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Intelligent decision
support for protein
crystal growth

Current structural genomics projects are likely
to produce hundreds of proteins a year for
structural analysis. The primary goal of our
research is to speed up the process of crystal
growth for proteins in order to enable the
determination of protein structure using single
crystal X-ray diffraction. We describe Max, a
working prototype that includes a high-
throughput crystallization and evaluation setup in
the wet laboratory and an intelligent software
system in the computer laboratory. A robotic
setup for crystal growth is able to prepare and
evaluate over 40 thousand crystallization
experiments a day. Images of the crystallization
outcomes captured with a digital camera are
processed by an image-analysis component that
uses the two-dimensional Fourier transform to
perform automated classification of the
experiment outcome. An information repository
component, which stores the data obtained from
crystallization experiments, was designed with an
emphasis on correctness, completeness, and
reproducibility. A case-based reasoning
component provides support for the design of
crystal growth experiments by retrieving previous
similar cases, and then adapting these in order
to create a solution for the problem at hand.
While work on Max is still in progress, we report
here on the implementation status of its
components, discuss how our work relates to
other research, and describe our plans for the
future.

Proteins are involved in every biochemical pro-
cess that maintains life in a living organism. One
of the fundamental challenges of modern molecu-
lar biology is discovering the laws that control how
proteins evolve their three-dimensional structure.
Through an increased understanding of protein
structure we can gain insight into the functions of
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these important molecules. Currently, the most pow-
erful method for determining protein structure is sin-
gle crystal X-ray diffraction.

A crystallography experiment begins with a crystal
that ideally diffracts X-rays to high resolution, i.e.,
it produces a high-quality diffraction pattern that re-
veals the crystal’s internal order. Crystals are reg-
ular, repeating arrays of atoms or molecules in three-
dimensional space. The basic building block of a crys-
tal is called a unit cell, the smallest unit of a lattice de-
fined by three axes and the three angles between them.
In order for a protein crystal to diffract at high reso-
lution, it should not have large unit cell dimensions.

Determining protein structure is often limited by the
difficulty of growing crystals suitable for diffraction.
This is partially due to the large number of param-
eters affecting the crystallization outcome (e.g., pu-
rity of proteins, intrinsic physico-chemical, biochem-
ical, biophysical, and biological parameters) and the
unknown dependencies between the variation of
these parameters and the propensity of a given mac-
romolecule to crystallize. The primary goal of the
research described in this paper is to develop a com-
prehensive repository of data from crystal growth ex-
periments (both successful and unsuccessful) and ap-
ply this knowledge in an intelligent decision-support
system for planning novel experiments.
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Biomedical domains are characterized by substan-
tial amounts of complex data, many unknowns, lack
of complete theories, and rapid evolution. In such
domains, reasoning is often based on experience
rather than theory. Experts remember positive ex-
periences for possible reuse of solutions; negative
experiences are used to avoid potentially unsuccess-
ful outcomes. Reasoning based on previous exper-
iments (cases) provides a basis for a computational
approach to problem solving known as case-based
reasoning (CBR). A CBR system for solving crystal
growth problems performs two major functions: (1)
it retrieves “almost-right” prior crystallization con-
ditions, which can then be modified to suit the new
situation, and (2) it warns of potential errors or fail-
ures in proposed plans for crystal growth.

We start by first constructing a comprehensive re-
pository of data from both successful and unsuccess-
ful crystal growing experiments (our case base) us-
ing sophisticated robotic equipment that can carry
out thousands of experiments a day. Moreover, the
recording of the results from screening and optimi-
zation phases is automated. The stored cases will ul-
timately be used in conjunction with data-mining al-
gorithms to derive general rules or principles related
to crystal growth. Mining information on crystalli-
zation and using it intelligently is a challenge because
of its multiple interdependent factors, the uncertainty
of these dependencies, and the continuous evolution
of our understanding of the data.

In summary, the objectives of the research described
in this paper are:

1. Design and implement a comprehensive knowl-
edge repository of crystal growth experiments
(covering both positive and negative outcomes)

2. Using techniques from knowledge discovery and
data mining applied to the repository of stored
experiments, discover general principles for crys-
tal growth and store this information in the knowl-
edge repository

3. Design, implement, test, and evaluate a CBR-based
intelligent decision-support system as an aid in
the planning of crystal growth experiments

Specifically, we are developing an automated deci-
sion-support system for successful crystal growth that
will help identify: the crystallization method of
choice, the crystallizing agent of choice, the optimal
temperature, the optimal pH, and the approximate
concentrations of all solutes required in the crystal
growth medium. CBR is an effective paradigm for
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such a system because: (1) it is similar to human ex-
pert problem solving and thus complements the us-
er’s decision-making processes; (2) it supports the
evolving domain models and helps to increase do-
main understanding; and (3) it alleviates the prob-
lem of exceptions and over-generalizations.

The paper is organized as follows. In the next sec-
tion we present an overview of protein crystalliza-
tion and explain how crystal growth relates to cur-
rent research in genomics and proteomics. Next, we
introduce the architecture for Max, an automated
decision-support system for crystal growth. Here we
also describe its components: the information repos-
itory, the image-analysis component, the knowledge-
discovery component, and the CBR component, and
we report on the status of their implementation. We
conclude with a discussion of related research and
the potential impact of our work.

Protein crystallization

In this section we present the problem of crystal
growth for proteins within the context of research
in genomics and proteomics.

Genomics. The genome consists of threads of de-
oxyribonucleic acid (DNA). It contains instructions
for making an organism, i.e., the blueprint for cel-
lular structures and activities. The genome is orga-
nized into structures called chromosomes. Each cell
in the human body has 23 pairs of chromosomes.
A strand of DNA consists of repeating nucleotide
units—a phosphate group, a sugar group, and a base:
adenine (A), cytosine (C), guanine (G), or thymine
(T). DNA is structured as a regular double-stranded
helix, linked by hydrogen bonds between GC and TA
bases. The human genome has about 3 billion base
pairs.

A segment of a DNA molecule (a specific sequence
of nucleotide bases) has a particular position on a
specific chromosome. It carries information used for
constructing proteins. Understanding how DNA per-
forms this function requires an understanding of its
structure and organization. The human genome con-
tains about 100000 genes. Genes have coding (exon)
and noncoding (intron) sequences. Only about S per-
cent of human genes are known to include the pro-
tein-coding sequences. The primary goal of the Hu-
man Genome Project' is to create detailed maps of
each human chromosome. These maps have differ-
ent levels of abstraction, dividing chromosomes into
smaller fragments, and characterizing the fragments
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and mapping them to their corresponding chromo-
some locations.

Once completed, the Human Genome Database will
provide a unique scientific opportunity to research-
ers in biology, medicine, and computer science. How-
ever, a DNA sequence alone reveals little about pro-
tein function.

Proteomics. Proteomics involves the study of pro-
tein structure, function, and expression. Proteins are
large, complex molecules composed of long chains
of molecules, called amino acids. There are 20 com-
mon amino acids. A series of codons (triples of DNA
bases) specify in which order amino acids are
grouped to create specific proteins. Proteins provide
the structural components of cells and enzymes for
essential biochemical reactions.

Unlike the genome, which is identical in (almost)
every cell of a particular organism, protein expres-
sion depends on a tissue, cell type, the stage of de-
velopment, environment, and a disease state. Un-
derstanding protein function is necessary, as “Most
disease processes and treatments are manifested at
the protein level.”? Thus, proteome analysis will sig-
nificantly impact our understanding of the molec-
ular composition and function of cells in both healthy
and diseased organisms. Doctors may use this infor-
mation to move from current medicine to individ-
ualized, molecular medicine. Based on a patient’s
genetic profile and the profile of the disease they will
be able to custom-tailor treatment to an individual.

The structure of a protein is key to understanding
its function. The three-dimensional structure arises
from the folding of linear chains of amino acids into
compact domains. In spite of considerable efforts to
predict the structure of proteins directly from se-
quence information in silico, protein crystallography
is currently at the forefront of methods for deter-
mining the three-dimensional conformation of a pro-
tein.

When a crystal is irradiated with X-rays, it scatters
the radiation and produces a diffraction pattern.
From this pattern (i.e., the collection of scattered
rays) a three-dimensional picture of the atomic ar-
rangement in the crystal can be obtained. Such struc-
tural information is crucial to our understanding of
matter—if we know what a given molecule looks like,
then perhaps we can understand and predict its prop-
erties.
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High-throughput crystallization setup. The first step
in determining the structure of a protein using X-
ray crystallography is to grow a well-ordered crystal
that is of sufficient quality to diffract X-rays strongly.
A crystal is formed by numerous copies of a mol-
ecule becoming arranged in a tightly packed repeat-
ing motif. Well-ordered protein crystals are difficult
to grow because proteins are large, irregularly shaped
molecules that do not readily come together in a re-
peating pattern. Crystallization is a complex and te-
dious process; in some cases it may require months
of trial and error to grow crystals suitable for X-ray
diffraction analysis. This is because the formation of
a crystal is critically dependent on a number of fac-
tors, including pH, temperature, protein concentra-
tion, the nature of the solvent and precipitant used,
etc. Crystals form when molecules are slowly pre-
cipitated from solutions. This relates to a solubility
diagram, which shows how increasing protein and crys-
tallizing agent concentration results in moving from
undersaturation through to the metastable zone, and
from the nucleation zone to the precipitation zone.
The saturated protein solution is in equilibrium with
the crystallized protein. Small changes in any of the
parameters may cause the protein to pack in differ-
ent ways to produce different crystal forms. A set of
crystal faces defines the crystal forms, which in turn
define crystal morphology. However, this still does
not reflect the overall shape of the crystal, which is
given by the crystal habit. Recently, crystallization
robots have been developed to automate and speed
up the experimental process for crystallization.

In general, the number of experiments necessary to
determine the optimal crystallization conditions is
large, and often only a small amount of protein is
available for crystallization. In our wet lab in Buf-
falo we now have the capacity to prepare and eval-
uate the results of over 40 thousand crystallization
experiments a day. The experiments are automated
using robots outfitted with syringes to dispense the
cocktails (solutions or reacting agents) and protein,
and a digital camera to record images (digital pho-
tographs) of the crystallization outcomes. The ro-
botic setup enables us to maximize the number of
initial experiments carried out for each protein (1536
conditions compared to the standard 48)* and min-
imize the amount of protein used. It also provides
a controlled environment that promotes reproduc-
ibility of experiments and provides both successful
and failed experimental results.

In the computer lab the recorded images from lab
experiments are analyzed automatically to determine

IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001



the outcomes of the crystallization experiments. We
are developing a standard vocabulary of outcomes
to describe the results: clear drop, amorphous pre-
cipitate, phase separation, microcrystals, crystals, and
uncertain outcome. It should be noted that for the
purpose of high throughput screening, only condi-
tions that result in crystals are worth keeping. How-
ever, for the purpose of case-based reasoning, all the
conditions are used to form the precipitation index,
our measure of similarity among proteins. A precip-
itation index is a vector in a space of 1536 dimen-
sions representing crystallization outcomes for one
protein and 1536 different crystallizing agents. Its bi-
nary representation has 0 for “clear drop” and 1 for
“any precipitate” (we also distinguish unknown). A
more refined representation further classifies pre-
cipitates into amorphous precipitate, phase separa-
tion, microcrystals, and crystal. Since precipitation
is not an equilibrium, we evaluate each experiment
five times over a few days. These outcomes, recorded
as a function of time, are the cornerstone of our crys-
tallization database. The database contains addi-
tional information, such as initial input data for the
protein and the methodology (plan) used in carry-
ing out the experiment. In the following section we
discuss how a case-based reasoning algorithm can
be used to identify patterns of similar properties and
crystallization outcomes relating two or more pro-
teins in the database.

Max—Design and preliminary results

As the acquisition and availability of scientific data con-
tinue to escalate, the demand for improved bioinformat-
ics, computer modeling, analytical tools, and remote ac-
cess to research resources will necessarily increase as well.

—Recent statement by the National Center
for Research Resources, USA

The information explosion in biomedical domains
requires systematic knowledge management, i.e.,
support for acquisition, representation, organization,
usage, and evolution of knowledge in its many forms.
In this paper we focus on the issues of decision sup-
port and knowledge discovery for the protein crys-
tallization domain.

Max is an intelligent decision-support system that is
being developed to assist expert crystallographers in
the planning of novel crystal growth experiments. As
illustrated in Figure 1, Max comprises three com-
putational components: an image-analysis compo-
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Figure 1  System architecture
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nent to automatically evaluate the outcome of crys-
tallization experiments, a case-based reasoning
component for the design and analysis of experi-
ments, and a knowledge-discovery component to
help discover the underlying principles of crystal
growth. The database component of Max is an in-
formation repository that includes some existing da-
tabases and newly created data based on experien-
tial knowledge and general principles and rules of
crystal growth. In the remainder of this section we
describe each component in turn and report on the
status of its implementation.

Information repository. At the conceptual level, the
information repository contains both data and knowl-
edge. Data comprise existing databases—verified in-
formation from the Protein Data Bank* (PDB), the
Biological Macromolecule Crystallization Database’
(BMCD), and GenBank°—as well as specialized do-
main information about proteins, their structures,
functions, chemicals, and reacting agents. Knowledge
in the system’s repository has two forms— experi-
ential (cases consisting of information about indi-
vidual past experiments with diverse crystallization
outcomes) and general (principles or rules that are
derived from the knowledge-discovery system or
through knowledge acquisition).

The information repository is being created system-
atically with an emphasis on information quality (i.e.,
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correctness, completeness, reproducibility), its cur-
rent focus being on the development of a case base
for storing experiential knowledge. Aside from its
use as a component of Max, the information repos-
itory will be made available to other crystallogra-
phers. In the remainder of this section we describe
the data included in a case, along with related data
management issues.

In general, a case consists of data related to a spe-
cific task and its outcome. In Max, a crystallization
case for a given protein captures the problem-solv-
ing process of a crystal growth experiment, which
includes biochemical properties (the problem),
crystallization conditions (the solution), and crystal-
lization experiment outcomes (the feedback), pro-
tein properties (including amino acid sequence, spe-
cies), ancillary biophysical information such as gel
scans, the results of the crystallization in the form
of image and extracted features, a preliminary clas-
sification of the experiment outcome in the form of
a precipitation index, the crystallization method, the
crystallizing agent, the optimal temperature and pH,
approximate concentrations of all solutes required
in the crystal growth medium, and the experimental
outcomes of optimization trials (both successes and
failures). A crystallizing agent is always a precipitat-
ing agent, but the reverse does not necessarily hold.
As described below, our use of high throughput
screening is to get protein precipitation reactions in
1536 different conditions, and we equally value pre-
cipitates and crystals. It should be noted, however,
that if a particular condition always produces a pre-
cipitate or a clear drop result, we will eliminate it
since it does not help us to differentiate among dif-
ferent proteins.

Information about a particular protein will be en-
tered into our repository only if it was crystallized
at least once. In addition to the above-mentioned
properties, a case also stores information about the
diffraction experiment. Although each protein in the
repository had to be successfully crystallized at least
once, this does not mean that the crystal diffracts X-
rays well. There might be multiple crystals available,
of which only one will be suitable for diffraction. Stor-
ing this information in a case will enable the reason-
ing system to use it during adaptation to prioritize
successful (from the X-ray diffraction experiment
viewpoint) recipes. The case-based reasoning par-
adigm can help only if we can draw on successful and
failed crystallization experiments. Figure 2 depicts
a Web-based data entry facility for case authoring.
The cases are stored hierarchically in a DATABASE 2*
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(DB2*) database management system running on an
IBM RISC System/6000* (RS/6000*) SP2*. As will be
discussed in a later section on knowledge discovery,
the case base is organized according to attribute cat-
egories in order to promote efficient retrieval dur-
ing similarity matching.

Initially, in order to populate the repository, the wet
lab is conducting thousands of crystallization exper-
iments, which are automatically evaluated and all rel-
evant properties captured. It takes about ten min-
utes to robotically prepare the plate and about 20
minutes to digitally capture experimental outcomes.
Cocktail and protein properties are captured before
the experiment via a Web interface and stored in the
database. Additional information will be added to
the repository, once the experiment is completed.

Image analysis. This subsection describes an image-
analysis system used to automatically classify crys-
tallization experiment outcomes. The motivation to
build such a system is twofold: (1) there is no gen-
eral approach to quantitatively and objectively eval-
uate reaction outcomes under the microscope, and
(2) there is a need to eliminate human intervention
in order to cope with the high-throughput of the ro-
botic setup. The major weakness of existing scoring
methods is the tendency to confuse categories of pre-
cipitates.” As previously stated, we store crystalliza-
tion outcomes as images, analyze them using com-
puter vision techniques, automatically recognize the
possible crystallization outcomes, and extract impor-
tant image features for further analysis.3® It is impor-
tant to note that such a process produces objective
results, which have the potential to be incorporated
in the data-mining process. Recall that for each pro-
tein, experiments are carried out using 1536 differ-
ent cocktails. This forms a “signature” of a protein
known as the precipitation index because it defines
the precipitation properties of a protein. The pre-
cipitation index allows us to measure similarity be-
tween proteins; our hypothesis is that the closer the
indices are, the more likely it is that the two pro-
teins will have similar crystallization plans. Exper-
iment outcomes, recorded as functions of time, are
the cornerstone of the crystallization case base and
are used to retrieve “similar cases” during CBR (the
process of similarity-based retrieval is explained in
the next subsection). The task for image analysis is
to determine the outcome of each of the 1536 dif-
ferent experiments. The result of a precipitation ex-
periment is a robotically captured set of images that
can be analyzed to determine the outcome of the crys-
tallization process. We are developing a standard vo-
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Figure 2 Web-based data entry of protein information

Methanobacterium the

cabulary for the crystallization process, where each and uncertain outcome. Figure 3 illustrates several
image is classified as one of: clear drop, amorphous crystallization experiment outcomes, a partial exam-
precipitate, phase separation, microcrystals, crystals, ple of a binary encoded precipitation index, and a
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Figure 3

Precipitation index. (A) illustrates 5 of the 1536 images for a given protein. (B) gives a binary classification consisting

of 1s (something happened) and Os (nothing happened) for the set of images. These can further be refined to the
more detailed outcomes that are encoded in (C). Currently, we distinguish clear (0), crystal (1), precipitate (2—-4),
and unknown (5). Once the classification accuracy is improved, we will differentiate between amorphous precipitate

(2), phase separation (3), and microcrystals (4).
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corresponding precipitation index that differentiates
among precipitates. All images are processed on the
Toronto University’s IBM RS/6000 SP2 using
MATLAB**.1% Currently, we process each image in
about 0.5 seconds, which matches the rate of the high
throughput production at our Buffalo lab. The av-
erage error rate of the drop boundary recognition
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is 0.4 percent and experiment outcome classification
85 percent.

An image preprocessing step attempts to standard-
ize images with regard to lighting, size, and orien-
tation. Image processing involves three primary
steps:
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Figure 4  Droplet identification
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1. Droplet recognition: Figure 4 illustrates the auto-
mated determination of a drop within each well,
and the identification of the largest square inside
the drop. First, the best conic is fit to the boundary
of the droplet and then the droplet’s largest square
area is identified for further analysis, as shown in
detail in Figure SA and 5B. Because the images are
not trivial and the drop can have many different
forms, there are multiple “feasible” drop bound-
aries. The image-analysis subsystem generates an
ordered set of viable alternatives for recognizing the
drop boundary. The most probable boundary is the
conic with the most likely shape, size, and position.
2. Analysis and feature extraction: The second step
in image analysis is to determine the character-
istic properties of the image. This is needed to
support automatic classification of the experiment
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outcomes and to enable the comparison of results
from crystal growth experiments. We use the two-
dimensional Fourier transform to perform image
analysis. The frequency domain of the Fourier
transform is presented in Figure SC, whereas Fig-
ure 5D depicts an analysis of the spectrum de-
rivatives and circular averages. These analyses
provide important feature information for the im-
age. Figure 6 illustrates a portion of a case rep-
resentation comprising an image and 35 derived
image features for the given experimental out-
come (e.g., vertical height, horizontal width,
left/right spur height, left/right spur brightness ra-
tios, the number of elements in a quadtree de-
composition with different thresholds, the loca-
tion of the first change in curvature of the circular
average of the frequency spectrum).
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Figure 5 Image analysis by Fourier transformation. (A) shows the recognized drop. (B) shows the drop’s largest square.
(C) presents the spectrum of Fourier analysis. (D) depicts analysis of the spectrum.
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3. Classification: The third step in processing an im-
age is to classify the outcome of the crystalliza-
tion experiment. Initially we determine whether
something or nothing happened and, if something
happened, then attempt to refine the classifica-
tion into one of the possible outcomes. Figure 7
illustrates three robotically captured images of ex-
periments and the resulting spectral analysis for
these. Since the spectrum characteristics corre-
late with the experiment outcome, the three im-
ages can be classified as clear drop, amorphous
precipitate, and microcrystals, respectively. Ac-
cording to Carter, fluffy or filamentous precipi-
tates have little likelihood of being crystalline, but
uniform, granular, and/or particulate precipitates
often are microcrystalline.'” Our preliminary re-
sults show a possibility to automatically distinguish
between these precipitates; we are currently work-
ing on process optimization to increase the ac-
curacy.

We are in the process of implementing a distributed
storage management system to help us cope with the
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increasing volume of image data and to support ar-
chiving of important information (we already have
150 GB of compressed images containing crystalli-
zation experiment outcomes). The system comprises
an LTO (Linear Tape Open) tape library attached to
the IBM SP2, the IBM ADSTAR™* system, and the
IBM DB2 EEE database. Images are transferred from
Buffalo to Toronto via a fast Internet2 connection.
Image features are extracted from the high-resolu-
tion images and stored with other experiment infor-
mation in the database (although original images are
in TIFF [tagged image file format] format, we have
experimentally established appropriate JPEG [Joint
Photographic Experts Group] compression that does
not affect the analysis). Since the image-feature ex-
traction algorithm is being improved to increase clas-
sification accuracy and the imaging settings also
change over time, we need versioning of images and
corresponding MATLAB code. As described earlier,
case retrieval does not use the raw image, so the im-
ages can be stored in the tape library and accessed
for final validation of retrieval results and for batch
processing for feature extraction.
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Case-based reasoning. Biological domains often re-
quire multimodal representations that support both
textual and pictorial data. Although diverse tools are
necessary, we apply CBR as the core technology for
our project because it uses experiential knowledge
as a guide to problem solving. CBR generally involves
adapting old solutions to meet new demands, or us-
ing old cases to explain or critique new solutions.

The process of crystal growth can be considered as
a planning task, where a single experiment corre-
sponds to a simple plan and a series of experiments
for a given protein corresponds to a more complex
plan. Our approach builds upon a previously devel-
oped computational framework for CBR called TA3. 1
This system employs a variable context, a similarity-
based retrieval algorithm, and a flexible represen-
tation language. Cases, corresponding to individual
experiences, are stored in TA3 as a collection of at-
tribute-value pairs; attributes are grouped into one
or more categories to bring additional structure to
a case representation. This reduces the impact of ir-
relevant attributes on system performance by selec-
tively using individual categories during case re-
trieval. Figure 6 depicts a partial representation of
a case for a given protein experiment. As illustrated,
the case stores values for properties such as the mo-
lecular weight of the protein and the temperature
used in the final plan for crystallization. The precip-
itation index is depicted as an array, where check
marks denote that some activity occurred for the cor-
responding crystallization experiment (see Figure 8).

Statistical analysis plays a major role in identifying
the significance of individual descriptors (cocktails
in precipitation index, protein properties, and fea-
tures extracted from experiment images), and in de-
termining how to automatically relax queries dur-
ing iterative retrieval; correlation between attributes
is used to group them into categories, and value his-
tograms are used to guide the query relaxation pro-
cess (generalization). We use confidence measures
during the adaptation process, to guide the gener-
ation of a crystallization plan from previous success-
ful and failed crystallization experiments for similar
proteins. Statistics will also be used once we start ap-
plying knowledge-discovery techniques to the case
base to measure support of, and confidence in, the
discovered patterns.

Asillustrated in Figure 9 there are several processes
involved in CBR. Case retrieval involves partial pat-
tern matching of the crystal growth problem to cases
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Figure 6 Example of a crystallization case. Note that
only experiment outcome and extracted image
features are shown here.
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Figure 8  Basic protein properties and part of the binary
representation of the precipitation index
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Figure 9  Case-based reasoning process for Max

INFORMATION
REPOSITORY

in the case base. A similarity function is used to de-
termine which cases are most relevant to the given
problem. Initially we are using the precipitation in-
dices to define a quantitative similarity function. We
postulate that past experience can lead us to the iden-
tification of initial conditions favorable to crystalli-
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zation. Moreover, it is hypothesized that solubility
experiments can provide a quantitative measure of
similarity among proteins. Since we use high through-
put screening to get a precipitation index, we define
solubility experiment as the amount of compound
dissolved in a solution in the presence of precipitate.
Each plate is evaluated five times to see how the pre-
cipitates change over time. Assume that two proteins
react similarly when tested against a large set of pre-
cipitating agents. Then the crystallization strategies
successfully employed for the one may be profitably
applied to the other. Thus, we must identify a suit-
able set of precipitating agents to sort the outcomes
of reactions for a relatively large group of proteins,
all of which have been crystallized before. New crys-
tallization challenges are then approached by the ex-
ecution and analysis of a set of precipitation reac-
tions, followed by an automated identification of
similar proteins and analysis of the conditions used
to crystallize them.

Once similar cases have been retrieved, the next step
in CBR is adaptation. This is the process of modi-
fying previous solutions to address the new problem.
The most relevant retrieved cases, along with domain
knowledge, are incorporated to determine the most
appropriate parameters for our new set of experi-
ments. At this stage the system acts, first, as an ad-
visor to the crystallographer to suggest possible pa-
rameters for further experimentation and, second,
as an evaluator of potential experiments that the user
might propose. The adaptation module will be en-
hanced over time as general rules/principles ex-
tracted from the growing case base are used in the
adaptation algorithm.

The final step of our crystal growth problem is to
evaluate the outcome of the crystal growth exper-
iment and to author an appropriate case (contain-
ing information about the protein, crystallization
plan, outcome, etc.) in the information repository.
Further details on the case retrieval and case adap-
tation processes for CBR follow.

Case retrieval. Case retrieval involves a pattern-
matching algorithm in the similarity-based search of
the case base. The retrieval is based on a modified
k-nearest neighbor algorithm, " where: (1) attributes
are grouped into categories of various importance
levels to help control the matching process and re-
duce the negative impact peripheral attributes have
on performance; (2) an explicit context is used dur-
ing similarity assessment to ensure that only relevant
cases are retrieved, that the process is visible to the
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user, and that the user has the ability to intervene
by introducing bias; and (3) incremental context
transformations are applied during query relaxation
to speed up query processing.

In the Max system, the case retrieval function is used
to locate crystallization experiments that have sim-
ilar precipitation indexes. Thus, the precipitation in-
dices are used to define a quantitative similarity func-
tion. The retrieval process has two stages. In the first
stage, only a binary classification of crystallization
outcomes is used (i.e., nothing happened, something
happened). In the second stage, a more detailed clas-
sification of the result is used to partially order re-
trieved experiments based on their relevance. In both
steps the system evaluates the distance between the
precipitation reaction index for a novel protein with
those in the case base. Only cases with minimum
Hamming distance are considered in the second step.
Other attributes, such as protein sequence, weight,
etc., are considered only as auxiliary information dur-
ing the retrieval process.

We incorporate a context-based retrieval method, "
implemented in the TA3 system, to allow the user a
flexible interface for restricting or relaxing the con-
text in order to retrieve fewer or more cases as nec-
essary. The context is used to specify what attributes
are important for retrieval and what ranges of val-
ues for these attributes are allowable for determin-
ing similarity between the input case and stored cases.
The retrieval process is geared to interactive use and
applies an efficient incremental algorithm. >

An explicitly defined context controls the closeness
of retrieved cases. If too many or too few relevant
cases are retrieved using the initial context, then the
system automatically modifies the context unless the
user does it manually. Modifying the context con-
trols the quality and the quantity of retrieved cases.
Depending on the change in the context, the system
may return an approximate solution quickly or it may
take longer to produce a more accurate solution. An
approximate answer can be iteratively improved, so
that the range between an approximate and an ac-
curate answer is a continuum, an important feature
for bounded-resource computation.'®!’

TA3, the underlying CBR framework for Max, uses
two context transformations to support iterative re-
trieval and browsing: relaxation, which retrieves more
cases, and restriction, which retrieves fewer cases.
Context relaxation is applied either by reduction or
by generalization. Reduction removes an attribute-
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value pair from a context, either permanently or
dynamically; given x-of-n matching, the number of
attributes required to match is reduced fromx to y,
where 0 <y < x = n. Generalization relaxes the
context by enlarging the set of allowable values for
an attribute. Contexts can also be iteratively re-
stricted to retrieve successively fewer cases. Context
restriction is applied in two possible ways: expansion,
i.e., strengthening constraints by enlarging the num-
ber of attributes required to match, and specializa-
tion, i.e., strengthening constraints by removing val-
ues from a constraint set for an attribute. The
implementation of an interactive context modifica-
tion is further described in Reference 15.

Retrieved cases are presented to the user, at which
time the user can modify the selection criteria
dynamically and thus alter the set of cases to be re-
trieved next. The retrieval process is interactive and
iterative. The retrieval function used in Max is flex-
ible, effective, efficient, and scalable.'> The higher
the precision and recall of case retrieval the easier
and more accurate the case adaptation process.

Case adaptation. Once relevant cases have been re-
trieved, the next step in CBR is adaptation. This is
the process of modifying a previous solution to ad-
dress the new problem. Adaptation in CBR manip-
ulates the existing solution to better fit the target
case. Our hypothesis is that, given a quantitative mea-
sure of similarity between proteins (in this case the
precipitation index), recipes successfully employed
for one protein will be useful as starting points for
crystallization experiments for similar proteins.

In Max, the cases retrieved in a similarity search, to-
gether with the domain knowledge stored in the in-
formation repository, are used to determine the ap-
propriate parameters for the new crystallization
experiment. The solution is a recipe for crystalliza-
tion, i.e., crystal growth method, temperature and
pH ranges, concentration of protein, and crystalli-
zation agent. The system acts as advisor and eval-
uator by finding and using relevant successful and
unsuccessful experiments in the case base. Max ad-
vises the crystallographer by suggesting possible pa-
rameters for further experimentation. It evaluates
potential experiments that the user might propose,
and warns of potential failure based on previous
experience.

Adaptation is guided by domain knowledge, i.e., ad-

aptation rules, concept hierarchies, cases stored in
the Max information repository, or information pro-
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vided by the user. If the information is provided by
the user, Max remembers it for possible later reuse.
Once a new set of experiments for the target pro-
tein has been executed, a new case, which reflects
this new experience, is added to the case base.

Knowledge discovery. Several terms have been put
forth'® to describe the process of finding useful pat-
terns in data. These include data mining, knowledge
extraction, information discovery, information har-
vesting, data archaeology, and data pattern process-
ing. The term “knowledge discovery” was introduced
at the first Knowledge Discovery in Databases work-
shop in 1989. Similar to data mining, knowledge dis-
covery emphasizes the end product of the discovery
process, which is knowledge. It is not sufficient that
the pattern is novel, it must also be in a form that
the human users will be able to understand and use.
Knowledge discovery has been defined as “a non-
trivial process of identifying valid, novel, potentially
useful, and ultimately understandable patterns in da-
ta.”!? The process of knowledge discovery employs
methods from statistical data analysis and machine
learning.

One of our research objectives is to search a mature
crystal growth case base looking for interesting and
unanticipated relationships. Using data visualization
tools and formal knowledge-discovery algorithms for
numeric and conceptual cluster analysis, we hope to
uncover new trends in the data from crystallization
experiments that can be exploited as we face new
crystallization challenges. Toward this goal we will
pursue the integration of a loosely coupled feder-
ation of biological databases. In addition, we will ex-
plore relationships between features of experiments
and characteristics and/or properties of the protein,
e.g., sequence and structure.

The knowledge discovery in Max has two distinct fea-
tures. First, it is based on a multimodal represen-
tation, i.e., it uses not only numeric attribute values,
but also symbolic values and still images. Second, its
tools support multiple tasks, including optimization,
domain knowledge evolution, and adaptation sup-
port. Optimization involves locating descriptors rel-
evant to a given context and task. These descriptors
are then used to determine the most appropriate at-
tributes for case retrieval, and to determine the ap-
propriate constraint values (context) for an attribute.
This helps determine the features of a crystal growth
experiment that are predictive of outcome (positive
or negative). Domain knowledge evolution involves
analyzing the case base to determine the best
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attributes/descriptors for CBR. Extending the case
representation with additional descriptors improves
case discrimination during prediction and classifi-
cation. Removing redundant cases and descriptors
also improves performance since only relevant de-
scriptors are used during similarity-based retrieval.
Creating hierarchies of descriptors enhances knowl-
edge organization and thus improves system perfor-

We are currently working
on providing integrated
access support to several
biological databases.

mance and domain comprehensibility. Analyzing cre-
ated clusters, hierarchies, and associations may lead
to identifying underlying principles for the problem
of crystal growth and to the discovery of nonintui-
tive relationships among features in a crystal growth
experiment. All information sources pertinent to a
crystallization experiment will be considered, includ-
ing cases, images, and agent and protein databases.
This may lead to finding correlations among precip-
itation cocktails based on the protein chemical and
physical properties, e.g., it may explain why a cer-
tain group of proteins reacts similarly with respect
to a particular set of cocktails and how these cock-
tails relate. The discovered principles will be used
to support case adaptation in the CBR system.

Discussion

The design and implementation work on Max is still
in progress. A Web-based interface and a relational
schema to store data from crystallization experiments
have been implemented. Currently, we are working
on integrated access support to other biological da-
tabases, such as PDB,* sCOP,” and SPINE.?!

The results of the crystallization experiments are ex-
amined visually using a computer-controlled XY ta-
ble and a videomicroscope that feeds a framegrab-
ber. The XY stand can accommodate 28 plates of
experiments, allowing us to photograph 28 x 1536 =
43008 experiments in about 9 hours. Each photo-
graph is saved as a JPG image (320 X 320 pixels in
RGB, or red, green, blue). Photographs are taken on
aregular basis: immediately following setup, one day
later, two days later, one week later, and two weeks
later. Currently, we are working on extending the
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imaging setup. We obtained a new, higher resolu-
tion camera (2 Mega pixels), and we are experiment-
ing with taking images both from top and bottom of
the well. Our preliminary results show that we will
be able to improve classification accuracy signifi-
cantly, due to better differentiation of image features.

We have implemented TA3 in Java™* 2, with both
memory and JDBC** (Java Database Connectivity)
drivers. Cases can be stored in a hierarchical man-
ner to support more efficient storage (because one
protein may be part of multiple crystallization ex-
periments), improved case retrieval performance,
and knowledge discovery through exploiting mean-
ingful structure of case base. We are working on im-
proving its performance and extending its knowl-
edge-discovery capabilities. Currently, knowledge
discovery supports only case similarity explanation
and TA3 optimization by case schema refinement and
domain knowledge analysis.

Current approaches to the crystallization of macro-
molecules are primarily empirical. Because of its un-
predictability and high irreproducibility, crystal
growth has been considered by some to be an art
rather than a science.” Even so, experimental pro-
tocols for crystal growth that are effective in many
settings have evolved. For example, Jancarik and Kim
proposed a set of 48 agents that are often used dur-
ing crystallization.” In spite of the progress made,
there remains a need for systematic studies to im-
prove our understanding of the crystallization pro-
cess and to support the design of successful new ex-
periments. This need is compounded by the promise
of genomics projects to produce hundreds of pro-
teins a year for structural analysis.

An additional problem in crystal growth has been a
historically nonsystematic approach to knowledge ac-
quisition: “the history of experiments is not well
known, because crystal growers do not monitor pa-
rameters.”’” BMCD” stores data from published crys-
tallization papers, including information about the
macromolecule itself, the crystallization methods
used, and the crystal data.

Others have attempted to apply machine learning
techniques to the BMCD database. These efforts in-
clude an approach that uses cluster analysis,?** an
inductive learning method,? and correlation anal-
ysis combined with Bayesian technique® to extract
knowledge from this existing database of crystalli-
zation experiments. These studies were limited be-
cause negative results are not reported in the data-
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base and because many crystallization experiments
are not reproducible due to an incomplete method
description, missing details, or erroneous data. Con-
sequently, BMCD is not currently being used in a
strongly predictive fashion. The information repos-
itory of crystal growth experiments we are develop-
ing addresses these shortcomings.

Decision-support systems have previously been con-
sidered in a variety of applications in molecular bi-
ology: e.g., to help identify protein secondary struc-
tures,® to assist in locating molecular motifs,?” to
find similarity between protein structures,” and to
help during the initial stage of drug discovery.” Some
of the fundamental problems that have to be ad-
dressed when applying artificial intelligence tech-
niques to the molecular domain are: how to effec-
tively represent information,™ how to access it
effectively and efficiently,” how to analyze it,* and
how to reason with it during decision making. Given
the uncertainties present—the diversity of represen-
tational formalisms used, the complexity and amount
of information present, and the evolution of knowl-
edge—it is necessary for an intelligent information
system to be flexible and scalable.

Future research in the development of Max includes
implementing a parallel version of TA3. We also plan
to apply TEIRESIAS® to the knowledge-discovery
process. TEIRESIAS is a system that has successfully
been applied to other application domains in mo-
lecular biology (including homology search, multi-
ple sequence alignment, and the discovery of tan-
dem repeats in DNA sequences). TEIRESIAS can also
be applied to the more general problem of association
discovery in data sets that come from a variety of
scientific domains. Carrying out association discov-
ery is the first step toward discovering causal rela-
tionships and predicates that are expected to be par-
ticularly useful in the context of our work on protein
crystallization.

The work described in this paper offers several re-
search challenges. First, it involves developing and
applying advanced data-mining and knowledge-dis-
covery techniques to a complex scientific domain. It
also requires the integration of image data with CBR,
along with the application of sophisticated knowl-
edge management tools. In the past, researchers in
artificial intelligence have often been criticized for
restricting their applications to “toy problems”; crys-
tal growth is a complex, real-world domain where
an intelligent decision-support system has dramatic
impact. Improving and accelerating the process of
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protein crystal growth will aid in the expansion of
the repository of known structures. The significance
of this is far-reaching: increased knowledge of pro-
tein structure is critical to medicine, drug design, and
enzyme studies, and to a more complete understand-
ing of principles in molecular biology. Due to the
need to accelerate crystal structure determination
to take advantage of the wealth of information aris-
ing from genomics projects, it is particularly crucial
at this time to improve the process of crystal growth.
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