Protein Side-Chain Con-
formation by Packing Optimization,” Journal of Molecular Bi-
ology 217, 373–388 (1991).

20. M. Levitt, “Accurate Modeling of Protein Conformation by
Automatic Segment Matching,” Journal of Molecular Biology
226, 507–533 (1992).

21. C. Lee, “Predicting Protein Mutant Energetics by Self-Con-
sistent Ensemble Optimization,” Journal of Molecular Biol-
ogy 236, 918–939 (1994).

22. Y. Wang et al., “Cn3D: Sequence and Structure Views for
Entrez,” Trends in Biochemical Sciences 25, 300–302 (2000).

23. S. B. Needleman and C. D. Wunsch, “A General Method Ap-
plicable to the Search for Similarities in the Amino Acid Se-
quence of Two Proteins,” Journal of Molecular Biology 48, 443–
453 (1970).

24. T. F. Smith and M. S. Waterman, “Identification of Com-
mon Molecular Subsequences,” Journal of Molecular Biology
147, 195–197 (1981).

25. M. S. Boguski, T. M. Lowe, and C. M. Tolstoshev, “dbEST—
Database for ‘Expressed Sequence Tags’,” Nature Genetics
4, 332–333 (1993).

26. A. Bairoch, P. Bucher, and K. Hofmann, “The PROSITE Da-
tabase, Its Status in 1995,” Nucleic Acids Research 24, 189–
196 (1995).

27. A. G. Murzin et al., “SCOP: A Structural Classification of
Proteins Database for the Investigation of Sequences and
Structures,” Journal of Molecular Biology 247, 536–540 (1995).

28. J. I. Garrels, “YPD—A Database for the Proteins of Saccha-
romyces Cerevisiae,” Nucleic Acids Research 24, 46–49 (1996).

LEE AND IRIZARRY IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001602



29. C. A. Orengo et al., “CATH—A Hierarchic Classification of
Protein Domain Structures,” Structure 5, 1093–1108 (1997).

30. A. Bairoch and R. Apweiler, “The SWISS-PROT Protein Se-
quence Data Bank and Its Supplement TrEMBL in 1998,”
Nucleic Acids Research 26, 38–42 (1998).

31. K. Nakai and P. Horton, “PSORT: A Program for Detecting
Sorting Signals in Proteins and Predicting Their Subcellular
Localization,” Trends in Biochemical Sciences 24, 34–36
(1999).

32. E. L. Sonnhammer, G. von Heijne, and A. Krogh, “A Hid-
den Markov Model for Predicting Transmembrane Helices
in Protein Sequences,” Proceedings of the 6th International
Conference on Intelligent Systems for Molecular Biology (ISMB)
6, 175–182 (1998).

33. S. Henikoff and J. G. Henikoff, “Protein Family Classifica-
tion Based on Searching a Database of Blocks,” Genomics
19, 97–107 (1994).

34. F. Corpet et al., “ProDom and ProDom-CG: Tools for Pro-
tein Domain Analysis and Whole Genome Comparisons,”
Nucleic Acids Research 28, 267–269 (2000).

35. W. M. Gelbart et al., “FlyBase: A Drosophila Database. The
FlyBase Consortium,” Nucleic Acids Research 25, 63–66
(1997).

36. W. R. Pearson and D. J. Lipman, “Improved Tools for Bi-
ological Sequence Comparison,” Proceedings of the National
Academy of Sciences (USA) 85, 2444–2448 (1988).

37. K. Hofmann et al., “The PROSITE Database, Its Status in
1999,” Nucleic Acids Research 27, 215–219 (1999).

38. K. L. B. Borden and P. S. Freemont, “The RING Finger Do-
main: A Recent Example of a Sequence-Structure Family,”
Current Opinion in Structural Biology 6, 395–401 (1996).

39. L. H. Castilla et al., “Mutations in the BRCA1 Gene in Fam-
ilies with Early-Onset Breast and Ovarian Cancer,” Nature
Genetics 8, 387–391 (1994).

40. L. S. Friedman et al., “Confirmation of BRCA1 by Analysis
of Germline Mutations Linked to Breast and Ovarian Can-
cer in Ten Families,” Nature Genetics 8, 399–404 (1994).

41. M. Pantoliano et al., “Multivalent Ligand-Receptor Binding
Interactions in the Fibroblast Growth Factor System Produce
a Cooperative Growth Factor and Heparin Mechanism for
Receptor Dimerization,” Biochemistry 10229–10248 (1994).

42. P. Sengupta, H. A. Colbert, and C. L. Bargmann, “The
C. elegans Gene odr-7 Encodes an Olifactory-Specific Mem-
ber of the Nuclear Receptor Superfamily,” Cell 79, 971–980
(1994).

43. J. J. Chou et al., “Solution Structure of the RAIDD CARD
and Model for CARD/CARD Interaction in Caspase-2 and
Caspase-9 Recruitment,” Cell 94, 171–180 (1998).

44. C. Oxvig and T. A. Springer, “Experimental Support for a
Beta-Propeller Domain in Integrin Alpha-Subunits and a Cal-
cium Binding Site on Its Lower Surface,” Proceedings of the
National Academy of Sciences (USA) 95, 4870–4875 (1998).

45. M. J. Shields et al., “The Effect of Human 2-Microglobulin
on Major Histocompatibility Complex I Peptide Loading and
the Engineering of a High Affinity Variant: Implications for
Peptide-Based Vaccines,” Journal of Biological Chemistry 273,
28010–28018 (1998).

46. J. M. Goldberg and R. L. Baldwin, “A Specific Transition
State for S-peptide Combining with Folded S-protein and
Then Refolding,” Proceedings of the National Academy of Sci-
ences (USA) 96, 2019–2024 (1999).

Accepted for publication January 10, 2001.

Christopher Lee University of California, Los Angeles, Depart-
ment of Chemistry and Biochemistry, Los Angeles, California 90095-
1570 (electronic mail: leec@mbi.ucla.edu). Dr. Lee is assistant pro-
fessor and director of the UCLA bioinformatics program. He
received a bachelor’s degree in biochemistry and molecular bi-
ology from Harvard University in 1988, and a Ph.D. degree in
structural biology from Stanford University in 1993. He has de-
veloped a variety of bioinformatics software, including CARA
(protein mutant modeling), LOOK, and GeneMine (for gene
function analysis and automated annotation), POA (multiple se-
quence alignment), and SNP-ASSESS (polymorphism detection).
His recent research has focused on statistical analyses of human
genome data, including identification of evidence for single nu-
cleotide polymorphisms and alternative splicing. More informa-
tion can be found at http://www.bioinformatics.ucla.edu/leelab.

Kris Irizarry University of California, Los Angeles, Department of
Chemistry and Biochemistry, Los Angeles, California 90095-1570
(electronic mail: irizarry@mbi.ucla.edu). Mr. Irizarry is a Ph.D.
degree candidate in the UCLA bioinformatics program and a re-
search assistant in Dr. Lee’s group. He has worked on a wide va-
riety of research projects including Drosophila developmental ge-
netics, identification of single nucleotide polymorphisms (SNPs),
and construction of SNP-based maps of the human genome. Be-
fore coming to UCLA, he studied biochemistry and biophysics
at Rensselaer Polytechnic Institute.

IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001 LEE AND IRIZARRY 603


