464 INMAN ET AL

A high-throughput
distributed DNA
sequence analysis
and database system

The National Center for Genome Resources
(NCGR) has developed a high-throughput DNA
(deoxyribonucleic acid) sequence analysis
pipeline, which allows researchers at remote
sites to submit biological sequence information
for rapid analysis, the results of which can be
queried through a Web interface. Behind the
browser interface is a relational database used to
manage both the raw data and the results of the
different analyses performed, and a server, which
performs those analyses. The system allows
multiple contributors to submit data and also
allows the data to be marked as “private” or as
available to the general public. The CPU-
intensive part of the processing is done on a 40-
processor domain of a Sun Enterprise 10000
computer, which is represented by a distributed
system of software objects, implemented in
CORBA™ (Common Object Request Broker
Architecture™). In this paper we discuss the
architecture of the pipeline, the database
support, types of DNA sequence analysis used,
the distributed analysis system, and the
capabilities of the Web interface. As a case
study, we present data from an ongoing
collaborative project in which expressed
sequence tags (ESTs) from Medicago truncatula
are being processed. M. truncatula is a plant that
is used as a research model for crops in the
legume family, an economically important group
of food and forage plants.

he development of improved DNA (deoxyribo-

nucleic acid) sequencing technologies in the
1980s and 1990s heralded the start of a new era in
biology, in which it has become possible to examine
organisms at the most fundamental level: the set of
instructions that specify their development, form,
function, and behavior. By analogy with computer

0018-8670/01/$5.00 © 2001 I1BM

programming, just as (typical) program code is de-
pendent on run-time interactions with its environ-
ment and is executed in a specific order (often with
variations in behavior depending on input data, or
on asynchronous events), the “specification” of an
organism depends on the orderly expression of genes
in time and space, with the expression of certain
genes being influenced by environmental factors.

Knowledge of which genes are expressed in a given
organ or tissue, at a given developmental stage, un-
der given conditions, can yield scientific insight into
biological processes of all kinds. Surveys of this in-
formation, obtained by random sequencing of ex-
pressed genes from specific stages of development
or as the result of influence of specific environmen-
tal factors has become a mainstay of modern exper-
imentation.

As the ability of scientific investigation to produce
large numbers of such sequences has become main-
stream, the ability to process, store, and analyze them
has generally not kept pace. The notion of an “anal-
ysis pipeline” for processing and analyzing large
batches of sequences has risen independently more
than once. The System for Easy Analysis of Lots of
Sequences (SEALS)'? and the Boulder data inter-
change format?® are both solutions for controlling se-
quence analysis operations and using the output of

©Copyright 2001 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001

one operation as the input for another. The Univer-
sity of Washington tools for calling bases of raw se-
quencing data, masking repetitive elements, and clus-
tering ESTs* into groups are further examples.™’
These are practical, widely used solutions that re-
quire local installation of the analysis software, ex-
pertise in the UNIX** operating system, and, in some
cases, programming skill. These are skills and infra-
structure that are frequently not present in the same
groups or institutions that produce the DNA se-
quences. Thus, there is still a widespread need for
a bioinformatics solution that removes the burden
of providing hardware and software support that
could otherwise detract from the core mission of lab-
oratories that specialize in DNA sequencing.

The National Center for Genome Resources (NCGR)
has implemented such a system in which research-
ers submit raw data by file transfer protocol (FTP),
and essentially all computation is done by servers at
NCGR. The users’ subsequent interactions with their
data are via the World Wide Web (WwWw), and the
results of data analysis are viewed using a browser.
The system we describe here is called MGI (Medi-
cago Genome Initiative), a collaboration between
NCGR and the Samuel Roberts Noble Foundation.
Itis one aspect of bioinformatics support for the No-
ble Foundation Center for Medicago Genomics Re-
search, which is an integrated program aimed at im-
proving our understanding of plants in the family
Fabaceae.® This group of plants comprises the pea
and bean family, and includes economically impor-
tant species such as soybean and alfalfa. As such it
is a crucial protein source for humans and animals.

Although the system currently contains only cDNA
(complementary DNA) sequences from Medicago
truncatula, the species of origin for each sequence
is stored in the database. This permits the system to
be expanded to handle the analyses of multiple spe-
cies, and can be scaled to contain many hundreds of
thousands of sequences. With such numbers, the se-
quence analysis portions of the pipeline, such as sim-
ilarity searching, could not keep up with the growth
of the database if the analyses were performed on
a single processor. We have solved this problem by
developing the distributed analysis server, which ef-
ficiently distributes the analysis tasks over a 40-pro-
cessor domain of a 64-CPU symmetric parallel pro-
cessor. This development greatly increases the utility
of the system, and is described at length. The anal-
ysis pipeline can logically be broken down into these
components: DNA analysis methods, database sup-

IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001

port, the distributed analysis server, and the user in-
terface. These are considered in turn.

Analysis pipeline

The sequence analysis pipeline consists of an ordered
set of processing stages, each of which does some
well-understood operation on its input data, and pro-
duces output data that may be used by some sub-
sequent stage. The execution of operations in the
pipeline is partially controlled by data that are them-
selves stored in tables in the database. Object-ori-
ented software has been written that interacts ge-
nerically with these tables. Subclasses of the relevant
software objects can be developed to implement
many types of pipeline stages.

In the particular instance of pipeline described here,
the data that serve as input to the initial stage arrive
from the sequencing group at the Samuel Roberts
Noble Foundation via FTP to a secure location at
NCGR. Sequences are deposited in a popular format
called FASTA, after a well-known algorithm of the
same name. FASTA’s input format has become one
of the de facto standards for representing sequence
data. For each sequence file, a quality-score file is
optionally also deposited, consisting of a space-de-
limited array of numerical scores. Each score indi-
cates a confidence rating for the identity of the cor-
responding nucleotide (i.e., an A [adenine], T
[thymine], G [guanine], or C [cytosine] in the DNA
string), and is assigned automatically by software that
interprets the digital output of an automated DNA
sequencer. Two widely used base-calling tools are
PHRED’ and TraceTuner (http://www.paracel.com/
tracetuner/index.html). The sequence and quality
files are both represented in ASCII (American Na-
tional Standard Code for Information Interchange).

An ecarlier design and implementation of the pipe-
line has already been described,® using a simpler ar-
chitecture than the one we are presenting here. Ac-
cordingly, the older features will be covered only in
outline, allowing coverage of the new features in
greater detail. The features that have been added to
the earlier model include: tracking whether a se-
quence has been published to GenBank,'? policing
sequence quality using PHRED or TraceTuner qual-
ity scores, allowing users to query the database in-
teractively using the BLAST" family of algorithms,
allowing users to view sequences interactively based
on the ¢cDNA library of origin, and adding the dis-
tributed analysis system for increased throughput in
computationally intensive tasks. The control for a

INMAN ET AL. 465

given pipeline is implemented as a shell script, which
invokes the desired analysis stages in order, passing
along relevant parameters. The scripts are then
scheduled as jobs for “cron,” which is a UNIX system
utility allowing jobs to be invoked automatically at
specified times. The MGI pipeline runs nightly, and
consists of the five stages we now describe.

Gatherer. This program checks the FTP site for new
sequence and quality-score files, and performs ba-
sic quality checks, such as making sure that the file
names conform to a certain standard and that the
sequence and quality-score files contain the same
number of elements. Validated raw sequences in the
form of text strings and quality scores in the form
of space-delimited arrays of numbers are then en-
tered into a Sybase** database. In addition, a file-
name convention is used (for the sequence and qual-
ity-score data files) that includes a code for the type
of clone represented by the sequence data, and this
is also recorded in the database.

Vector screen. A consequence of the sequencing
methodology (see sidebar: cDNA Cloning and Se-
quencing) is that the nucleotide strings of interest
may contain short stretches of contaminating vector
sequence that need to be identified and removed.
Additionally, an unavoidable problem with the se-
quencing technology is the occurrence of poor-qual-
ity sequence at the end of the sequence string (and
sometimes at the beginning). Depending on the soft-
ware that is used to call the bases, this may be man-
ifested by the presence of nucleotides that cannot
be reliably assigned A, G, T, or C, and may there-
fore be given the letter N (which represents an un-
known nucleotide) by some versions of base calling
software. Regardless of whether they are called as
Ns or not, a certain quantity of these poorly iden-
tified nucleotides is tolerable, but it is desirable to
identify and remove stretches of sequence that have
fallen below acceptable levels. The removal of the
trailing poor-quality stretch of sequence is achieved
by the application of a simple heuristic, discarding
nucleotides after the point where a span of 20 nu-
cleotides is found with an average quality-score be-
low a threshold (in the case of TraceTuner, we use
a threshold of 15). In cases where no quality scores
are available, the presence of three Ns within a span
of 20 nucleotides is a fairly reliable indicator of the
point at which the sequence quality can be expected
to degrade rapidly, and this is used to make the cut.
This tends not to be triggered by the acceptable oc-
currence of a few Ns at the start of a good-quality
stretch of sequence.

466 INMAN ET AL

In the vector-screen stage, sequences are first
scanned for the presence of vector contamination
using BLASTN, which is a member of the BLAST fam-
ily of algorithms. To screen for vector contamina-
tion, the sequence of interest is compared to a li-
brary of sequences that represent the vector
organism, and regions where the two match each
other with high confidence are identified and re-
moved. The library of vector sequences is constructed
based on experimental details from the Noble Foun-
dation collaborators, and must therefore be mod-
ified if a new vector is introduced. By virtue of the
way the cloning technology works, the vector se-
quences are expected at the beginning or occasion-
ally at the end of the sequence. Cases where vector
sequence is found within nonvector sequence prob-
ably represent cloning artifacts, and these are set
aside for further study, and not subjected to further
processing in the pipeline.

The sequence is then scanned from left to right for
the presence of one of the low-quality markers. If
either quality-control pattern is found, then it and
the remainder of the sequence are clipped off. If the
good part of the sequence happens to be 50 nucle-
otides long, or less, this is considered too small to
allow effective analysis; the processing of that par-
ticular sequence is terminated at this point, and a
note to that effect can be seen via the Web inter-
face.

Figure 1 shows a sample of typical sequence quality
scores, in this case from the MGI ¢cDNA library that
was prepared from phosphate-starved leaves. This
figure illustrates the need for trimming based on
quality scores, but also shows that a naive applica-
tion might reject many sequences prematurely, based
on low-quality scores at the beginning of the se-
quence.

The vector screen stage also identifies (within the
sequence of interest) other synthetic sequences left
over from the cloning process, namely the restriction-
enzyme recognition sites and an adapter sequence
that were used to insert the sequence into the vec-
tor. After being screened, sequences that continue
in the pipeline are assured of having an acceptable
standard of quality and are free of contaminating vec-
tor.

Similarity searching. One of the main functions of
the system is to assist users in identifying the func-
tion of the gene products, a milestone on the road
to gaining insight into biological processes in the tis-

IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001

The effectors of the instruction set specifying an organism
(enzymes and other proteins, often called the gene products)
are encoded in the deoxyribonucleic acid (DNA) of the chro-
mosomes. The instructions are executed via the production
of messenger ribonucleic acid (MRNA) molecules that can be
considered the intermediates between the DNA code and the
protein effectors. Although a considerable simplification, it is
useful to think of genes as discrete segments of DNA, each
of which encodes a single protein, with a cognate mRNA
molecule as an intermediate. This directional flow of genetic
information is known as the “central dogma” of molecular
biology and the execution of the code (the production of
both mRNA and protein from a given gene) is generally
called “gene expression.” Messenger RNA is one of several
types of RNA found in a cell. The others mainly contribute to
the structure of certain cellular components, and do not en-
code proteins. The mRNA molecules differ from other types
of RNA in that they have a “tail”’consisting of a string of ade-
nines (one of the four letters in the RNA alphabet) at one end,
and this feature is used to extract the mRNA away from the
other RNA types. The mRNA is then copied into a cognate
DNA molecule by the process of reverse transcription. The
DNA thus produced is called complementary DNA, or cDNA.
This process achieves two things. DNA is a much more sta-
ble molecule than RNA, and the cDNA is therefore easier to
work with. The cDNA is also double stranded, meaning that
the information-coding strand pairs by hydrogen bonding

with another strand, in which the base adenine always lines
up with thymine, and cytosine with guanine. The double
strandedness of cDNA allows it to be treated as any other
DNA molecule in a living system—when introduced into a
bacterial cell it can be propagated as if it were bacterial
DNA, and many millions of copies made from one initial
starting molecule. This multiplication of foreign DNA
molecules in a bacterial system is called molecular cloning,
and is done in practice by inserting the cDNA into a special-
ly modified circular molecule called a plasmid (generically
known as a cloning vector), introducing the plasmid into a
bacterial cell, and propagating the bacteria. What we call a
cDNA library is a large collection of bacterial strains, each
containing a plasmid derived from one cDNA molecule, in
turn derived from one mRNA molecule. The cDNA is ex-
tracted from each strain, and its DNA sequence is deter-
mined. The process used to determine the sequence is too
detailed to cover here, but it is usually done in an automat-
ed instrument, and the output is parsed by software that
examines the data and determines the identity (A, T, C, or
G) of each base. This latter process is known as “base call-
ing,” which is a process in which a quality score is as-
signed to each base call, where the score is proportional
to the probability of the call being correct. Sequence runs
of cDNA clones result in sequences of a few hundred to a
thousand base pairs. These are known generically as
expressed sequence tags (ESTs).4

MULTIPLY MANY TIMES

PLASMID

IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001

INSIDE BACTERIAL HOST

A ACATGCATGAC...

READ A SEGMENT
OF THE SEQUENCE
=EST

INMAN ET AL. 467

Figure 1 Typical sequence quality scores in the MGI database. Note that quality scores are often low near the beginning of
the sequence, as well as toward the end. The data for each sequence have been truncated (or padded with zeros)
to show a consistent length. (Black: <10, yellow: <15, sky: <20, magenta: <25, navy: <30, green: <35)

SEQUENCE NUMBER

0 100 200 300
SEQUENCE POSITION

sue from which the ¢DNA library was made. Assign-
ing a tentative function to gene products is gener-
ally called “functional annotation.” There are several
frequently used approaches to functional annotation,
but the most heavily used one takes advantage of
the massive, and expanding, number of sequences
in public databases that have actual or predicted
functions already assigned to them.

In the similarity searching stage(s), the system uses
BLAST (the same algorithm used in the vector screen
stage) to compare each vector-screened sequence to
the nonredundant protein database maintained by
the National Center for Biotechnology Information
(NCBI). " The results of the database search are saved
(as both raw text, and parsed into details) to the MGI
database. The intuition underlying this search is that
sequences that are sufficiently similar to each other
are likely to have a similar function, but this simpli-
fying intuition implies several caveats that need to
be associated with the interpretation of the results:
the annotation of the target sequence may be incor-

468 INmAN ET AL

400 500 600 700

rect; an inappropriate threshold of similarity may
have been chosen; very similar sequences may have
different functions; and, due to the modular archi-
tecture of proteins, high similarity can be easily found
in small regions of sequence, from which only lim-
ited information should be inferred. Because of these
caveats, functional annotation is a complicated task
that still requires human intelligence. Accordingly,
the MGI database does not annotate sequences au-
tomatically, but assists the user in doing so by pro-
viding timely, well-organized information that can
support skilled investigation and inference.

A second BLAST search is also carried out in order
to detect the presence of E. coli genomic sequences
(from the bacterium used to propagate the cDNA),
and RNA molecules other than mRNA (messenger
RNA) that can occur in ¢DNA libraries. The targets
of this search are custom databases consisting of the
E. coli genomic sequence, all known viruses, and all
RNA molecules in GenBank that do not contain the
string “mRNA” in their description.

IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001

Database support. The sequences, their meta-data,
and the results of their analyses, as well as some ta-
bles that are used to administer the pipeline, are all
stored in a Sybase relational database. The gatherer
gets its input from a directory in the UNIX file sys-
tem, whereas all subsequent operations get their in-
puts from, and deposit their outputs to, database ta-
bles. As noted earlier, the database is also used to
support the pipeline by storing information, includ-
ing status, about tasks that need to be done for each
stage, as well as references to the data upon which
they will operate. The relational schema used here
is almost identical to that already described,’ with
added columns to hold the quality-score data, and
GenBank accession numbers of published sequences.
The GenBank accession numbers are entered en
masse, after sequences have been made public by
submission to GenBank, which has become the de
facto official repository for all public nucleotide se-
quences in the United States. The ability to query
sequences based on their ¢cDNA library of origin was
enabled by encoding the name of the library in the
name of the sequence file, and having the user in-
terface use the appropriate SQL (Structured Query
Language) statement. Although less efficient than
creating a database column for the ¢DNA library, it
is a useful and flexible interim method of adding
granularity. The ¢cDNA libraries currently in the MGI
database come from different plant tissues (e.g., leaf,
stem, root) and different treatments (e.g., insect dam-
age, phosphate starvation). We wish to ultimately
import public data from sources such as GenBank
into the MGI database, and to be able to formulate
queries across data from different sources. In order
to do this we will need a more sophisticated data
model that incorporates a controlled vocabulary of
tissues and treatments (see section on future work).

Distributed analysis server. In order to increase the
throughput of this system, we have made simple mod-
ifications to the computationally intensive stages of
the pipeline, so that they can function as clients of
NCGR’s distributed analysis server, allowing those
pipeline stages to process multiple data elements
concurrently on powerful parallel hardware. At
present, the server only provides support for finding
sequence homology using the BLAST algorithms,'!
and for removing vector sequence.

The distributed analysis server is a general facility
that provides bioinformatics computation to a va-
riety of clients. In addition to handling tasks asso-
ciated with analysis pipelines (of which there are sev-
eral), there are also interactive applications and

IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001

Web-based clients, both internal and external. The
system receives requests from clients and places them
on a common queue, from which jobs are dispatched
to be processed on a 40-processor domain of NCGR’s
Sun Enterprise 10000 computer, a large symmetric
multiprocessor. The system can be reconfigured to
conform to the size of the domain (i.e., the number
of available processors), or can be run on other kinds
of hardware platforms, such as a “farm” of networked
workstations, or on a dedicated cluster, though these
configurations have not been deeply explored. (In
response to a reduction in the size of the original
multiprocessor domain, another moderately sized
multiprocessor machine was easily added to the con-
figuration, so that the two multiprocessors formed
a cluster. Aside from a somewhat increased admin-
istrative burden, no particular performance problems
were noticed.) The jobs on the queue can be ordered
according to any computable pair-wise ordering func-
tion, but the default behavior is to process jobs in
first-in first-out (FIFO) order. There are tentative
plans to extend the types of computations that are
served by the system to include finding alignments
of multiple sequences, clustering and assembly of
contiguous overlapping segments of sequence, phy-
logenetic analysis, and other extensions.

CORBA

Middleware is the part of a software system that han-
dles communications between segments of software
such as a client and server, possibly running on sep-
arate computers. For the distributed analysis system,
the communications between the server and its cli-
ents, and between the distributed elements that make
up the server, are all supported with CORBA**. The
Common Object Request Broker Architecture™* is
a specification for computer middleware support,
and is defined through an open standard by the Ob-
ject Management Group (OMG)."® CORBA allows
programs written in diverse computer languages to
interact seamlessly, and this is one of the features
that makes it attractive as a substrate for the distrib-
uted analysis system. This feature means that legacy
server code written in C++ can be easily integrated
with newer client software being written in the Java**
language. The fact that CORBA is defined by a con-
sortium of industry leaders tends to assure that its
optimal use is not limited to some subset of com-
puter systems or application domains. In addition,
many CORBA implementations allow communica-
tions that take place between objects located in the
same address space to be subsumed as interprocess

INMAN ET AL. 469

communications, which are much more efficient than
network communications.

The server is designed to be simple, modular, flex-
ible, and reconfigurable, in order to allow experi-
ments with variations in implementation and deploy-
ment.

Design

The server system is composed of several distributed
components, which interact with each other to ac-
complish the work of the server. There is the Analy-
sisServer object itself, a BasicQueue object, a Log-
Manager object, and several ComputeServer objects,
which do the actual computation on behalf of the
server. All these objects are multithreaded, mean-
ing that they may be performing multiple tasks con-
currently (but in the case of any given Com-
puteServer object, all threads will be working on the
same computation). In addition, when the system is
busy, there will be numerous Request and Result ob-
jects, which represent the tasks submitted to the sys-
tem by clients and the corresponding values being
returned to clients. On a shared-memory multipro-
cessor, it makes sense to deploy all these components
on the machine that is supporting the computation,
for the sake of communication efficiency. However,
it is only strictly necessary that the ComputeServer
objects reside there. (In a cluster environment, for
example, the AnalysisServer object and its queue
might reside on a “master” node that has network
connectivity outside the cluster, with each of the in-
ternal “servant” nodes supporting one or more Com-
puteServer objects.)

Reasoning from simple experiments that run iden-
tical similarity searches with different numbers of
threads on a large multiprocessor, it is evident that
the current NCBI multithreaded implementation of
the BLAST algorithm has scaling limitations such that
optimal performance is achieved with four proces-
sors. Since it is more valuable for the distributed anal-
ysis system to maximize throughput, rather than to
provide the minimal turnaround time for a given job,
this scaling limitation is not particularly restricting.
For example, instead of running two jobs sequen-
tially, using eight processors for each, it makes more
sense to run them concurrently, using four proces-
sors each. The time taken to process an individual
request on four processors may (hypothetically) be
greater than it would be with eight, but it is still faster
overall to process two requests concurrently on four
processors each, than to process them sequentially

470 INMAN ET AL

on eight processors. Consequently, the system spends
less of its total resources to get both jobs done.

Given a 40-processor domain on a shared-memory
machine, we currently deploy nine ComputeServer
objects, each of which will run BLAST with four

The distributed analysis
server is a general facility
that provides bioinformatics
computation to a variety
of clients.

threads, accounting for a total of 36 processors, if
all are busy. This leaves four processors available to
run the server, queue, and other tasks.

The BasicQueue object

A BasicQueue object is actually a subsystem that co-
ordinates two internal queues. There is a request
queue that handles requests for work to be done and
a server queue that handles servers that are avail-
able to do work. Whenever both of these internal
queues contain elements, the BasicQueue object re-
moves the first element from each of the internal
queues and dispatches the request element to the
server element.

Each element on the server queue includes an as-
sociated parameter. When the BasicQueue object
dispatches the request to the server, it includes this
associated parameter. Thus, when a server is being
enqueued on the server queue, this parameter can
be used to associate the server with a ComputeServer
object. Similarly, each element on the request queue
includes an associated parameter that is used to hold
a reference to the corresponding client. This client
reference is also included in the dispatch to the
server, whereby the server is able finally to perform
a callback to the client, with the results.

Each of the internal queues can be maintained in
any desired order, so long as that order can be de-
fined in a comparator function that can determine
the order of any two given elements. For example,
an ordering function on the request queue might give
higher priority to requests from interactive clients
than it does to requests from “batch” clients like the
analysis pipeline. And an ordering function on the

IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001

server queue might give priority to servers represent-
ing more powerful hardware. By default, both queues
operate in FIFO order, which means that requests are
processed in the order in which they are received,
and are dispatched to the least recently used Com-
puteServer object.

This offers a simple way to organize the scheduling
of tasks in the distributed analysis system. At initial-
ization time, the server enqueues itself multiple times
on the server queue, in association with each Com-
puteServer object that is to be represented on the
hardware. Once initialization is complete, all incom-
ing requests for work are simply passed on to the
request queue. As the BasicQueue object finds work
for the server to do, it will invoke the server via a
callback mechanism, supplying a Request object for
work, along with a ComputeServer object to use to
perform that work, and the client that is to receive
a call when the work is completed. The server then
finds or spawns a worker thread, and the thread then
invokes that ComputeServer object with the data
from that Request object. The server resumes lis-
tening for more requests or dispatches, while the
thread waits for the work to be done. When the
thread receives results from the ComputeServer ob-
ject, it makes a callback to the client, and, finally,
re-enqueues the server on the server queue, in as-
sociation with the same ComputeServer object. Thus,
the behavior of the server is relatively simple, and
scheduling is accomplished through the behavior of
the BasicQueue object.

Additional request parameters

A Request object that is submitted to the distrib-
uted analysis server includes several control param-
eters. In addition to the data that define the work
to be done, the request also identifies:

1. The desired mode of interaction.

A. If the interaction is to be asynchronous, then
the Request object must also contain a ref-
erence to the object that is to receive the even-
tual call with the completed result values.

B. If the interaction is to be by e-mail, then the
Request object must specify an e-mail address
where the results are to be sent. When a Re-
quest object designating e-mail-mode inter-
action is received, the server creates a tran-
sient helper object containing the supplied
e-mail address, and this transient object be-
comes the transaction client and will eventu-
ally receive the result values. When it does,

IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001

it will format the results appropriately, and
send them to the specified address.

C. Finally, a Request object may specify synchro-
nous interaction. This returns to the client a
“future” object, which represents the result
of the ongoing work. In this case, the returned
future object also becomes the transaction cli-
ent and will receive the results when they are
eventually made available. Future objects are
discussed in the next section.

2. The format of the result. Sequence similarity re-
sults are always returned as a data structure,
parsed from the output of BLAST. Additionally,
however, the client can control the format of a
textual version of the output, which is also re-
turned. This can be provided as (a) raw text, (b)
HTML (HyperText Markup Language), or (c) as
comma-delimited or (d) tab-delimited text, in
which case the Request object may also specify
which fields are to be included.

Futures

A “future” is an object that represents the result of
a computation that is possibly not yet completed. '*
When a client submits a request to the distributed
analysis server, the server immediately returns a re-
sult value. In the case of e-mail-mode or asynchro-
nous-mode requests, this result can be a simple null
value, because those modes both imply alternative
channels for the communication of results from the
server to the client. But in the case of synchronous-
mode requests, the server can supply a future ob-
ject, which represents the ongoing computation.

A future can be thought of as a reference to data
that are not actually available at the moment. It is
also useful to understand futures as a way to allow
a server to communicate asynchronously with a syn-
chronous client. A future can be stored into data
structures, retrieved, passed as a parameter, returned
as aresult value, and so forth. As soon as a program
attempts to extract the referenced data, the future
object suspends until the data are actually available,
at which point the data are returned.

From the server’s perspective, each of the three
modes of interaction with the client is handled rel-
atively simply. In the case of an asynchronous-mode
request, the server extracts the identity of the call-
back object from the Request object and enqueues
that (as the client), along with the Request object,
on the request queue. In the case of an e-mail-mode

INMAN ET AL. 471

request, the server creates the transient helper ob-
ject, and enqueues that and the request on the re-
quest queue. And, in the case of a synchronous-mode
request, the server creates a future object and en-
queues that along with the request on the request
queue (in this case, the server also returns that fu-
ture object to the client).

From the worker thread’s perspective, things are
even simpler. All three modes of request interaction
are handled in exactly the same way. By the time the
server has handed off a dispatched request to one
of its threads, the designated “client” is either (1)
an object designated in the original request to be the
recipient of an asynchronous callback, or (2) a tran-
sient e-mailer object waiting for values that it can
format and send, or (3) a future object that was pre-
viously returned to the original client. All three ob-
ject types are required to support the same callback
interface, and so the thread is assured of being able
to treat them identically. The thread simply creates
a completed Result object and makes a callback to
the designated client object, providing that Result
object as a parameter. If the receiving object hap-
pens to be a future, the future object will now have
its data, and if the client is waiting for those data,
it can now proceed.

Garbage collection

Any system that continuously allocates memory
dynamically must also be able to reclaim that mem-
ory somehow, if it is to avoid running out of space.
This is called garbage collection. Some languages,
like LISP and the Java language, provide built-in gar-
bage collection subsystems, which enable them to re-
claim chunks of allocated storage automatically by
scanning through all the allocated storage. Any al-
located storage not touched in such a scan can be
assumed to have no references. Because such chunks
cannot possibly be accessed by a program (written
in one of those languages), they can safely be reused
for other purposes. However, these systems typically
reside in a single address space. Supporting garbage
collection in systems that may potentially be distrib-
uted across multiple address spaces is significantly
more challenging. Furthermore, CORBA is required
to be mapped seamlessly onto programs written in
diverse computer languages, including those such as
C and C++ that do not have built-in garbage col-
lection. Therefore, distributed systems written in
CORBA do not have built-in garbage collection, and
it is up to the distributed analysis server to reclaim
objects in some appropriate way.

472 INMAN ET AL

The server is not in a position to determine whether
or not a client may retain a reference to some Re-
quest or Result object that has been allocated by the
server. (Request objects may be allocated by the
server, at the behest of a client, in order to allow con-
venient initialization and to promote efficient com-
munication among the objects with which the server
must deal.) A simple rule is added to the semantics
of Result and Request objects in order to facilitate
garbage collection: as soon as the data are extracted
from a result, that result and its corresponding re-
quest are liable to garbage collection without fur-
ther notice. This allows the client a reliable inter-
face for extracting data from results, but also assures
that the server can reclaim objects as soon as is rea-
sonably possible. Since there may be a high volume
of requests passing through the system, and since re-
sults can have significant size, this policy allows the
server to keep its size as small as possible.

Pipeline client

In order for the analysis pipelines described earlier
to be made clients of the distributed analysis system,
it is necessary to make some minor modifications to
the software classes that implement the stages of the
pipelines. These software classes interact with the
database to find the work that needs to be done for
a given stage, to store the results of that work, and
to set up work for any subsequent stages. The pipe-
line software is written using object-oriented soft-
ware design, with a “base class” that defines the gen-
eral behavior of a pipeline stage, which is then
specialized by subclasses that define the particular
behavior of specific pipeline stages.

The general behavior of a pipeline stage (as defined
in the base class called TaskMaster) is to extract from
the database a list of pipeline tasks (called “actions”)
that are pending for the given stage, suggested in Fig-
ure 2A. Then, for each of these actions in turn, the
method ProcessPendingAction is called, which is an
abstract method in the base class. This means that
it is up to the specific implementation of any pipe-
line stage (i.e., in the definition of a subclass of Task-
Master) to define what it means to process a pend-
ing action. In the case of vector screening, for
example, the pending action would be used to find
the raw sequence that was imported by the previous
Gatherer stage. This class structure is illustrated in
Figure 2B. The raw sequence would be compared
against the library of vector sequences to find con-
tamination, and would have any trailing poor-qual-
ity region excised, and so forth as described previ-

IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001

ously, with the resulting purified sequence then being
written back to the database in a different table by
the TaskMaster object.

The modifications to this process are made both in
the general (base class) and specific (subclass) as-
pects of the implementation, as suggested in Figures
3A and 3B. In the general case, instead of process-
ing a task, saving the results, and moving on to the
next task, every pipeline stage now has two phases
of processing. First, after collecting the list of pend-
ing actions, a pipeline stage will “preprocess” the en-
tire list. PreProcessPendingActions is defined in the
base class as a “no-op,” that is, as a “do nothing”
operation. So, by default, preprocessing accom-
plishes nothing. However, in the specific implemen-
tation of each pipeline stage, the subclass can now
determine whether the distributed analysis system
is to be used. If so, then the preprocessing phase can
be used to send off the entire list of pending tasks
to the distributed analysis server, to be treated con-
currently as a “batch.” The requests all designate syn-
chronous-mode interaction. For each request, the
“future” result returned by the distributed analysis
system (representing the ongoing work correspond-
ing to that request) is collected into another list of
“pending computations.” The regular-processing (or
“harvesting”) phase in ProcessPendingAction meth-
ods can then associate the results extracted from each
pending computation with the corresponding pend-
ing task, and can write the results to the database
in the same fashion as before.

The “future” nature of the results returned by the
distributed analysis system makes writing such a cli-
ent fairly simple, if one can presume that the time
cost of doing the computation is significantly higher
than the cost of interacting with the database to store
the results, and that the duration of the computa-
tion of each of the tasks is roughly similar. In the
present case, these conditions are reasonable. The
relevant database operations usually require milli-
seconds, and the sequence homology searches, us-
ing four threads on a symmetric multiprocessor, re-
quire from seconds up to a few minutes.

It may be that some particular result takes longer
than many others to compute (either because it waits
longer in the queue, or because it represents a more
arduous computation), but this will generally not af-
fect the throughput of the system, unless that result
is one of the last elements in a batch, in which case
many ComputeServer objects may fall idle while the
client is waiting for the value of a last result to be

IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001

Figure 2A Older design for operation of a pipeline stage.
Each pending task is processed in sequential
order.

COLLECT PENDING ACTIONS

DATABASE

(ACTIONS)

PROCESS PENDING ACTION [)

Figure 2B Class hierarchy for the older design of a
pipeline stage. Each pending action is

processed in sequential order.

TaskMaster

CollectPendingActions
ProcessPendingActions
ProcessPendingAction (virtual)

VectorScreen

Homology

ProcessPendingAction
(do vector screening)

ProcessPendingAction
(do homology searching)

computed. Normally, there will be other requests in
the batch that are being handled by the distributed
analysis system at the same time, and so while the
client may be suspended for a while, waiting for one
of its pending results to complete, there will prob-
ably be several other results that are completed in
the meantime; and once the slow result is completed,
the other completed results can be processed quickly.
Because the preprocessing phase of the pipeline cre-
ates the list of pending results in the same order in
which they were enqueued, and the queue of the dis-
tributed analysis system currently presents a “first
come, first served” behavior, the harvesting or pro-
cessing phase will generally be waiting for tasks that

INMAN ET AL. 473

Figure 3A

Revised operation of a pipeline stage. Tasks are now processed concurrently by the Distributed Analysis system,

and only the results are gathered sequentially. The compute hardware is not required to be SMP machines,
but unless the server queue is tuned to prioritize the available ComputeServer objects reasonably, these objects
should all have similar resources.

COLLECT PENDING ACTIONS <

PREPROCESS PENDING ACTIONS

PROCESS PENDING ACTION

(REQUESTS)

(RESULTS)

I
7’| DATABASE

are already being serviced. By making the batch size
large relative to the number of compute servers, the
throughput overhead incurred by the last few jobs
in the batch (when many of the compute servers are
likely to be idle) will be mitigated on average. The
overhead mentioned earlier, in regard to the first el-
ements in a batch, seems generally to apply only to
the first batch.

Performance

Figure 4 shows some general throughput statistics.
As described earlier, a set of requests that are sub-
mitted to the distributed analysis system during the
preprocessing phase of a pipeline stage is considered
to represent a batch. For all the requests in a batch,
a common “start time” is recorded. When the result
for each specific request is received, the “stop time”
is recorded. Thus, when making a survey of the per-
formance of the system, it is necessary to account
for the fact that some requests will spend more time
in the queue than others. This is accomplished by

474 NMAN ET AL

S

;{ QUEUE ‘

SMP MACHINE

SERVER

gathering the data back into the original batches and
grouping actions for which requests were made at
the same time. The latest stop time recorded for each
batch will give the total time for processing all the
requests of that batch, and this can be divided by the
number of requests in the batch to yield the average
time taken to process each request.

The scattered nature of the data is a consequence
of operating in a production environment. Some frac-
tion of the data will have been run when there was
competition for resources between the Com-
puteServer objects and unrelated tasks. In addition,
a significant fraction of the work has been done with
a domain that was smaller than 40 processors, with
a corresponding adjustment in the number of Com-
puteServers objects. Finally, the first few jobs in the
first batch of a run will suffer the overhead of wait-
ing for BLAST to page-in the reference libraries, as
will be discussed shortly. But the conclusions from
the data are fairly clear: overall, there is an average
of 0.34 “jobs” (i.e., requests for similarity search us-

IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001

ing BLASTX against the “NR” reference library) pro-
cessed by the system, per second. This gives an av-
erage throughput of 20 homology searches per
minute. If we limit the data to only those batches
that contained 100 jobs, the figure is 23 searches per
minute.

There tends to be significant overhead for some
batches that contain only a few requests, because the
operation of BLAST is significantly slower when run
for the first time after a period of quiescence. This
is apparently a result of the fact that the reference
library (i.e., the library of sequence data against
which the query sequence is being compared) is ac-
cessed using memory-mapped /0. These libraries are
fairly large (approximately 250 megabytes, for the
library against which the data in Figure 4 were col-
lected), and they are “loaded” by the BLAST algo-
rithms via demand paging every time the BLAST pro-
grams are run. Once the first “generation” of jobs
has passed through the queue (i.e., once each of the
ComputeServer objects has been invoked), subse-
quent generations do not need to page-in the ref-
erence libraries again, and so they exhibit better per-
formance. We are helped here, no doubt, by the
amount of real memory that we have available on
this large machine.

Figure 5 shows a simple analysis of the overhead of
the communications in the distributed analysis sys-
tem. To perform this test, a set of one or more con-
current client threads send repeated requests to the
server, as rapidly as the server is able to return re-
sults. Each request specifies a BLASTX search against
a small reference library (the library in fact contains
the approximately 3000-nucleotide sequence repre-
senting the vector for the MGI pipeline). Thus, the
entire overhead found in typical requests from the
MGI analysis pipeline (in the BLASTX operation) is
captured.

The experiment is run with four different configu-
rations of the server, using one, two, three, or
four ComputeServer objects. The first two Com-
puteServer objects are resident on the same machine
as the server (and queue). The additional Com-
puteServer objects are added on a comparable SMP
(symmetric multiprocessor) machine, where they can
still expect to find four free processors each. Each
line represents a client process running with a con-
stant number of threads.

This simple experiment is intended to reveal a few
basic properties of the current implementation. First,

IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001

Figure 3B Revised class hierarchy allowing concurrent
processing of actions through the Distributed
Analysis system. The MGl system can process
actions concurrently while permitting legacy

pipelines to continue to run serially.

TaskMaster

CollectPendingActions

PreProcessPendingActions
PreProcessPendingAction (virtual)

ProcessPendingActions
ProcessPendingAction (virtual)

r 3

DistributedTaskMaster

DistributedAnalysisServer
A

VectorScreen Homology

PreProcessPendingAction
(submit H request)

ProcessPendingAction
(process H result)

PreProcessPendingAction
(send VS request)

ProcessPendingAction
(process VS result)

itis apparent that the limiting throughput for BLASTX
requests through a single distributed analysis server
lies somewhere between 500 and 600 requests per
minute, when the ComputeServer objects are dis-
tributed across several machines. This makes it clear,
in comparison with the production data from Fig-
ure 4, that the compute power of the hardware is
currently the limiting factor. This suggests that com-
pute power could be increased by a factor of approx-
imately 25 before the communications through the
distributed analysis system would become a bottle-
neck. It should be noted that the distributed anal-
ysis system maintains thorough logs of many inter-
nal events (through a separate server that supports
logging), and that the Request and Result objects
also record their state whenever it changes, so as to
support object persistence. Performance would un-
doubtedly be improved by sacrificing these features.

User interface

The anticipated user community for this system has
widely varying levels of computer aptitude and avail-
able technical support. For this reason we chose to

INMAN ET AL.

475

Figure 4 Performance over all batches of requests submitted by the BLASTX stage of the MGI pipeline. The x axis shows the
number of requests in each batch. The y axis represents the average rate of throughput in a given batch. (Occasional
faulty or extremely divergent data points have been eliminated for clarity.)

18
16
14 +
12 -
10 -

points

n_data

Il \‘HH Ll “H‘W “\‘\H‘ W \“ ‘

o N b O
T

Ll ’ 'y

‘ i H‘
20

continue with the paradigm established by the pro-
totype system, relying solely on Web browsers for
the remote user interface. This also favors rapid pro-
totyping and evaluation of new features, which can
be quickly implemented using the Perl programming
language. This is perceived as an advantage by the
molecular genetics user community, which has an
abundance of sequence analysis tools at its disposal.
It also offers considerable flexibility at the back end,
allowing developer choice in how HTML pages are
generated. Currently, there are static HTML docu-
ments, CGI (Common Gateway Interface) Perl
scripts, and PHP'® scripts. While this adds to com-
plexity and produces an increased maintenance bur-
den, the results are seamless to the user, and the ben-
efit is to simplify the prototyping of new features,
which, if adopted, can be “hardened” later.

The system allows for two levels of data access, pub-
licand private. Because the researchers who are sup-
plying the sequence information often do not know
which sequences will prove to be interesting enough

476 INMAN ET AL.

HHHHH‘ T m\ TR0 i | | ‘
iy “ M\IM ‘ ““”}““H“”W “' \m ‘\M | \‘”

M“

\
M\ fm ‘M ”‘HH u“

to merit further private scrutiny, we cause all the data
produced by the pipeline to be placed into the da-
tabase with an initial status of “private.” These data
can be viewed only by those collaborators who have
password access to the database. Those sequences
can then have their status changed to “public,” at
which point they become accessible to the general
public. This is done through an interface that essen-
tially mirrors the private one, but which has fewer
features and lacks access to the private data. The
publicinterface is located at www.ncgr.org/research/
mgi. The shift from private to publicis generally done
at the same time that large sets of sequences are sub-
mitted to GenBank. This is done in a two-to-three
month timeframe after initial submission of data to
the system.

Users are welcomed by a static HTML welcome page,
which has links to “help” pages, database statistics
pages, the results of sequence redundancy checking,
and an analysis page that offers several ways to ac-
cess data.

IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001

Database statistics

The statistics page is generated in real time by a PHP
script that queries a database table containing in-
formation on the number of sequences that are pri-
vate and public, in several categories: number of se-
quences in the raw data table, number of sequences
passing vector screen and quality control to enter the
database proper, and in each of those categories, the
number of sequences in each of a series of cDNA li-
braries. The table queried by the PHP script is itself
generated nightly by a Perl program that performs
a more complex series of queries on the database.
Having a PHP script querying a simplified table
greatly improves performance.

EST redundancy

Any collection of cDNA sequences generally repre-
sents a smaller number of mRNAs, a phenomenon
called redundancy. To explore redundancy in a cDNA
library, we employ a clustering method (see sidebar:
DNA Sequence Clustering), """ which groups EST se-
quences together based upon some measure of sim-
ilarity, attempting to form sets of ESTs that are each
representative of one mRNA. Clustering currently is
not part of the pipeline, but is executed weekly and
generates a static HMTL page indicating the number
of ESTs and the number of nonredundant sequences
in each ¢cDNA library. Additionally, it has links to
other static pages that show the ESTs that comprise
each cluster. Clustering is important for two reasons.
First, the system is used to support the design of cDNA
microarrays, and because space on these arrays is
limited, avoiding redundancy by using a single EST
from each cluster is recommended. Second, individ-
ual sequence runs vary in length, so that it is desir-
able to create a “virtual consensus” sequence derived
from looking at all of the constituent ESTs. Such a
consensus is usually longer than the ESTs of which
it is comprised and, as such, generally yields more
information in analysis than the individual ESTs. Con-
sensus sequences are therefore useful for further de-
tailed study of sequences of interest. Incorporating
clustering into the pipeline and using the consensus
sequences as the input for analysis tasks are prior-
ities for future development.

Data access

The welcome page has a link to a Perl CGI script that
generates an HTML GUI (graphical user interface)
with four choices of how to access data (Figure 6).
Each of the subsequent choices connects to a Perl

IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001

Figure 5 Scalability in a cluster of SMP machines. The first
two ComputeServer objects are resident on the
same machine as the server and queue. The
second two are on a different SMP. Each line
represents experiments with some given number
of client threads.

575 :
550 |]

TOTAL REQUESTS/MINUTE
IS
a
o
T
L

425 - e

400 - 1 4 A
2 =

375 3 —— A
4 —u—

350 % b

L L
1 2 & 4

NUMBER OF COMPUTESERVER OBJECTS

CGI script that queries the database appropriately
via Sybperl or Perl DBI (database interface), returns
data to the main program, and presents the data to
the user in a familiar format in the browser. Java-
Script** is employed where appropriate to manage
the browser window environment, creating and for-
matting new windows as necessary.

The first method offers a menu of the names of the
cDNA libraries in the database. Upon selection, a
scrolling list of the names of individual sequences is
presented in the same browser window (Figure 7).
Selecting one of these names causes a new window
to appear, displaying the sequence of that entry, col-
or-coded to indicate where the vector sequence and
N-rich, poor quality sequence were identified (Fig-
ure 8). This window offers the user the option of sav-
ing the sequence to a local drive in either of two pop-
ular formats; and via the use of a menu, provides
access to the results of the sequence analysis. There
are three choices: vector screen results, BLASTX re-
sults vs the NCBI NR protein database, and BLASTN
vs a custom set of libraries to check for various kinds
of contaminating sequences. Clicking menu items
leads to a hyperlinked display of the results of the
analysis. Figure 9 shows the results of BLASTX for a
particular sequence. This page is formatted in a way
familiar to users with experience of BLAST, with a
summary table of the best similarities in the NR da-

INMAN ET AL. 477

Figure 6 The main user interface page of the MGI system. Four methods of accessing sequences and their analysis results
are offered, as described in the main text.

B L B e e R A A e P e e |
I MNetscape: MGl Database Query -.l
File Edit Yiew Go Communicator Help
14 =& 3 485 2 u6W = & 8

Back Forvard Reload Home Search Netscape Prrt Security Shop Stop
N c G H Home About Software Carsers Search Sitemap Contact |o
PathDE | Gener | Genorme happing | GSDE | Homology | PGl | B=Genes | Taxonormy | Collaborations |

JAG

MGl Database Access
use one of the following methads te search for information in the kG| database

Select seguences
based on the cDMA Library

All Medicage truncatula ﬂ Search
Maoble Source Gnly

Drought tissue
Elicited cell culture AST
l Insect—damaged Leaf Library
Key' | eaf

‘I Modular Root catula —'| Search|

Phosphate—starved Leaf
Foot
Stem

MNon-Moble Source

BLAZT searchl

ainst

=

View a summary of best BLASTH
hits of sequences in the MG database

i

i

Insert desired page size: ‘ilOO lines ‘ VIEWl
o

.

tabase, with hyperlinks to the sequence alignments

on the same page, and to the appropriate sequence
GenBank entries at NCBL

The second method allows the user to again select
a library (or all sequences in the database), and to
perform a case-insensitive string search on the re-

478 INMAN ET AL IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001

The cDNA library that is prepared from mRNA in any given
experiment typically represents 10 -10 independent
mRNA molecules. Since an mRNA sequence for a given
gene may be present many times in the same cell, the
cDNA library may represent the same gene many times
over. Because the clones are chosen randomly for
sequencing, the sequence database may be expected to
contain considerable redundancy. This is especially true
of cDNA libraries made from tissues in which a single
gene or small set of genes is expressed predominantly.
Examples are green plant leaves, which contain an
abundance of mMRNA for the enzyme ribulose
bisphosphate carboxylase, or the precursors of red blood
cells, which express the globin genes at very high levels.

LARGE (€]2{0]V]2/=Ip]
ACCORDING TO
SOME MEASURE
OF SIMILARITY

COLLECTION
OF EST
FRAGMENTS

IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001

Estimation of the level of redundancy is done by a pro-
cess called clustering, in which the goal is to group EST
sequences such that those derived from the same gene
are placed in the same group, and each group represents
one gene. ESTs are usually grouped according to
sequence identity, according to certain rules that govern
the number of permissible mismatches and gaps between
two sequences, and the minimum span of identity. An
alternative method groups according to sequence
composition by comparing the frequency of nucleotide
“words” (of length N nucleotides where N is typically
between and 10) in two sequences. There are several
third-party programs available to do EST clustering,

e.g., the TIGR assembler,! StackPack,! 1 and PHRAP.

IDENTICAL BASES “VIRTUAL”

IN THE DNA SEQUENCES INFERRED
ARE ALIGNED WITH FROM

EACH OTHER THE ALIGNMENTS

INMAN ET AL. 479

Figure 7 A scrolling list of all sequences in a given cDNA library can be sorted by date or by name. Selecting a sequence
name and clicking the “view” button results in the new HTML window shown in Figure 8.

= Neiscape: MGl SequenceRetieva |

File Edit Yiew Go Communicator

= A 4 =2

Forsar Reload Search Metscape

Home

5 & 8 8

Print Securty Shop BLop

Back

Library: Insect-damaged Leaf
Qrganism: Medicago trincatiia
Total sequences: 2110

List of sequences:

MGl Sequence Retrieval

Sort sequences by:

Seguence name [A-Z) — | Sart|

NFDOBATZINIF1086 |

B

NFOOEADTINIF100Z |
NFOOBADZINIF 1006
NFOOEAD3INIF1018
MFOOBADAINIF 1022

MEFOOEAQSINTF103S

MNFOOBADEIN1F1038
MFOOBAD7INIF1050
MFOOEADSINIF10E4
MFO0GADSINIF106E
MFOOGATOINIF1070
NFO0BATTINIF1082

sults of the BLAST analyses of all sequences in the
selected library. The string search is compared to the
description line of all sequences that had a similar-
ity above a certain statistical threshold. The descrip-
tion line is a short, human-readable summary of the
sequence, usually including its function (where
known) taken from its GenBank record. This method
of exploring the database is the richest source of in-
formation for the user to search for genes with pre-
conceived notions in mind. Submitting a string for
search brings back either a message indicating that
the string was not found, or a hyperlinked table show-
ing the sequences for which BLAST hits contain the
string, and links to the similar sequences at NCBI. The
sequences with similarities are hyperlinks that invoke
the window with the sequence display just described.

480 INMAN ET AL

Just as similarity searching provides a rich source of
information when comparing database sequences to
the large public databases, it also can provide insight
on the sequences contained in the MGI database it-
self. The third option for data exploration is a page
where users can submit a sequence for BLAST search
against all sequences in the database (Figure 10).
This is valuable for identifying Medicago sequences
similar to sequences from other species of particu-
lar interest, where the Medicago sequence is hith-
erto unknown. It is also useful for exploring the na-
ture of gene families, using the TBLASTX feature that
dynamically translates both the query sequence and
the database sequences in all six reading frames,
identifying similarities on the basis of protein, rather
than nucleotide, similarity.

IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001

Figure 8 The entire raw sequence is displayed to the user, color-coded to indicate the vector sequence and N-rich, poor
quality sequence. The sequence between these can be downloaded to the user’s local disk by clicking the “save”
button. By clicking the “view” button the user can see the results of sequence analysis.

Netscape: MGI Sec

MGI Sequence: NFO18B0SNR1F1000

Accession: MGES42504

Species: Wedicago fruncafulz Save Sequence to File

Library: nofale-nmy| FASTA Format — | Save|

Date received: &Apr 171 2000 12:26:04:0008M

CTGATTCGCCAGCT COAAATTAACCCT CACT AAAGGLALCAAAAGET GGAGCT CCACCGCOGAT GRCGGCCGLT CT AGAAD
TAGT GGAT CCCCCGGGLT GCAGGAATT CGGCACGAGGCCTT GAT AT AACT GAAGT TT GCAGAGAAAGAAAT GT CALAAGT
GAAGALATT GCT CAAGALAT CAGAGT CGGTLGTTT T AGAAGAGACT GGT CT CACAT GT AGT GCT GGAGT GLGCACCGAATCG
CTTACTTGCT AAGGT TT GLCT CAGACAT AALACAAGCCAAAT GLGACAGTATGTTTT ACCAAAT GACCGCT T GGLCT GTTAT GA
CTTTCATATCCTCCOTT CCTAT CAGAAAGATT GGRLLECAT CGLRT AAGGTTALCT GAACGTATTTT GAAGGAAGTTTTT GGA
AT AAGCACAT GT GAGCAGAT GCT GGAT AAGGGT AGCTATCTTAGTGCTCTTTTTTCT CAGT CAACAGCAGATTTTTTTTA
CTCTGT GGGTTTAGGTTT GLLGAAAGACGGATT CT CCCCAAGT AAGATTT CAGAAAAGT AT CANCAAT GANAGGACGTTTT
CTGCCT CT GAGGAT GAAMCMCT GHNGCAT AdasAST TGECGEEACT T GET GASAT GCT AT CCCANALT GEAAAAS GAGGLT
NT GRNT GGGANAACHT NMACT NT NAACT GAAAACT GHT NNTTTT GAGGT MMNMNGAAT NRANCT MMMANT TT NRAANNMT CNT
MMEMT MNMNMAT NAT WNT NNNNASNCNT NCHT NNMNNNGNNNANNMCMNMNNNT NMNC

Composition of insert: 8=28.6%, C=16.9%, G=24.0%, T=30.5%, N=-0.0%, length=413 nt
Analysis Results:
Dr

Legend:

Prabable vectar sequence Festriction Siteftdapter

SimilaritySearch (BLASTA vs nr) Wiew

Trirnmaed M-rtich seguence

Yiew Best (BLAST =) similarity

Possible vestor sequence

Whereas BLAST and string searches provide a spe-
cific approach to discovery, analogous to shopping
with a list, the final method of exploration is closer
to window-shopping. Clicking the button invokes a
CGI Perl program that presents a list of every se-
quence in the database, along with its best similarity
from the search against the NR database (Figure 11).
The records are presented in pages, selected by the
user. While it is laborious, feedback indicates that
users identify genes of interest using this approach
that would otherwise be overlooked.

Future work

We believe the current MGI architecture has reached
the limits of its design, and rather than continue to

IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001

add features in an ad hoc fashion, to support redun-
dancy checking, for example, we are completely re-
designing the system to retain the advantages of the
current system with improvements that make it more
modular, flexible, portable, and interactive. We are
currently involved in developing the next generation
of software for the new system. Some of the concerns
we are addressing include:

1. The current database schema is EST-centric,
meaning that individual ESTs are the units upon
which the analysis operations work. Because a set
of 40000 ESTs, for example, might only represent
10000 to 15000 genes, we do a lot of needless
computation that could be eliminated by perform-
ing clustering first, and then doing the BLAST sim-

INMAN ET AL. 481

Figure 9 The results of a BLASTX search are shown. Each line in the table of hyperlinks at the bottom of the figure leads to a
location further down the page where the user can examine the alignment between the query sequence and its “hit,”
and follow another link to the record of the hit at NCBI.

< @

Back Fonward

GO 4

Print

A & =

Reload Home Search Metscape

& @ @

Security Shop stop

BLASTX 2.0.6

L

MGI Similarity Search Results (BLASTX)

Analyzed 414 nt sequence NFO18BOSNR1F1000.SEQ for Homology.
BLAST arquments were: parameters=’-p blastx -a 4 -e 0.0001 -v 10 -b 10 -F T’ reflib=’nr’. i

[Sept-16-1998]

Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro &. Schaffer,
Jinghui Zhang, Zheng Zhang, Webbh Miller, and Dawid J. Lipman (1997},
"Gapped BLAST and PSI-BLAST: a new generation of protein database search

programs", MNucleic Acids Res. 25:3389-3402.
Query= MGI:S5:4254
(414 letters)
Database: /home/blastlib/nr
485, 275 sequences; 152,116,570 total letters
Searchingdone
Score E
Sequences producing significant alignments: {(hits) Value
gi|6753636 | ref [NP 036178 1]1] DinE homolog 1 (E. coli) >gi|60492 . . 26 1e-28
gi| 6049286 | gb|AAFO2540. 1 |AF163570 1 (AF163570) DINE protein [Ho. . . 25 2e-28
gi] 6681760 gb|AAF23270.1] (AF194973) DINP protein [Homo sapiens] 25 2e-28
gi|465873|sp |P34409|VLWE_CAEEL HYPOTHETICAL 59.1 KD PROTEIN F22. . . 108 2e-23
gi|6900413 |enb |CABT2023. 1| (AJ391259) putative DNA-damage induc. .. 88 3e-17
gi| 7226689 | gb|AF4A1808. 1| (AE002494) DNA-damage-inducible prote. . . 86 2e-16
g1]4038629 |emb | CAA19259. 1| (ALO23704) similar to E. coli DNA-da. .. 79 2e-14

gi|2501652|sp| Q47155 |DINP_ECOLI DNA-DAMAGE-INDUCIELE PROTEIN P . .. 77

1]7296509 | gh |AAFS1794. 1
gi] 2660675 gb|AACTI146. 1]

AEOD3596) CG7143 gene

roduct [Droso. ..
(ACO02342) similar to DNA-damage-indu. .

O9e-14
69 2e-11
66 1le-10

ilarity search on the consensus sequences from
each cluster. This dependence on EST units is
eliminated in a new schema.

. The distinction between public and private data
is useful, but is too simple for multiple groups of
researchers who wish to share some data with
other select groups, without making it globally
public. A new technique is being developed to ac-
commodate this and other requirements.

. The distributed analysis system requires some so-
phistication to administer and is currently not por-
table. An alternative technology is being devel-
oped.

482 INMAN ET AL

4. The software that provides an object interface to

the database derives from a legacy library, which
is complex and schema-specific. In order to ac-
commodate advances in the schema, as well as in
the semantics of interaction, new object interface
tools are being introduced.

. The only analysis operations that are currently

supported are based on similarity searches, and
there is a clear need to add others, for example
a protein motif search, and secondary structure
prediction methods. The process of adding anal-
ysis methods needs to be simplified.

6. There is a need for periodic automatic retrying

IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001

Figure 10 The interface where users can enter a sequence to be searched against the MGI database is shown. “Cut and
paste” of text is supported, as is selection of a sequence from the user’s local drive. Results can be formatted in

plain text or HTML and returned to the user in plain text or hyperlinked HTML.

BLAST[tm] the MGI data set

BLAST[tm] Tips i Filter query BLAST[tm] Method: = BLASTN =

Sequence: Y
Paste your sequence into this
hox, or upload a local file.

Please use FASTA format

= e

]

H Browse. .. |
1

Please be patient. Replies directly to your browser may take a minute or two. Selecting an E-mail reply

allows you to immediately request more searches.
Reset| | run Blast|

Results Options

Return Results:

Filename: Leave blank if pasting.

To your web browser — |

E-mail address: [I

Results Format: HTML hypertext

o |

Advanced Options (please read the documentation)

—| Netscape: NCGR BLAST [tm] Similarity Search ==
File Edit View Go Communicator Help

< v A N 2@ & & O @B D
i Back Fonwad Reload Home Search Netscape Print Secuity Shop Stop

Gap Opening Penalty: ‘0 (default)

Gap Extension Penalty: |10 (default)

Expectation: 10 @ Gapped Alignments: ON =
vax Scores: 25 Max Alignments: s

Extension Threshold:

L

Word Size:

[

i
A5 % 0P @ o2

IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001

INMAN ET AL. 483

Figure 11 A page of best BLASTX similarities is shown. Important elements of the BLAST output such as the putative gene
product function, species, and BLAST score are parsed from the output and formatted into columns in the table.
The user can select from any of the available pages.

= Netscape: View BLASTX Summaries

I File Edit View Go Communicator Help
(4 ¢ 3 @& 2 @ < & 3 @ N
Back Forward Reload Home Search Netscape Prit Securty Shop Stop

TS

L]

Summary of best BLASTX hits

You are currently fin

Insert page number to view: ‘122 VIEW

Name ID GenBank Description Species Score Expect
NFO010BOBLF1F 1064 2104 No hits Found -—- -— —-— —_—
NF010B0O8RT1F 1064 2105 X78118 Acetoacetyl-coenzyme A thiolase Raphanus sativus 53.1 2e-15
NF010B08ST1F1000 2106 R77456 pentameric polyubiquitin Nicotiana tabacum 319 2e-86
NF010BOSRT1F1076 2107 AC007017 unknown protein Arabidopsis thaliana 136 2e-31 =
NF010B09ST1F 1000 2108 AC002328 F20N23 Arabidopsis thaliana 248 3e-70
NFD10B10LF 1F 1080 2108 ACO07295 NF NF 195 9e-54
transcriptionally stimulated by
NFDO10B10RT1F1080 2110 %98255 gibberellins; expressed in meristematic Arabidopsis thaliana 154 Be-37
region, and style
NFO10B10ST1F 1000 Fall| U76836 heta-tubulin § Triticum aestivum 342 Se-97
NFO10B11LF1F1092 2112 No hits Found --- — -— —
NFO10B11RT1F 1082 2113 Lo7s00 ggﬁ;&fé‘é‘;%i?s‘ph“phate Pisum sativum 243 2e-64
NFO10B11ST1F1000 2114 No hits Found --- - -—- -—-
NF010B12LF1F 1096 2115 85038 protein of photosysterm |l Spinacia oleracea 8389 1e-15
NFO10B12RT1F 1096 2116 XB3649 g'rr:{j‘tg:g’s'ea'methwg'“ta“’"°°e”2Vme Nicotiana sylvestris 53.1 3e-06
NF010B12ST1F1000 2117 No hits Found --- ——— -— -—-
NF010CO1LF1F1004 2118 MB3627 carbonic anhydrase Pisum sativum 200 de=51
NFD10CO1RT1F 1004 2113 No hits Found -—- -_— —-— —_—
NF010C01ST1F 1000 2120 No hits Found -—- -— -_— —_—
NF010C0ZRT1F1008 2121 U17436 isoflavone reductase Medicago sativa 233 1e-60
NF010C02ST1F1000 222 ACD18907 unknown protein Arabidopsis thaliana 815 5e=15
NFO10C03LF1F 1020 2123 AF084200 sm‘t'zrs;‘;t';ﬂ]fmsm“%’:;w Medicago sativa 216 2e-55
NF0D10C0O3RT1F1020 2124 ACD0S483 F14N23.2 Arabidopsis thaliana 81.1 le-14
Similar to gb|U5j 930
NF010C03ST1F1000 2125 ACO0BSS0 ﬂr:r;{’”Egrﬁ;nss‘?'g'sﬁsf*éﬁ%g:gpﬂi\fg""‘ Arabidopsis thaliana 143 1e-33
gh|AA721815 come from this gene.
NFO10C04LF1F1033 2126 AF178040 ubiquitin-conjugating enzyme UBC2 MESembryanthemum
|
L
of the similarity search operation for those se- nomic DNA sequences in the same database as
quences that have no good database “hit,” and ESTs.
for the users to introduce analysis operations
themselves, in addition to those carried out by the The revised data model is based on the concept of
pipeline. a generic analysis operation with input and output
7. The system only accommodates cDNA data. We consisting of sets of data, which may contain zero,
intend to allow the storage and analysis of ge- one, or more ESTs, genomic sequences, clusters, com-

484 INMAN ET AL IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001

puted features, and so forth. Thus, diverse analysis
methods will be supported with the same relational
schema, and the model will also allow for the flex-
ible addition of new sequence analysis methods, with-
out a priori knowledge of their input and output for-
mats. We are also designing the new system with
reusability and portability in mind, to simplify the
process of creating new pipeline systems, and to al-
low remote deployment of the system without de-
pendencies on NCGR computer infrastructure.

From the support perspective, once set up, the ex-
isting pipeline requires little maintenance, although
some manual intervention is still required in the case
of certain kinds of errors, which are brought to the
administrator’s attention by automated e-mail mes-
sages. For example, actions that were being pro-
cessed at the time of a crash will have a status of “pro-
cessing” or “error,” and these must be reset to have
a status of “pending.” In addition, because the pipe-
line tasks are set up ahead of time by the preceding
tasks, the analysis stages themselves have to be mod-
ified in order to add new types of analyses to the pipe-
line. In addition, setting up a new pipeline requires
a fair amount of administrative work, mostly asso-
ciated with customizing the user interface.

Conclusion

We have built a DNA sequence storage and analysis
system for expressed sequence tag (EST) data that
removes the bioinformatics responsibility from the
DNA sequencing laboratory. Building on an earlier
system with a simpler architecture, we have added
new features of importance to the research commu-
nity, along with an interface to a distributed analysis
system that increases throughput by running tasks
concurrently on multiprocessor machines or work-
station clusters. The system offers the users well-or-
ganized views of their data and the results of anal-
yses run on that data, and supports the discovery of
biological knowledge embodied in the sequences by
assisting in the functional annotation of genes. We
are in the process of developing a more sophisticated
system, based on experience we have gained by work-
ing with this system and its predecessor.

Acknowledgments

This project was supported by the Samuel Roberts
Noble Foundation. We gratefully acknowledge Pe-
ter Hraber, Bruno Sobral, and the Phytophthora
Consortium, whose database and analysis system, the

IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001

Phytophothora Genome Initiative (PGI), served as
a foundation for this work.

**Trademark or registered trademark of The Open Group, Sy-
base, Inc., the Object Management Group, or Sun Microsystems,
Inc.

Cited references and notes

1. D.R. Walker and E. V. Koonin, “SEALS: A System for Easy
Analysis of Lots of Sequences,” Intelligent Systems for Mo-
lecular Biology 5, 333-339 (1997).

. See http://www.ncbi.nlm.nih.gov/Walker/SEALS/.

. See http://stein.cshl.org/software/boulder/.

. M.D. Adams, J. M. Kelley, J. D. Gocayne, M. Dubnick, M. H.
Polymeropoulos, H. Xiao, C. R. Merril, A. Wu, B. Olde, R. F.
Moreno, A. R. Kerlavage, W. R. McCombie, and J. C. Vent-
ner, “Complementary DNA Sequencing: Expressed Sequence
Tags and Human Genome Project,” Science 252, 1651-1656
(1991).

5. B. Ewing and P. Green, “Base-Calling of Automated Se-
quencer Traces Using PHRED: II. Error Probabilities,” Ge-
nome Research 8, No. 3, 186-194 (1998).

6. D. Gordon, C. Abajian, and P. Green, “Consed: A Graph-
ical Tool for Sequence Finishing,” Genome Research 8, No.
3, 195-202 (1998).

7. See http://www.phrap.org.

8. See http://www.noble.org/medicago/ProgramLaunch/
medicago_summary.htm.

9. M. Waugh, P. Hraber, J. Weller, Y. Wu, G. Chen, J. Inman,
D. Kiphart, and B. Sobral, “The Phytophthora Genome Ini-
tiative Database: Informatics and Analysis for Distributed
Pathogenomic Research,” Nucleic Acids Research 28, 87-90
(2000).

10. GenBank is the National Institutes of Health (NIH) genetic
sequence database. It is the de facto official public repository
of the United States for all of the nucleic acid sequences and
is administered by the National Center for Biotechnology In-
formation (NCBI), a branch of the National Library of Med-
icine.

11. S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang,
Z. Zhang, W. Miller, and D. J. Lipman, “Gapped BLAST
and PSI-BLAST: A New Generation of Protein Database
Search Programs,” Nucleic Acids Research 25, 3389-3402
(1997).

12. See http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=
Protein.

13. The Common Object Request Broker: Architecture and Spec-
ification, Revision 2.1, The Object Management Group, Inc.,
492 Old Connecticut Path, Framingham, MA (1997).

14. R. H. Halstead, “MULTILISP: A Language for Concurrent
Symbolic Computation,” ACM Transactions on Programming
Languages and Systems 7, No. 4, 501-538 (1985).

15. The “NR” library is a nonredundant database of all known
protein sequences. It is derived in part from GenBank and,
like GenBank, is maintained by NCBI.

16. PHP is aserver-side, cross-platform, HTML-embedded script-
ing language with database connectivity capabilities. Its use
simplifies the creation of dynamic Web page content.

17. G. G. Sutton, O. White, M. D. Adams, and A. R. Kerlavage,
“TIGR Assembler: A New Tool for Assembling Large Shot-
gun Sequencing Projects,” Genome Science and Technology
1, 9-19 (1995).

18. J. Burke, D. Davison, and W. Hide, “d2_cluster: A Validated

SN

INMAN ET AL. 485

Method for Clustering EST and Full-Length cDNA Se-
quences,” Genome Research 9, No. 11, 1135-1142 (1999).
19. See http://www.sanbi.ac.za.

Accepted for publication January 18, 2001.

Jeff T. Inman National Center for Genome Resources, 2935 Ro-
deo Park Drive East, Santa Fe, New Mexico 87505 (electronic mail:
Jjti@ncgr.org). Mr. Inman is a software developer at the National
Center for Genome Resources in Santa Fe, New Mexico, where
he pursues an interest in distributed systems. He received a B.S.
degree in computer science from Boston University in 1986. He
worked at Symbolics, Inc., in Cambridge, Massachusetts, and then
at the Massachusetts Institute of Technology’s Artificial Intelli-
gence Laboratory, where he did research on fine-grained paral-
lelism with the Message-Passing Semantics group. Prior to his
work at NCGR, Mr. Inman spent time at the Santa Fe Institute,
developing software that was used to study the inverse protein
folding problem using genetic algorithms.

H. Raul Flores Netvoice Technologies Corporation, 3201 West
Royal Lane, Suite 160, Irving, Texas 75063 (electronic mail:
rflores@netvoice.org). Mr. Flores is currently working for Netvoice
Technologies as a manager in the Web Development group where
he is developing e-commerce applications using Java servlets,
PHP, and SQL. Mr. Flores graduated from Texas A&M Univer-
sity with an undergraduate degree in geology. He received a mas-
ter’s degree in software engineering from Texas Christian Uni-
versity in 1993.

Gregory D. May Samuel Roberts Noble Foundation, 2510 Sam
Noble Parkway, Ardmore, Oklahoma 73402 (electronic mail:
gdmay@noble.org). Dr. May is an associate scientist in the Plant
Biology Division at the Samuel Roberts Noble Foundation. His
training is in plant physiology, molecular biology, and mechanisms
of tissue-specific gene expression. Dr. May graduated with a B.S.
degree in biology from Southeast Missouri State University and
received his Ph.D. degree in plant physiology from the Depart-
ment of Biochemistry and Biophysics at Texas A&M University.
He did postdoctoral work at the Institute of Biosciences and Tech-
nology (IBT), Houston, Texas, where he studied plant tissue-spe-
cific gene expression. Following his postdoctoral studies, Dr. May
was granted a Research Assistant Professor position at the IBT.
In 1995, Dr. May joined the Boyce Thompson Institute for Plant
Research at Cornell University as an assistant scientist. In 1997,
he was granted adjunct assistant professor status in the Section
of Plant Biology at Cornell University. Dr. May joined the Noble
Foundation in May 1999 to establish the Medicago genomics pro-
gram. His current research interests focus on DNA repair and
gene targeting mechanisms in plants.

Jennifer W. Weller Virginia Bioinformatics Institute. 1750 Kraft
Drive, Suite 1400, Virginia Polytechnic Institute, Blacksburg, Vir-
ginia 24136 (electronic mail: jwweller@vt.edu). Dr. Weller is a re-
search assistant professor at the Virginia Bioinformatics Insti-
tute at Virginia Tech and was formerly NCGR’s program leader
for gene expression. She earned a Ph.D. degree in biochemistry
from the University of Montana, Missoula. Her current research
includes development of an EST and genomic DNA analysis pipe-
line and a “wet lab” investigation of the genes expressed by Ara-
bidopsis thaliana in root development and during parasitic attack.

486 INMAN ET AL

Callum J. Bell National Center for Genome Resources, 2935 Ro-
deo Park Drive East, Santa Fe, New Mexico 87505 (electronic mail:
cjb@ncgr.org). Dr. Bell is a senior research scientist at the Na-
tional Center for Genome Resources in Santa Fe, New Mexico.
His training is in genetics, molecular biology, and genomics, with
a long-standing interest in bioinformatics solutions to problems
in genomics. Dr. Bell graduated with a B.S. degree in biological
sciences from Edinburgh University and obtained his Ph.D. de-
gree in the genetics of gravity responses in the model plant, Ara-
bidopsis thaliana, from the same institution in 1988. He did post-
doctoral work at the National Institute for Basic Biology in
Okazaki, Japan, and at the University of Pennsylvania biology
department. In his postdoctoral studies he worked in a group gen-
erating a physical map of Arabidopsis, and he pioneered the use
of microsatellites as genetic markers in that organism. His work
in genomics continued with an appointment at the Children’s Hos-
pital of Philadelphia where he led the physical mapping of hu-
man chromosome 22, and at Sequana Therapeutics, where he
managed a multidisciplinary project team attempting to identify
human susceptibility genes for Type 2 diabetes and obesity. Dr.
Bell joined NCGR in September 1999. His main interest is bioin-
formatics systems that enable knowledge discovery in biological
sequence databases.

IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001

