104 KREGER

Java Management
Extensions

for application
management

Modern enterprise systems are composed of
both centralized and distributed applications.
Many of these applications are business-critical,
creating the need for their control and
management by existing management systems.
A single suite of uniform instrumentation for
manageability is needed to make this cost-
effective. The Java™ Management Extensions
Agent and Instrumentation Specification, v 1.0,
describes an isolation layer between an
information technology resource and an arbitrary
(enterprise-specific) set of management
interfaces and systems. It includes a simple,

yet sophisticated and extensible management
agent that can accommodate communication
with private or acquired enterprise management
systems. The application programming interface
is simple enough that manageability can be
achieved in three to five lines of code. Yet,

it is flexible enough that complex, distributed
applications can be managed, allowing
management of Java technologies as well as
management through Java technologies.

This paper includes an overview of application
management issues and technologies. The JMX
technology and application program interfaces
are discussed in depth using examples pertinent
to today’s application developer.

odern enterprise systems are composed of

both centralized and distributed applications.
The introduction of the Internet and intranets has
brought about a new class of applications that con-
nect the end user to existing, traditional, centralized
applications. A new class of autonomous, Web-based
applications are also being developed and rapidly de-
ployed in the new business environment. Service-
based architectures are emerging in which manage-
ment of applications becomes even more difficult as

0018-8670/01/$5.00 © 2001 I1BM

by H. Kreger

information technology (IT) resources appear, move,
and disappear across the network. These new appli-
cations have become business-critical, creating the
need for their control and management by existing
external management systems. A single suite of uni-
form instrumentation for manageability is needed
to make this cost-effective.

The Java®* Management Extensions (JMX**) Agent
and Instrumentation Specification, v 1.0," describes
an isolation layer between an IT resource and an ar-
bitrary (enterprise-specific) set of management in-
terfaces and systems. The IMX package defines ex-
tensions of the language (Java Optional Package for
J2SE**?) that will allow any Java technology-based
resource to be inherently manageable, along with a
set of services for managing these objects. It includes
a simple, yet sophisticated and extensible manage-
ment agent that can accommodate communication
with private or acquired enterprise management sys-
tems. The application programming interface (API)
is simple enough that manageability can be achieved
in three to five lines of code. Yet, it is flexible enough
that complex, distributed applications can be man-
aged, allowing management of Java technologies as
well as management through Java technologies.

This paper is divided into four main sections: an over-
view of application management, an overview of IMX,
a few scenarios with programming examples, and a

©Copyright 2001 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001



detailed review of the JMX components and inter-
faces. The overview of application management is
intended to provide some understanding of the cur-
rent state of management issues and technologies
as well as some common terminology. It covers ap-
plication management issues and trends, a manage-
ment technology survey, management system com-
ponents, and application management approaches.
The history and technology survey helps explain the
business case and advantages of using IMX technol-
ogy for application management, while positioning
it relative to the application management industry.

The application management problem

The primary challenge in managing applications is
diversity. Applications today vary widely in purpose,
size, architecture, and criticality. There is very little
that is common across all application types, and ap-
plication architecture trends are increasing this di-
versity.

Modern enterprise systems are composed of both
centralized and distributed applications. Centralized
applications, such as payroll and accounting appli-
cations, are backed by a database on a high-end
server and are usually accessed by a limited set of
users—those in the financial department, for exam-
ple. Distributed applications, such as mail systems,
usually require groups of smaller server systems to
be running at all times and are accessed throughout
the enterprise. These applications represent the “tra-
ditional” application in the current enterprise envi-
ronment.

The introduction of the Internet and intranets has
precipitated a new class of applications that connect
large numbers of end users to existing, traditional,
centralized applications. The new application facil-
ities range from Web-accessible corporate person-
nel directories to Web-based order-tracking systems
that benefit customers and reduce order manage-
ment costs. These applications make it easier to ac-
cess corporate information inside traditional appli-
cations and reduce the number of personal contacts
necessary.

The next generation of autonomous, Web-based ap-
plications is rapidly being developed and deployed
in the new business environment. These applications
embody e-commerce in the form of catalogs, shop-
ping, markets, and auctions. The movement of the
supply chain to the Internet will drive the next set
of critical, distributed business-based applications.

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

These applications will move the heart of the bus-
iness—buying supplies and selling products—to the
Internet.

Service-based architectures are emerging in which
management of applications becomes even more dif-
ficult as IT resources appear, move, and disappear
across the network. UDDI (universal description, dis-
covery, and integration) is a standard describing how
and where services are advertised. Sun Microsystem’s
Jini**,3 the Universal Plug and Play (UPnP) initia-
tive,* Hewlett-Packard’s e-speak,® and 1BM’s Web
Services Toolkit® are all service-oriented architec-
tures for business environments.

These new classes of applications are executing
across multiple hosts, operating systems, and corpo-
rations. They incorporate existing traditional and
emerging application models. They are no longer just
client/server applications; they are now client-
middleware-server applications. They are business-
critical and need to be uniformly controlled and man-
aged, by a business’s existing management systems,
with the same diligence as traditional applications
have been managed. JMX is flexible and extensible
enough to be used in all of these diverse applications.

A short history of management technologies. A brief
review of management technologies and their his-
tories illustrates how critical it is that a management
architecture for Java technology allow applications
to be independent of the management technology
choice. Businesses invest in enterprise management
systems for network and systems management for
several reasons:

* There are too many IT resources to be tracked with
internally developed tools.

* The IT resources are too distributed to control from
a single systems console.

e The IT resources are of diverse types, requiring
multiple consoles in the operations center.

* The 1T resources need highly available IT infrastruc-
ture.

Historically, mainframes such as IBM’s System/390*’
and Amdahl Corporation’s Millennium** 2000 have
had tightly coupled management systems because of
the business demand for high availability. In very
large businesses, the number of mainframes and dis-
persed computing centers to be managed placed high
demands on operations staff, and new enterprise sys-
tems management products were developed by com-
panies like 1BM, Candle,” and Computer Associ-

KReEGER 105



ates.!® As enormous SNA'' and TCP/P'? networks
began connecting these computing centers to each
other and to distant users, network management
products became critical IT investments. Tivoli’s Net-
View** for 08/390* 1> and Hewlett-Packard’s Open-
View'* were some of the first successful enterprise
network management systems. As many business ap-
plications moved into distributed server environ-
ments, the demand for enterprise systems manag-
ers increased. Business systems management now
required external management—the servers were
dissimilar, numerous, distributed, and had to be
highly available. Tivoli Systems,” Computer Asso-
ciates, and BMC Software'® are a few of the compa-
nies that have supplied management products to
meet these challenges.

These management systems have been implemented
using different protocols and technologies. This is
illustrated by a survey of management technologies
in use today:

* SNMP is a de facto standard for device and network
management. However, it has not been widely
deployed for application management. It was
developed as a temporary solution for manage-
ment until CMIP was completed. Hewlett-Packard’s
OpenView** and Tivoli’s NetView are popular
SNMP-based network management products today.

e cMIP (Common Management Information Proto-
col)'” was developed by 10O (International Orga-
nization for Standardization) as a management
standard. It did not displace SNMP (Simple Net-
work Management Protocol)® as expected, but has
been used by the telecommunications network
management market. Sun Microsystems, Evidian
(formerly Bullsoft), and Hewlett-Packard have net-
work management products that support CMIP.

* The DMTF (Distributed Management Task Force)
CIM/WBEM (Common Information Model/Web-
Based Enterprise Management)? standard defines
a management information model and an XML
(Extensible Markup Language) -based interface
to access the information. While the device and
system models are fairly complete, the application
model is still a work in progress. Although this is
still an emerging technology, Microsoft’s sMs?' and
Sun’s Solstice™* provide support and managers for
it. SNIA (Storage Networking Industry Association)
provides an open source implementation.?

e The Open Group’s Enterprise Management Pro-
gram has published several standards that focus
on manageability. Recent significant additions in-
clude Application Instrumentation and Control

106 KREGER

(AIC) and Application Response Measurement
(ARM) standards. AIC is a C language API (appli-
cation programming interface) for exposing appli-
cation metrics and thresholds. ARM is a method
for capturing the amount of time it takes to per-
form units of work inside applications. A language-
and platform-independent manageability agent is
currently being defined and prototyped. This agent
will be interoperable with WBEM.

e Many operating systems, such as IBM’s System/390
and Microsoft’s Windows** 2000, have their own
proprietary management systems and infrastruc-
ture.

* The dominant enterprise management system pro-
viders, Tivoli, Computer Associates, and BMC Soft-
ware, use their own proprietary technology for dis-
tributed management infrastructure, including
manager-to-agent communications. These enter-
prise management system vendors compete not
only on the management system infrastructure and
capabilities, but also on the set of products to be
managed and the services for installation and cus-
tomization.

While SNMP dominates the device and network man-
agement market, there is no dominant management
technology in the application and e-business man-
agement markets. Tivoli, Computer Associates, Mi-
crosoft, and Hewlett-Packard are all competing for
these markets. Most developers of popular cross-
platform applications choose a single management
technology to accommodate or attract a portion of
their target market. In some cases, developers im-
plement multiple management technologies in or-
der to provide more complete coverage of their po-
tential markets, resulting in a significant development
cost. With either approach, the potential return on
investment does not motivate developers to instru-
ment appropriately for manageability. As a result,
more often than not developers choose to “roll their
own” application-specific management systems,
rather than implement for any external management
technology. A single suite of uniform instrumenta-
tion for manageability, like IMX, allows cost-effec-
tive development of new manageable applications.

Management system components and roles. To un-
derstand the set of responsibilities that JMX is in-
tended to fulfill, it is necessary to understand the ba-
sic architecture used by most management systems.
Despite the wide variety of management technolo-
gies and products, most management system infra-
structures fall into an architecture pattern referred
to as Manager-Agent. There are generally four ba-

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001



Figure 1 Typical management system components

sic components to this architecture: managed re-
source (application), agent, subagent, and manage-
ment system (see Figure 1).

Application. The application, or managed resource,
is any computer program engaged in business-ori-
ented work. These applications can be running on
servers, clients, and even devices. When looking at
types of Java technology applications we must be sure
toinclude the management needs of stand-alone ap-
plications, client/server applications, and Web ap-
plications. Web applications include server-side
(servlets, Enterprise JavaBeans**, etc.) as well as cli-
ent-side (browsers, applets, etc.) elements.

The managed application is responsible for expos-
ing appropriate data for use by a management sys-
tem, responding to requests from the management
agent, recognizing internal errors, and posting events
to the management system. Requests from agents
may include getting data, changing configurations,
or executing operations. The application determines
which requests it will support and to what degree
these requests are supported. The application com-
municates with or contains a management agent or
subagent.

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

APPLICATION
AGENT < » MANAGEMENT
b | SESSION
V'
APPLICATION AGENT
SUBAGENT MANAGEMENT

INFORMATION

Agent. The management agent communicates with
the management system and the application. It is usu-
ally running on the same host or process as the ap-
plication it is managing. SNMP, CMIP, and WBEM all
define standard agent architectures. The enterprise
management systems, such as those from Tivoli and
Computer Associates, have proprietary agent infra-
structures.

The agent is responsible for sending events to the
management system, relaying data and command re-
quests from the management system to the appli-
cation, gathering responses, and returning them to
the requester. Some architectures also include
midlevel managers between agents and the manage-
ment system to provide a more scalable solution.
Midlevel managers aggregate and filter the informa-
tion from a set or “domain” of agents, then forward
pertinent information on to the management system.
This reduces the amount of incoming messages the
management system must handle. The agent may be
running in the application’s address space or may
be external to the application, communicating with
it via an API or a “subagent” interface. Agents with
subagent interfaces can support many applications
within the same environment; agents within an ap-

KReGer 107



plication can support only that instance of the ap-
plication.

Subagent. The subagent communicates between the
application and the agent and is typically tightly cou-
pled with the application. It is generally delivered as
part of the application and runs in the same process.
SNMP defines and uses subagents as part of its ar-
chitecture.

The subagent is responsible for responding to agent
requests supported by the application (commands,
data requests, and data updates). It registers with
the agent when it is initialized, accesses and returns
management data to the agent, and sends events
from the application to the agent. The communica-
tions protocol between the subagent and agent is usu-
ally proprietary. For SNMP agents, DPI and SMUX are
both widely used subagent protocols.” AgentX?* is
being defined by the IETF* as a standard subagent
protocol for SNMP.

Management system. The management system com-
municates with management agents that support the
same management protocol. It may be a sophisti-
cated enterprise manager, like those available from
Tivoli or Computer Associates that manage all the
critical applications. It may be a domain-specific
management system designed to fully manage a par-
ticular application, such as IBM’s WebSphere* ad-
ministration console.* Or, it may be an application
system-specific management system designed to
manage a business system, for example banking or
accounting systems.

The management system is responsible for provid-
ing the infrastructure and user interfaces to manage
applications. It receives events from agents, displays
them to or notifies operators, and takes any defined
automated actions. The management system can ini-
tiate a command or data request, send commands
to agents to control the application, and request data
from the agent (which requests it from the applica-
tion) for polling, monitoring, trending, or problem
determination. The management system may also do
the discovery of enterprise devices and applications
in order to reduce management system configura-
tion requirements and produce accurate topology
and inventory information. The management ap-
proach (i.e., activities) can be customized for an ap-
plication type or instance. This includes defining the
components of the application, the commands that
are supported, the statistics that are available for
monitoring, the values that are indications of a prob-

108 KREGER

lem, and reactive as well as operational policies. With
more sophisticated management applications, ser-
vice-level agreements and business system contexts
can be defined as well.

The JMX agent, or MBean server (discussed in de-
tail later) satisfies the definition and requirements
of a management agent or subagent. The JMX instru-
mentation API provides the interface used by the
managed application to communicate with the man-
agement agent.

When to manage the application. In order to use IMX
in an application, the developer needs to understand
and identify its management requirements. It is im-
portant to remember that not all applications require
a management system. Most need an application-
specific manager to allow users or administrators to
configure the application, ensure it is working prop-
erly, and perhaps even use the application. Some ap-
plications need to be managed by an external enter-
prise management system. Determining how com-
plex the application-specific manager is and how well
it integrates with enterprise management systems in-
volves a number of factors:

e Complexity. Complex applications typically require
more extensive and comprehensive management
support.

e Scale. Large-scale applications (those with many
installations) generally require distributed manage-
ment support. They are also excellent candidates
for integrating with enterprise management sys-
tems.

e Criticality. Mission-critical applications, even if only
one instance exists, or applications that are an in-
tegral part of a business-critical system (databas-
es, routers, and name servers), should be supported
by the specific management system as well as the
enterprise management system.

e Policy. Corporate policies may dictate the degree
of management support for an application. If the
application is being developed in an organization
that has invested in an enterprise management sys-
tem, there may be business policies that govern
which applications are to be supported and how
extensive that support must be.

e Target market. Vendors of applications must con-
sider the needs and expectations of the target mar-
ket. If a large percentage of the target market uses
a particular enterprise management system, then
the application should be supported by the same
system. If the target market expects the applica-
tion to be supported by one or more enterprise

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001



managers, then the vendor will want to satisfy those
expectations. Customers expect to purchase appli-
cations that will be “good citizens” within their ex-
isting enterprise management infrastructure.

Vendors of applications with large, diverse target
markets may be forced to support multiple manage-
ment systems on multiple platforms. This can lead
to significant, perhaps insupportable, development
costs. Developing and maintaining support for any
one of the standard or proprietary management tech-
nologies requires a steep learning curve and is a sig-
nificant development effort. JMX mitigates the
investment in management during application de-
velopment by allowing developers to concentrate on
supporting one management technology. Multiple
enterprise management systems can interact with the
JMX agent in order to manage the application.

The application life cycle. Understanding the man-
agement issues for an application across its life cy-
cle puts JMX in perspective. JMX is not appropriate
for all aspects of application management. Accord-
ing to the DMTF CIM application model,* the appli-
cation life cycle can be segmented into four activ-
ities: deploying, installing and configuring, starting,
and monitoring and operating an executing appli-
cation.

Initial application deployment, installation, and con-
figuration solutions are available from several ven-
dors, including Tivoli, Marimba,* and Computer As-
sociates. These solutions generally involve moving
the necessary files to a set of target systems, running
setup programs, and customizing initial configura-
tion files. They can be defined for an application with-
out direct cooperation or interaction with the ap-
plication’s execution environment. The application
developer usually does not have to consider the needs
of these management systems during development.

Starting applications, followed by monitoring and op-
erating applications during execution, requires a dif-
ferent management infrastructure because the man-
agement system must interact directly with the
application. The application developer must supply
commands and APIs for operations, including start-
ing and stopping. The developer must also define,
maintain, and expose configuration and metric in-
formation through logs, events, commands, or APIs
for the management system to monitor and under-
stand.

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

JMX provides the infrastructure for the application
developer to use to expose this management infor-
mation. It also provides the APIs for management sys-
tems to gain access to the information and invoke
the operations.

Application management instrumentation options.
In order for any stage of the application’s life cycle
to be managed by a management system, its man-
agement capabilities and requirements must be de-
fined to the management system. This combination
of code and definition can be referred to as “man-
agement instrumentation.” There are two primary
types of management instrumentation: external and
internal.

External instrumentation. External instrumentation
is defined and executed outside the application. It
consists of application-specific customization of the
management system so that it can effectively man-
age the application. The management system’s ex-
ternal instrumentation includes special files, pro-
grams, or utilities that may be necessary for it to
control the application or access application data.
These files must define the directories, files, librar-
ies, executable modules, installation processes, con-
figurations, events, APIs, and policies that make up
the application. The life-cycle stages of deploying,
installing, configuring, and starting are satisfied by
this type of instrumentation.

Tivoli’s NetView uses AMS (Application Manage-
ment Specification)® files that are generically de-
fined as an application’s definition file. Some appli-
cation writers and management system vendors
provide tools for creation of an application’s defi-
nition files. For SNMP, the MIB (management infor-
mation base) file represents this type of instrumen-
tation. For CIM/WBEM, the instrumentation is defined
as a schema in a MOF (managed object format) file. *

Internal instrumentation. Internal instrumentation is
developed by the application developer and executed
as part of the application. It is specifically engineered
to meet management system requirements and in-
cludes a command tool or a management agent that
can perform operational support and obtain the ap-
plication status. The life-cycle stage of monitoring
and operating an executing application may require
this basic instrumentation. Extensive internal instru-
mentation may be required in order to communi-
cate with a single management system.

KReGer 109



Monitoring and operating an executing application
requires that the application support instrumenta-
tion for several different types of management data
and functions. For example, a SNMP subagent must
be developed for each application that supports a
defined SNMP MIB. Likewise, with WBEM, a CIM pro-
vider may need to be developed to support the man-
agement schema for an application. There is cur-
rently no standard instrumentation data or API
approach; however, a management model defining
the data for managing executing applications is cur-
rently being developed in the DMTF.

A combination of external and internal instrumen-
tation methodologies is optimal. A single common
application management API simplifies and mini-
mizes the internal instrumentation required. This is
the essence of the requirement for a common man-
agement system application-level API, as defined by
the IMX API set, described later. JMX is designed to
satisfy the requirements of managing the executing
application from the application developer’s point
of view as well as the management vendor’s point
of view. JIMX, an internal instrumentation APIL, is used
to expose and access the execution time management
information that is necessary for an application to
be manageable by an arbitrary management system.
Tools can be used to generate the external instru-
mentation for a specific management system from
the information available through the IMX APIs.

Managing an executing application. Management
systems need to access management data about the
application, monitor the application, and operate an
application. Different types of internal instrumen-
tation are necessary to support these management
requirements. By examining each of these needs
from the management system’s point of view we can
identify the information required to manage execut-
ing applications. JMX is capable of supporting all of
these application management aspects.

Access to application management data. The infor-
mation about the application that a management sys-
tem uses is called “management data.” The manage-
ment system must be able to determine the
application identity, how it will run, and what ap-
plication statistics are required in order to monitor
the application. This information generally falls into
one of three categories:

e Identification data. 1dentification data uniquely
identify the current instance of the application.
These data are used by management systems with

110 KREGER

discovery, inventory (audit), and enterprise con-
figuration components. If the management system
cannot find identification data for the application,
then the application must be manually defined to
these components.

* Configuration data. Configuration data may include
the complete configuration or a subset. Read ac-
cess is useful for problem determination and dy-
namic management policy. It gives the manage-
ment system real-time management guidance
about threshold data, logs and components to be
managed, and so on. If the configuration data can
be set by the management system, then an update
to these data may cause the application to dynam-
ically update and abide by the new configuration
values.

e Statistical data. Statistical data generally represent
the current state of the application. Most manage-
ment systems monitor application statistics to de-
termine application “health.” Depending on the
quality and quantity of statistical data available
from the application, management systems may
also be able to use these data for load and resource
balancing, tuning, trend analysis, capacity forecast-
ing, billing, and understanding application usage.
Service-level agreements and the systems that re-
port and enforce them use statistical data to de-
fine the expectations, thresholds, and responses for
an application.

Monitoring the application. Management systems
monitor applications on a regular basis to make sure
the application is functional, catch problems before
they become fatal, and gather statistics for analysis.
The management data just discussed can be used to
track the following:

* Availability. The management system reports when
the application components are not available or
not responding. Application availability is affected
by the ability of users to traverse the network to
the application and marshal sufficient system(s) re-
sources to run the application. Availability can be
determined by monitoring application compo-
nents, statistical data, and events. Alternatively, the
management system can execute an application-
provided “test” command to determine applica-
tion availability.

e Performance and health status. The management
system reports when an application is not perform-
ing within defined limits. It determines this by mon-
itoring application statistics or by running and eval-
uating the results of a test command that will
exercise the critical application functions that must

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001



perform well. Management systems can also test
for thresholds, draw graphs, and report trends, us-
ing historical statistical data. The results of these
activities indicate application health and status.
The management system can be sensitized to prac-
tical application run-time health characteristics
from the specifications provided in the applica-
tion’s definition file. A sophisticated management
system may monitor application statistics to estab-
lish trend lines to guide tuning for optimal oper-
ational results over time.

e Events. The management system asynchronously
receives or “pulls” events from the application and
then reacts to the events according to policy. These
events may indicate that there is a current or im-
minent problem to which the management system
must react. Reactions include applying recovery
or tuning policy, notifying operators, logging, or
filtering. Certain events indicate that the applica-
tion is healthy; these are usually called “heart-
beats.” When these events are not received as ex-
pected, the management system will react.

Operating the application. The management system
needs to control (i.e., start, stop, etc.) the applica-
tion. It must be able to invoke management com-
mands that control, locally or remotely, all compo-
nents of the application in response to events,
schedules, and user requests. The management sys-
tem invokes commands from scripts, programs, re-
mote connections, and command prompts, as well
as those initiated by management agents. The ap-
plication’s user interface may use these commands
for operator-initiated intervention as well as for test-
ing.

The application uses IMX APIs to expose its manage-
ment data, operations, and events. Tools can be used
to generate the external instrumentation with the in-
formation available through the IMX APIs, rather than
require every application to define its own. The ex-
ternal instrumentation describes the application to
the management system. The JMX APIs can be used
by the management system to access the manage-
ment data, invoke the operations, and receive the
events from a JMX-enabled application.

In summary, JMX does not address the definition or
process requirements of application deployment, in-
stallation, or initial configuration. JIMX does address
the infrastructure required to monitor and operate
the application. IMX provides a common set of meta-
data and APIs that can be used to implement inter-
nal instrumentation, generate external instrumen-

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

tation, and access the management information. This
helps automate and minimize the amount of system-
or technology-specific definition that would have to
be done to integrate the application’s management
needs with an arbitrary management system.

Java Management Extensions

JMX provides accessible management data while
simultaneously shielding the application from man-
agement protocols. JMX isolates the application man-
agement data from the management system. The API
allows applications to surface data, operations, and
events to application-specific or enterprise manage-
ment systems. It allows management systems to sup-
port JMX-enabled applications generically with
little or no customer integration (i.e., manual
generation of external instrumentation). The tech-
nical review of the JIMX technology introduces its or-
ganization into instrumentation and agent levels for
specification and compliance along with the compo-
nents of each level. A few scenarios illustrate how
these IMX components could be used in a typical e-
business application. This is followed by an in-depth
discussion of how the JMX components work and
their APIs.

Specification organization and compliance levels.
The IMX specification, reference implementation,
and compliance requirement support management
at three levels: instrumentation level, agent level, and
manager level.

The instrumentation level defines (and provides APIs
to support) implementation of Java technology-
based resources so that they are manageable by any
arbitrary management system through JMX managed
beans (MBeans). Resources that conform to this
level are JMX manageable resources (previously de-
fined as applications or managed resources). The
JMX instrumentation layer is defined in the JmX In-
strumentation and Agent Specification.’

The agent level provides the repository of manage-
ment data and basic common management interfaces
used by IMX-managed resources, services, and adapt-
ers representing management systems. Resources
that conform to this level are Jmx agents (previously
defined as management agents). The JMX agent layer
is also defined in the JMX Instrumentation and Agent
Specification.

The manager level provides the local and distributed
management services used and implemented by man-

KREGER 111



Figure 2 JMX components

meean B\ MBEAN SERVER
ADVANCED
DYNAMIC
LOADING 0
TIMERS o
SERVICE _
SIMPLE
NOTIFICATION
MONITORING 1
SERVICE
SIMPLE
QUERY
RELATIONSHIP L
SERVICE REPOSITORY
SERVICES
META-DATA
PERSISTENT SERVICE
STORAGE

agement systems. These services communicate with
the JMX agent via adapters. Resources that conform
to this level are JMX managers. The JIMX specifica-
tion does not define JIMX managers at this time.

Component overview. The JMX architecture is based
on four component types: managed resources and
MBeans that comprise the instrumentation level,
agents that comprise the agent level, and adapters
that represent the manager level (see Figure 2).
These map well to the management system compo-
nents discussed earlier:

* JMX managed resources are instrumented using
MBean objects. JMX specifies four types of
MBeans: standard, dynamic, open, and model. Ap-
plication instrumentors use or implement one or
more of these types, exposing their management
interface.

112 KREGER

D MANAGED BEANS
D JMX AGENT
D REQUIRED SERVICES
MANAGEMENT SYSTEMS
AND ADAPTERS
SNMP ) | SNmP
ADAPTER < » MANAGER
ADAPTER MANAGEMENT
: P SysSTEM
ADAPTER
TOOLS R ——

—Standard MBeans allow registration of any Java
bean with the IMX agent. A definition of the man-
agement interface as a Java interface must be cre-
ated during development and provided with the
Java class.

—Dynamic MBeans allow the application- or do-
main-specific manager to define or generate the
management interface for a resource at run time.
This provides a simple way to wrap existing non-
bean or even non-Java resources.

—Open MBeans are dynamic MBeans with re-
stricted data types, so that class loading to use the
bean is not necessary.

—Model MBeans implement a dynamic MBean that
comes with the JMX agent. Any application can in-
stantiate and customize the model MBean with
management interface information, making it im-
mediately useful. This drastically reduces the
amount of code to be written for manageability,

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001



and it protects the resource from Java virtual ma-
chine version and JMX agent implementation vari-
ances.

* A JMX agent consists of an MBean server and ser-
vice MBeans. The MBean server runs in the local
application environment (the Java virtual machine
or a server known to the application) and is re-
sponsible for maintaining access to application
management data, query support, and event-no-
tification forwarding and generation. Applications
communicate data and events to management sys-
tems through the MBean server. The MBean
server can function as an instance factory for any
MBean class. The JMX agent includes a monitor-
ing service, relationship service, and MBean class
loader. Additional management services can be
added dynamically as service MBeans by applica-
tions or management systems. Thus the IMX agent
is flexible and extensible.

* JMX adapters communicate between the JMX agent
and their corresponding management systems. The
adapter is responsible for translating between IMX
and the manager and taking care of any issues re-
lated to remote communication. Since the adapter
can be implemented to mimic the manager’s sup-
ported agent technology, the management system
may not even be aware that JIMX is in the picture.
There is at least one specific adapter for each man-
agement protocol or technology required to sup-
port different management systems.

Implementations of the JMX instrumentation API,
JMX agent, and JMX adapters are available from a
number of vendors, including Sun Microsystems,
IBM, and AdventNet.

Scenarios

The following two scenarios illustrate JMX execution
flow and include code samples. The scenarios use
an SNMP management system because SNMP systems
are more widely used and understood.

Event scenario. In this scenario our customer, BigCo,
has a catalog sales application running on its Web
site. This application accepts credit cards as payment
for sales. The credit card information must be ap-
proved by the credit card company. BigCo uses the
services of the Credit Card Approval (CCA) company.
CccA gave BigCo a link to a Web site and servlet to
call for credit card approval. Since no sales can be
made without CCA’s approval, BigCo wants to send
an event to its management system whenever it re-

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

ceives an “HTTP 404” or “unable to connect” re-
sponse from CCA’s link.

BigCo uses both the Tivoli Management Environ-
ment (TME**) and Hewlett-Packard’s OpenView for
systems management, as shown in Figure 3. Oper-
ators of both systems want to be notified if the con-
nection to CCA goes down. TME operators argue that
it is a critical part of a revenue-producing business
system, which it is. OpenView operators argue that
the connection is over the network, which it is. For-
tunately, BigCo uses JMX for its e-business manage-
ment infrastructure and can easily pass events to both
management systems using generic SNMP and Tivoli
TEC®! JMX adapters. If BigCo did not have JMX, its
application developers would have to define an
SNMP MIB and add an SNMP subagent to the catalog
application. They would also have to develop a TEC
adapter and definition files for each notification.

When the connection to CCA does not return an ap-
propriate response, BigCo’s catalog sales application
will invoke its ModelMBean instance to send a no-
tification to all registered listeners. In this case, both
the Tivoli adapter and SNMP adapter are instanti-
ated and registered with the MBean server. They are
registered as listeners for events from the catalog
sales application and both will receive the CCA link
failure notification. The Tivoli adapter will translate
the notification into a TEC event and send it to the
Tivoli agent, which will send it to the Tivoli event
console. At the same time, the SNMP adapter will
transform the notification into an SNMP trap and, act-
ing as an SNMP subagent, send it to the SNMP master
agent, which will in turn send it to OpenView, the
SNMP management system. Now both the system op-
erations center and network operations center are
aware that the link is not functioning properly and
business is being lost.

As we can see in the simple program fragment in
Figure 4, during application initialization the cata-
log application finds the JMX agent’s MBean server
by calling the static FindMBeanServer method for the
MBeanServerFactory object. Using this reference, the
application creates its model MBean named “csa.”
The catalog application includes an XML file that con-
tains definitions for its management interface. It uses
this file to create the meta-data object—ModelM-
BeanInfo—for itself. This object will contain the at-
tributes, operations, and notifications in the catalog’s
management interface (see Figure 5). In the runOr-
der method of the catalog application, it catches an
exception indicating that the credit card approval

KREGER 113



Figure 3 JMX event scenario

Find JMX agent
Create MBean

CATALOG SALES APPLICATION DOWN

Initialize MBean from XML T ACERNT
When approval fails, ol TIVOL
Send notification ADAPTER AGENT \’/‘:‘>
O
0
TIVOLI EVENT CONSOLE
CATALOG
SALES
APPLICATION
% CREDIT CARD LINK DOWN
CREDIT CARD SNMP SNMP
APPROVAL ADAPTER AGENT <:>

servlet is not responding. It then uses the MBean
server to have the “csa” MBean send a notification
indicating that there is a problem.

XML interfaces for JIMX have not been defined as a
standard. However, an XML service MBean or other
utilities can be used to parse the XML data into JMX
objects. This XML fragment is an example of how to
use the DMTF CIM XML DTD (document type defini-
tion) to define a management interface. In this ex-
ample, the CIM method tag would contain JMX op-
erations and the CIM qualifier tags would contain the
IMX MBeanInfo and ModelMBeanInfo meta-data.
We can see in this XML fragment that the catalog
application, CatApp, has an attribute CCAPort of
class CCA.intPort with a value of 8090, no methods,
and a notification called CatApp.CCA.LostContact.

The sample program fragment in Figure 6 illustrates
how an adapter might be organized. During initial-
ization, it connects with the local SNMP master agent
as a subagent. Then, just like the application, it must
find the JMX agent’s MBean server. It registers itself
with the server and adds itself as a listener for no-

114 KREGER

HEWLETT-PACKARD OPENVIEW

tifications from the “csa” object. The handleNotifi-
cation method of the NotificationListener interface
will be invoked by the MBean server when it receives
a notification from csa. The handleNotification
method then transforms the notification into a trap
and sends it to the SNMP master agent to be broad-
cast to all trap receivers. The Tivoli adapter would
have similar functionality and flow.

Statistical data monitoring scenario. BigCo’s Op-
enView operator is receiving too many traps indi-
cating that the CCA connection is down. This unavail-
ability affects business revenues, but before BigCo
can complain about the lack of service, it needs to
gather some statistics about how many requests are
made during the day and map these, in a graph, with
the connection events. Then the company can assess
the effect on revenues in the same time frames. Using
the SNMP manager and JMX, BigCo can gather the data
from the application with little additional effort.

In this scenario, we assume the application is already

initialized and registered with the JMX agent. The
same diagram, program fragments, and XML frag-

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001



Figure 4  Application code fragments for detecting and sending the notification

import javax.management.”;

Integer CCARequests=0, CCAErrors=0;

MBeanServer jmx = MBeanServerFactory.FindMBeanServer();
ObjectName csa = new ObjectName("MyAppServer:name=csa");

jmx.createMBean("RequiredModelMBean", csa));
jmx.invoke(csa, "setModelMBeaninfo",

new Object([] {ParseXMLFilelntolnfo("csl.xml")});

private ModelMBeanInfo ParseXMLFilelnfolnfo(String filename) {
/* returns a ModelMBeanlInfo from the data in an XML formatted file */

}

public void runOrder(cardnum,order) {

jmx.setAttribute(csa,new Attribute("CCARequests",CCARequests+1));

try {
if (CCApproval.getApproval(cardnum))
submitOrder(cardnum,order);
} catch (CCNotAvailableException cce) {

jmx.setAttribute(csa,new Attribute("CCAErrors",CCAErrors+1));

jmx.invoke(csa,"sendNotification", new Object[] {

new Notification(

"CatApp.CCA.LostContact", csa, 001,

(new Date()).getTime()),

"Lost contact with credit card approval service"));

ments from the previous scenario apply to this one.
When the BigCo catalog application was installed,
a “MIBGenerator” tool asked the JMX agent for all
the registered applications and all the attribute and
notification information for each of them. From
these data, it constructed a generic application MIB
and loaded the resulting file into the SNMP manag-
er’s compiled MIB. The SNMP manager operator has
customized the SNMP manager to monitor the MIB
values that indicate the CCARequestCount and
CCAErrorCount.

Note that by returning cached data, the JIMX model
MBean minimizes the run-time impact on the ap-
plication. If the attribute value was not in the cache
or was stale, then the model MBean would invoke
agetCCARequest method on the application. The ap-
plication would receive the request, service it, and
return the results to the model MBean.

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

Operation scenario. After monitoring the request
and error rate of calls to CCA, BigCo found that the
error rate was greatest during peak shopping hours.
When CCA was approached for a solution, the com-
pany offered to upgrade BigCo to a higher-capacity,
more reliable system on a different port. However,
each transaction would cost twice as much. BigCo
decided to use the high-speed port during peak shop-
ping times and the lower-speed port the rest of the
day. The TME operator was responsible for watch-
ing usage rates and changing the CCA port as appro-
priate.

BigCo also decided to add new items to its catalog
and created a content management system for the
catalog application. The purchasing agents will up-
date this as they find new items for BigCo to sell.
Updating the catalog and optimizing external con-
nections for the application fall into different views

KREGER

115



Figure 5 XML fragment defining the management interfaces for the catalog application's model MBean

<VALUE.OBJECT>
<Class name="RequiredModelMBean">
<Qualifier name="name" Type="java.lang.String">
<value>"MyAppServer:.name=csa"</value>

</Qualifier>...

<Property name=CCAPort Type="java.lang.Integer">
<Qualifier name= Isls type= "Boolean"><Value>FALSE</Value></Qualifier>
<Qualifier name= Readable type= "Boolean"><Value>T</Value></Qualifier>
<Qualifier name= Writeable type= "Boolean"><Value>T</Value></Qualifier>
<Value>8090</Value>

</Property>

<Property name=CCARequests Type="java.lang.Integer">
<Qualifier name= Isls type= "Boolean"><Value>FALSE</Value></Qualifier>
<Qualifier name= Readable type= "Boolean"><Value>T</Value></Qualifier>
<Qualifier name= Writeable type= "Boolean"><Value>T</Value></Qualifier>

</Property>

<Property name=CCAErrors Type="java.lang.Integer">
<Qualifier name= Isls type= "Boolean"><Value>FALSE</Value></Qualifier>
<Qualifier name= Readable type= "Boolean"><Value>T</Value></Qualifier>
<Qualifier name= Writeable type= "Boolean"><Value>T</Value></Qualifier>

</Property>

</class>

<Notification name="CatApp.CCA.LostContact">

<Qualifier name="description" type="java.lang.String">

<Value>"Catalog Application has received a HTTP:404 from Credit Card
Approval service."</Value>

</Qualifier>

<Qualifier name="notifytype" type="java.lang.String">
<Value>"CatApp.CCA.LostContact"</Value>

</Qualifier>

<Qualifier name="log" type="java.lang.String">
<Value>"T"</Value>

</Qualifier>

<Qualifier name="logFile" type="java.lang.String">
<Value>"jmx.log"</Value>

</Qualifier>

<Qualifier name="messageld" type="java.lang.String">
<Value>"CCAOQ01"</Value>

</Qualifier>

<Qualifier name="severity" type="integer">
<value>1</value>

</Qualifier>

<Value>"Lost contact with credit card approval service"</Value>

</Notification>

</VALUE.OBJECT>

116 KREGER IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001



Figure 6

Code fragment for the SNMP adapter to forward the notification to the SNMP management system

import javax.management.”;
import bigco.snmptoolkit.*;

ConnectToSNMPMasterAgent();

MBeanServer jmx = MBeanServerFactory.FindMBeanServer();

Objectinstance regTrapper = jmx.registerMBean(this,

new ObjectName("myAppServer:snmp.trapper"));
jmx.addNotificationListener(new ObjectName("myAppServer:name=csa"),

this,null,null);

public void handleNotification(Notification ntfy, Object handback) {

if (ntfy.getType( ).equals("CatApp.CCA.LostContact")) {

SNMPTrap trapGuy = transformToTrap(ntfy);
SNMPBroadcast(trapGuy);

of responsibility and management systems. In this
case, we do not want the TME operator to be aware
that the addItems operation of the catalog custom-
izer exists. Likewise, the catalog administrator should
not be aware that the catalog has external connec-
tions. BigCo can use JMX to feed and handle both
of the views and their support by different manage-
ment systems.

Two methods are added to the catalog application:
reconfigureCCALink for the TME operator and
addNewltems for the BigCo buyers. We must also
tie the MBean to the application instance that runs
the methods. (See Figure 7.)

As we see in the program fragment in Figure 8, we
have added to our previous example. We have tied
this object to the RequiredModelMBean object to
execute the operations in the setManagedResource
invocation. The operation methods reconfigure-
NewLink and addNewltems have been added. The
XML fragment in Figure 9, describing the new meth-
ods, would be added to the XML file.

The two new methods can now be invoked by the
TME and catalog customization adapters.

JMX components and interfaces

This section gives a detailed review of the JIMX com-
ponents and their interfaces.

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

Instrumentation MBeans. Managed resources pro-
vide or use MBeans to expose their management in-
terfaces. The management interface of an applica-
tion consists of the attributes for configuration and
metric data, operations, and events that the appli-
cation exposes for use by a management system. The
management interface is maintained in a meta-data
object: MBeanInfo. MBeans are instantiated or reg-
istered with the JMX agent. This may be done by the
MBean itself, another program, or an adapter. The
JMX agent makes the MBean locatable by adapters
and applications through query support. The JMX
agent does not give out the reference to the MBean,
only the name. This provides a controlled access
point to institute security and distributability. The
JMX agent will invoke the application’s management
interface methods on the MBean and return the re-
sponses to the request originator. All MBeans must
implement notifications, transactions, and distribut-
ability in the same way.

Notifications. Any MBean can send JMX notifications
by implementing the JMX NotificationBroadcaster
interface. Any MBean can receive JMX notifications
by implementing the JMX NotificationListener inter-
face and registering for notifications.

Notification Interfaces:

NotificationBroadcaster Interface:
addNotificationListener

KREGER 117



Figure 7 JMX operation scenario

Find JMX agent
Create MBean
Initialize MBean from XML
When approval fails,
Send notification
Reconfigure CCALInk
Add new items

LOWER SPEED
FOR CARD APPROVAL

-

JMX AGENT

TIVOLI TIVOLI
ADAPTER AGENT

TIVOLI GEM CONSOLE

CATALOG

SALES

APPLICATION

ADD ITEMS

RMI
ADAPTER

CHARGE CARD
APPROVAL

BROWSER ACCESSIBLE
CATALOG CUSTOMIZER

(NotificationListener listener,
NotificationFilter filter,
Object hb)
removeNotificationListener
(NotificationListener listener)
MBeanNotificationInfo[]
getNotificationInfo()

transactional, this should be shielded from the ap-
plication. If the application must be aware of the
transaction, then the application will depend on a
certain version of the IMX agent and model MBean
to be available.

Distributability. If the IMX agent is distributable then
the application or adapters may be accessing MBeans
that are not residing in the same Java virtual ma-
chine. The model MBean and the JMX agent must
be implemented so that location transparency for the
application and adapter is achieved. The JMX agent
does not have to provide distributability for both the
applications and the adapter; it may support only one
of these being remote.

NotificationListener Interface:
handleNotification
(Notification ntfy,
Object, hb)

NotificationFilter Interface:
boolean isNotificationEnabled
(Notification ntfy)

Standard MBeans. A standard MBean can be any
JavaBeans program that has been registered with the
MBean server. Implementation is performed by the
application developer or application instrumentor.
A Java interface must be defined for the program
named classnameMBean. This interface defines the

Notification(String type,
Object source,
long sequenceNum,
long timeStamp,
String messageText)

Transactions. If the model MBean is executing in an
environment where management operations are

118 KREGER

management interfaces for the MBean. This may in-
clude all or just a subset of all the methods in the

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001



Figure 8 Application code fragments for operations

import javax.management.”;

Integer CCARequests=0, CCAErrors=0;

MBeanServer jmx = MBeanServerFactory.FindMBeanServer() ;
ObjectName csa = new ObjectName("MyAppServer:name=csa");

jmx.createMBean("RequiredModelMBean", csa));

jmx.invoke(csa, "setModelMBeanInfo", new Object[] {ParseXMLFilelntolnfo("csl.xml")});

jmx.invoke(csa, "setManagedResource",
(new Object[] {this, "objectReference"}));

private ModelMBeanInfo ParseXMLFilelnfolnfo(String filename) {
/* returns a ModelMBeanlinfo from the data in an XML formatted file */

}

public void runOrder(cardnum,order) {

jmx.setAttribute(csa,new Attribute("CCARequests",CCARequests+1));

try {
if (CCApproval.getApproval(cardnum))
submitOrder(cardnum,order);
} catch (CCNotAvailableException cce) {

jmx.setAttribute(csa,new Attribute("CCAErrors",CCAErrors+1));
jmx.invoke(csa,"sendNotification”, new Object[] {

new Notification(

"CatApp.CCA.LostContact", csa, 001,

(new Date()).getTime()),

"Lost contact with credit card approval service"));

}

public void reconfigureCCALink(int level) {
if (level == CCA.LOW)
setCCAPort(8010);
else
setCCAPort(8090);

public void addNewltems(ltemList items) {...}

class. When the MBean is registered with the MBean
server, the server will create an MBeanInfo meta-
data object by introspection on the classnameMBean
interface file. All getAttributeName and setAt-
tributeName method pairs will create attributes for
the bean. All other methods will create operations
for the bean. The JMX agent will validate that re-

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

quests are part of the management interface and then
perform invocation directly on the MBean.

Applications using standard MBeans must imple-
ment the entire MBean and its interface. This can
be useful if an application already has management
interface classes to support its own manager. These

KREGER 119



Figure 9 XML fragment defining the management operations to be added to the management interface in Figure 5

<VALUE.OBJECT>
<Class name="RequiredModelMBean">

<Method name="reconfigureCCALink" Type="void">

<Qualifier name="description" type="java.lang.String">
<value>"Set speed for Credit Card Approval"</value></Qualifier>
<Qualifier name="impact" type="int"><value>1</value></Qualifier>

<Parameter name="portSpeed" Type="int">

<Qualifier name="description" type="java.lang.String">
<value>"New speed of port: CCA.HIGH or CCA.LOW"</value></Qualifier>

</Parameter>
</Method>
<Method name=addNewltems>

<Qualifier name=="description" type=="java.lang.String">
<value>"Add new products to web catalog application"</value>

</Qualifier>

<Qualifier name="impact" type="int"><value>1</value></Qualifier>

<Parameter name="newltems" Type="ItemList">

<Qualifier name="description" type="java.lang.String">
<value>"List of ltem objects to be added to catalog"</value></Qualifier>

</Parameter>
</Method>

</class

</value.object>

class instances can simply be registered with the
MBean server. These management interfaces are de-
fined at development time.

Dynamic MBeans. A dynamic MBean can be an in-
stance of any Java class that implements the Dynam-
icMBean interface. Dynamic MBeans define their
management interfaces at run time by maintaining
their own MBeanInfo objects—a classnameMBean
interface is not necessary, as it is for standard
MBeans. Dynamic MBeans are used to delegate to
or wrap existing managed or management resources.
These may be resources that do not follow JavaBeans
design patterns, or that are not implemented using
Java technology. Dynamic MBean implementations
may be generated, developed by the application de-
veloper, or developed by the application instrumen-
tor. Typically, an instrumentor will develop an MBean
service that will instantiate or generate the dynamic
MBeans. The dynamic MBean is responsible for
maintaining its own MBeanInfo meta-data and pro-

120 KREGER

viding it, on request, to the JMX agent during run
time. The dynamic MBean is also responsible for im-
plementing and validating correct invocation of the
interfaces it defines in the MBeanInfo object. The
MBean server delegates invocations of getAttribute,
setAttribute, and invoke to the dynamic MBean.

DynamicMBean Interface:

Object getAttribute

(String attributeName)
AttributeList getAttributes

(String[] attributeNames)
void setAttribute

(Attribute newAttribute)
AttributeList setAttributes

(AttributeList newAttributes)
Invoke

(String actionName,

Object[] parms,

String[] signature)
MBeanInfo getMBeaninfo()

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001



Open MBeans. Open MBeans are dynamic MBeans
that are restricted to accepting and returning a lim-
ited number of data types. By using open MBeans
and these basic data types, the need for class load-
ing is eliminated. This can make it easier to deploy
the MBean and support a highly distributed system.
However, this does not remove the need to under-
stand the semantics of the data to be passed or re-
turned. The open MBean data types can be:

* Basic data types: int, boolean, float, double, etc.

* Class wrappers for basic data types: Integer, Bool-
ean, Float, Double, String, etc.

 Tables: array of rows of the same basic data type

* Composites: objects that can be decomposed into
other open data types

Open MBeans must return an OpenMBeanInfo ob-
ject from the getMBeanInfo method. OpenMBean-
Info extends MBeanlInfo and adds some additional
meta-data, legal values, default values, etc. The
OpenMBean classes are not available in the current
JMX reference implementation.

Model MBeans. The RequiredModelMBean class
is an implementation of model MBean interfaces that
must be provided in conjunction with a JMX agent.
The JMX agent functions as a factory for model
MBeans—model MBean instances are created and
maintained by the JMX agent. This allows the Re-
quiredModelMBean class implementation to vary de-
pending upon the needs of the environment in which
the JMX agent is installed. The application requesting
the instantiation of the RequiredModelMBean object
does not have to be aware of the specifics of the im-
plementation of the RequiredModelMBean class.
Implementation differences between JMX and Java
virtual machine environments may include persis-
tence, transactional behavior, caching, performance
requirements, location transparency, distributabil-
ity, etc. The RequiredModelMBean object is respon-
sible for implementing and managing these differ-
ences internally. The JMX agent that instantiates the
RequiredModelMBean object may be specifically de-
signed to support a particular RequiredModelM-
Bean class.

Since the model MBean implementation is provided
by the JMX agent, the application does not have to
implement the model MBean, just customize and use
it. The instrumentation code is consistent and min-
imal. The application gains the benefit of default pol-
icy and support for logging events, data persistence,

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

data caching, and notification handling. The appli-
cation initializes its model MBean and passes its
identity, management interface, and any policy over-
rides. The application can add custom attributes to
the model MBean during execution. The application-
specific information can be modified without inter-
ruption during run time. The model MBean then sets
its behavior interface and does any set-up necessary
for event logging and handling, data persistence and
currency, and monitoring. The model MBean default
behavior and simple APIs will satisfy the management
needs of most applications, but also allow complex
application management scenarios.

ModelMBean Interface:

Implements DynamicMBean,
PersistentMBean, and
ModelMBeanNotificationBroadcaster)

Supports ModelMBeanlInfo

setModelMBeaninfo
(ModelMBeaninfo mbi)

setManagedResource
(Object managedObjRef,
String ref_type)

The model MBean must implement the Model-
MBean interface, DynamicMBean interface, Persis-
tentMBean interface, and ModelMBeanNotification-
Broadcaster interface. The ModelMBeanBroadcaster
interface supports generic text notifications and at-
tribute change notifications. Most importantly, a
model MBean has a ModelMBeanInfo meta-data
object. ModelMBeanInfo extends MBeanInfo and
adds descriptors to the meta-data for all attributes,
operations, and notifications in MBeanInfo. Model
MBeans use the descriptors to support policy for ac-
tivities such as caching, persistence, and logging.

Descriptors. The model MBean provides MBeanInfo
meta-data as well as descriptor meta-data. The
MBeanlInfo interface publishes meta-data about the
attributes, operations, and notifications in the manage-
ment interface. The model MBean descriptors contain
behavioral information about the same management
interface. A descriptor is a set of keyword/value pairs
that can be accessed with the descriptor interface.

Descriptor Interface:
Object clone()
String[] getFieldNames()
String[] getFields()
Object getFieldValue

KREGER 121



(String fieldName)
Object[] getFieldValues
(String[] fieldNames)
boolean isValid()
void removeField
(String fieldName)
void setField
(String fieldName,
Obiject fieldValue)
void setFields
(String[] fieldNames,
Object[] fieldValues)

A set of keywords has been defined by the IMX spec-
ification for standard and uniform functionality and
treatment. New keywords can be added by applica-
tions or adapters at any time. These are the current,
standard descriptor keywords:

In MBean Descriptor:
name, version, visibility, export, persistPolicy,
persistPeriod, persistLocation, log, logFile,
CurrencyTimeLimit

In AttributeDescriptors:
name, value, default, legalValues,
displayName, getMethod, setMethod,
protocolMap, persistPolicy, persistPeriod,
currencyTimeLimit, lastUpdatedTimeStamp,
iterable, visibility, presentationString

In OperationDescriptors:
name, displayName, role, impact,
targetObject, targetType, lastReturnedValue,
currencyTimeLimit, lastReturnedTimeStamp,
visibility, presentationString

In NotificationDescriptors:
name, severity, messageld, log, logFile,
visibility, presentationString

Descriptors at the MBean level define default pol-
icies for the attributes, operations, and notifications
for persistence, caching, and logging. The applica-
tion can pass and use an XML or properties file to
create and initialize the ModeIMBeanInfo object and
descriptors instead of customizing them program-
matically. This permits management interfaces to be
defined in a language-independent and portable
manner. The DescriptorAccess interface is used to
retrieve a copy of or fully replace a management in-
terface element’s descriptor.

122 KREGER

DescriptorAccess interface:
Descriptor getDescriptor()
void setDescriptor(Descriptor inDescriptor)

Attribute handling. The model MBean attribute de-
scriptor includes policy for managing the object’s per-
sistence, caching, protocol mapping, and how get and
set requests are handled. When the model MBean
is created by the managed resource, the resource de-
fines the operations that will be executed by the
MBean that will satisfy get and set requests. By de-
fining operations, the actual methods called to sat-
isfy get and set requests are allowed to vary and to
be delegated to a wide range of objects at run time.
This allows management of distributed, dynamic ap-
plications. If an attribute has no operation associ-
ated with it, then the values are maintained in the
MBean. This can also minimize managed resource
interruption for static resource information.

Attribute value caching is supported. In general, if
the data requested by the adapter are current, then
the managed resource is not interrupted with a data
retrieval request. Therefore, direct interaction with
the managed resource is not required for each in-
teraction with the management system. This helps
minimize the impact of management activity on run-
time application resources and performance.

Operation handling. A model MBean can invoke all
defined operations on the same target object instance
(defined with the setManagedResource method on
the bean), or it can define different target object in-
stances for different operations (defined in the Tar-
getObject field of the operation descriptor). This al-
lows distributed, component-based applications to
be supported by the bean. It also supports manage-
ment of applications that do not already have a man-
agement facade. As with attributes, the model
MBean supports caching the last returned value of
the operation. Caching can reduce the interruptions
to the managed application.

Notification handling. Model MBeans support a ge-
neric, text-only notification for use by applications.
They also send attribute change notifications when-
ever an attribute’s value is changed. Application-spe-
cific notifications are supported as for any other
MBean. The model MBean notification descriptor
defines whether it should be logged, as well as a se-
verity value, visibility value, and message identifier
for national language support.

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001



ModelMBeanNotificationBroadcaster Interface:
extends NotificationBroadcaster
addAttributeChangeNotificationListener

(NotificationListener inlistener,

String inAttributeName,

Object inHandback)
removeAttributeChangeNotificationListener

(NotificationListener inlistener,

String inAttributeName)
sendAttributeChangeNotification

(Attribute inOldVal,

Attribute inNewVal)
sendAttributeChangeNotification

(AttributeChangeNotification ntfyObj)
sendNotification(Notification ntfyObj)
sendNotification(String ntfyText)

Persistence. The model MBean is responsible for its
own persistence. This does not mean that it must per-
sist. It is foreseeable that some implementations of
the JMX agent will be completely transient in nature.
In a simple implementation the model MBean may
be saved in a flat file. In a more complex environ-
ment, persistence may be handled by the IMX agent
in which the MBean has been instantiated. If the
MBean persists, it should support the persistence
policy at both the attribute level and the MBean level.
The persistence policy may switch persistence off,
force persistence on checkpoint intervals, allow per-
sistence to occur whenever the MBean is updated,
or “throttle” the update of persistent data so that
information is not written out any more frequently
than a certain interval. Since persistence policy can
be set at the attribute level, all or some of its at-
tributes can be saved by the model MBean. In all
cases, the saved MBean may then be used to prime
the next instantiation of the application or its model
MBean.

PersistentMBean Interface:
void load()
void store()

JMX agents can be independent and ignorant of data
locale. The data location can vary from one instal-
lation to another depending on how the JMX agent
and managed resource are installed and configured.
Application configuration data can be defined within
the directory service for use by multiple application
instances or JMX agent instances. Data locale has no
effect on the interaction between the application, its
model MBean, the IMX agent, the adapter, or the

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

management system. As with all data persistence is-
sues, the platform data services capabilities may af-
fect performance and security.

JMX agent responsibilities. The JMX agent includes
the MBean server and all registered management
service MBeans. The MBean server maintains a reg-
istry or repository of the current set of registered
MBean names and references, delegates method
calls to, acts as a factory for, and acts as a query ser-
vice for MBeans.

MBeanServerFactory Interface:

static MBeanServer createMBeanServer()

static MBeanServer createMBeanServer
(String domain)

static ArrayList findMBeanServer
(String Agentld)

static MBeanServer newMBeanServer()

static MBeanServer newMBeanServer
(String domain)

static void releaseMBeanServer
(MBeanServer mbeanServer)

MBeanServer Interface:
Obijectinstance createMBean
(String className,
ObjectName name,
ObjectName loader,
Object parms[], String[] sig)
Object instantiate
(String className,
ObjectName loader,
Object [] parms, String sig)
Objectinstance registerMBean
(Object mbean, ObjectName name)
unregisterMBean(ObjectName name)
Obiject getAttribute
(ObjectName name, String AttrName)
setAttribute
(ObjectName name, Attribute newAttr)
AttributeList getAttributes
(ObjectName name,
String[] attributeNames)
AttributeList setAttributes
(ObjectName name,
AttributeList newAttrs)
Object invoke
(ObjectName name,
String actionName,
Obiject[] parms, String[] sig)
MBeaninfo getMBeanInfo
(ObjectName name)
boolean isRegistered

KREGER 123



(ObjectName name)

Obijectinstance getObjectinstance
(ObjectName name)

String getDefaultDomain()

Integer getMBeanCount()

Set queryMBeans
(ObjectName name,
QueryExp query)

Set queryNames
(ObjectName name,
QueryExp query)

ObjectinputStream deserialize
(String className,
ObjectName loader,
byte[] data)

addNotificationListener
(ObjectName name,
NotificationListener listener,
NotificationFilter filter,
Object hbo)

removeNotificationListener
(ObjectName name,
NotificationListener ntfy)

Instantiation. The MBeanServer class includes inter-
faces for instantiation of any class by the MBean
server, allowing the MBean to be tied to the life or
implementation of the MBean server rather than the
resource. It also allows the implementation of the
MBean to vary between instances of the application
and the server without affecting the application in-
strumentation code interacting with the MBean. This
feature is used heavily by model MBeans.

Registration. When an MBean registers with the
MBean server, the server will add it to its current
set of MBeans. If the MBean has implemented the
MBeanRegistration interface, the server will call it
during registration processing.

The management adapters will receive an MBean-
ServerNotification.Registration notification from the
JMX agent whenever a new instance of the MBean
is created and registered. In this way, the manage-
ment adapters become aware of each system-man-
aged application and can map its event behavior ap-
propriately. This allows management system
customization for the new applications or updates
to event-driven resource inventory and discovery ser-
vices.

Query of MBeans and MBeanlnfo objects. The IMX
agent maintains access to the current set of MBeans
and adapters. Adapters can collect data from the

124 KREGER

agent to respond to discovery or inventory probes
from the management system. The JMX agent returns
names of relevant MBeans to applications and adapt-
ers that need to operate on them. Applications and
adapters can query a JMX agent for sets of MBeans
based on pattern matching on the MBeans’ names.
The MBeans are only accessible via the MBean
server by name—the server will not return a refer-
ence to any MBean. Whenever the MBeanInfo meta-
data are requested for a standard MBean, the meta-
data are returned by the MBean server. For dynamic
and model MBeans, meta-data are requested from
the MBean itself—the JMX agent is not responsible
for maintaining or policing these meta-data.

Delegation. When an MBeanServer interface is called
for setAttribute, getAttribute, or invoke methods,
the request is delegated to the MBean. The targeted
MBean’s name is the first parameter of the method.
If it is a standard MBean, the actual get, set, or op-
erationName method will be called directly; no
JMX-specific interface needs to be implemented. If
it is a dynamic MBean, the JMX agent will delegate
the request via the DynamicMBean interface. This
consists of setAttribute, getAttribute, and invoke
methods mirroring the MBean server interface. The
dynamic MBean is responsible for either delegating
or responding to the request directly. This allows the
interface to the managed application to be set at run
time. Model and open MBeans implement the Dy-
namicMBean interface and are treated in the same
way. Responses from MBeans to the requests from
the IMX agent are returned to the request origina-
tor, which is usually an adapter.

Management service MBeans. The IMX agent provides
a relationship service. This service allows creation
of an independent relationship MBean to represent
any relationship between two or more MBeans.
Some typical relationships are collection, contain-
ment, dependency, and parent-child.

The IMX agent can perform local application data
and threshold monitoring with the JMX monitor ser-
vice and monitor MBeans. Monitoring intervals and
threshold rules are configurable by the application
or the management system via the JMX agent inter-
faces. The value of a monitored attribute is retrieved
at monitoring intervals. The monitor evaluates the
value and publishes notifications as needed.

The JMX agent also provides a timer service that al-
lows operations to be defined at a specific time or

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001



after a specific period of time has elapsed. This is
an optional service.

Managed application responsibilities. Each appli-
cation uses MBeans to expose its management data,
operations, and events for use by a management sys-
tem. At initialization the application obtains access
to the JMX agent through the static FindMBean-
Server method. This will return a list of references
to MBean servers in the same Java virtual machine.
The application will then create or find, and then
use, one or more instances of its MBean. The MBean
name consists of the agent’s domain identifier and
a list of keyword and value pairs, called attributes.
The predefined attributes that are part of the MBean
name are used to establish a unique application iden-
tity.

Applications using standard or dynamic MBeans
must implement these beans. Dynamic MBeans may
require less programming, because they can wrap or
delegate method calls to existing application re-
sources. Since the model MBean implementation is
provided by the IMX agent, the applications can sim-
ply customize and use it.

The application exposes values for its management
data by updating its MBean with a single setAt-
tributes method call for publication to or consump-
tion by all management systems. The application sets
and updates any type of data as an attribute in the
MBean when it is convenient for the application.
Since the MBean can be persistent and is locatable,
critical but transient applications can retain any re-
quired counters or state information within the JIMX
agent. Likewise, with persistent MBeans, the appli-
cation’s data survive recycling of the JMX agent.

An application sends event notifications to all inter-
ested management systems with one sendNotifica-
tion method call on its MBean. Predefined or unique
notifications can be sent for any application- or man-
agement system-defined significant event. Notifica-
tions are normally sent when operator intervention
is required or the application’s state is significantly
changed (examples of significant state transition
events might be an unavailable resource, an excep-
tion, or other nonrecoverable error causing failure
of a component of the application). Applications that
need to publish notifications to JMX notification lis-
teners must implement the JMX NotificationBroad-
caster interface in their MBeans. The application
publishes its notifications (also known as events) via
the sendNotification method. Adapters and appli-

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

cations wishing to receive these notifications must
subscribe to them with the addNotificationListener
method and implement the JIMX NotificationListener
interface handleNotification method. The model
MBean always implements the NotificationBroad-
caster interface.

MBeans can be created that support attribute change
notifications for any or all attributes. The MBean
sends an AttributeChangeNotification event to in-
terested adapters and applications whenever a value
change for the attribute occurs. The interested ap-
plication (adapter, managed resource, or IMX mon-
itor MBean) registers for notification of changes in
attribute values using the AttributeChangeNotifica-
tionFilter method. The setAttribute operation on an
MBean will initiate an AttributeChangeNotification
event to notification listeners. By default, no At-
tributeChangeNotification events will be sent unless
alistener is explicitly registered for them. Normally,
the setAttribute method on the MBean invokes the
corresponding set method defined for the attribute
on the application directly. Alternatively, managed
resources can use the AttributeChangeNotification
event to trigger internal actions to implement the
intended effect of changing the attribute. The model
MBean supports issuing AttributeChangeNotifica-
tion events whenever attribute values are changed.

The application can represent itself with a set of
MBeans and create relationships among them. These
relationships can represent containment, depen-
dency, path, or any other relationship role the ap-
plication may choose to define. IMX relationships can
be one-to-one, one-to-many, or many-to-many.

Adapter responsibilities. The adapter understands
the management system protocols and maps them
to the data and capabilities of the MBean and JMX
agent. When the adapter receives a command from
the management system, it interacts with the JMX
agent to satisfy the request. The adapter then gen-
erates and sends a response to its management sys-
tem. The adapter owns the data definition that is ap-
propriate for the management system it supports.
This includes mapping to and from the management
system data representation and the JMX agent and
MBean data representation. For instance, the
SNMP JMX adapter owns the MIB definition used to
access application data supported by the IMX agent
and MBeans. The adapter also provides the inter-
faces and any supporting technology for communi-
cating with its management system.

KREGER 125



Model MBeans provide the description for the map-
ping of the application’s managed attributes to ex-
isting management data models, i.e., specific MIBs
or CIM objects. The adapter can use these mappings
as hints on how to represent the data to the man-
agement system. Conversely, the adapter can take
advantage of generic mappings to MIBs and CIM ob-
jects generated by tools interacting with the JMX
agent. For example, a JIMX MIB generator can inter-
act with the JMX agent and create a MIB file that is
loaded by an SNMP management system. The gen-
erated MIB file can represent the resources known
by the JMX agent. The applications represented by
these resources do not have to be aware of how the
management data are mapped to the MIB. This sce-
nario will also work for other definition files required
by management systems—AMS, MIF (Management
Information Format), MOF, etc.

The adapter registers with the JMX agent during ini-
tialization. Then it can register for notifications from
any interesting MBeans. The adapter can pass cus-
tom notification filters that prevent the adapter from
receiving certain notifications based on the identi-
fier, origin data, type, and severity of the notifica-
tion. The adapter listens for notifications from the
JMX agent’s MBeans or event service, analyzes them,
and transforms them into traps or events and for-
wards them to the management system.

In order to retrieve application data maintained by
the JMX agent or invoke an operation on an appli-
cation, the adapter asks the IMX agent for the name
of the MBean that represents the application or com-
ponent. The adapter then invokes the MBean’s
methods through the JMX agent to accomplish its
task. The adapter receives the responses to the re-
quests from the specific application’s MBean and
maps and recasts this into a response to the man-
agement system.

Adapters can connect to application-specific man-
agement systems as well as enterprise management
systems. This means that developers can use one set
of management instrumentation to satisfy the needs
of both. Developers will discover that application-
specific configuration, availability, and operations
management user interfaces are easy to develop
based on the JMX agent and MBeanInfo meta-data
available to them. It is feasible to provide a manager
servlet that invokes the JMX agent or adapter from
HTML or JSP** (JavaServer Pages™*) and returns the
results of the request to the browser. This provides
a consistent and relatively simple means to gener-

126 KREGER

ate user interfaces and to display information for any
application on any host (or several hosts on one
form) through a browser. If the application supports
operations through the JMX agent, it thereby pro-
vides an interface for an operations user interface.

Management system behavior. The management sys-
tem behavior is not affected by the use of IMX be-
tween the management systems’ agents and the ap-
plication. Thus the management system communicates
with its agents (proprietary or standard) to exchange
application status and data. It processes events from
and sends data update requests and commands to
its agents. The management system communicates
with the management interfaces as agents, or through
agents communicating with adapters as subagents.
Itis not aware of the existence of the IMX agent, other
than as an additional internal application that re-
quires some level of management. Enterprise man-
agement systems may be developed to interact with
JMX agents directly (via the MBean server interface
or a general-purpose RMI adapter) rather than
through their existing agent infrastructure, but it is
not absolutely necessary. Application-specific man-
agement systems (designed to manage one partic-
ular application or component of the enterprise envi-
ronment) can use JMX (in an application role) to
forward its management information into the exist-
ing management system. These application manage-
ment systems can also communicate with the appli-
cations or components using a management adapter
as well.

The JMX vision

Customers have been asking for end-to-end, busi-
ness system, and application-oriented management
solutions for years. And yet, even application man-
agement has been an elusive and nearly unobtain-
able goal for enterprise management system vendors.
This mismatch of need and solution can be traced
to one missing component: the lack of widespread
participation in management by applications. Net-
work and systems management systems have been
successful largely due to widespread expectation that
all devices and systems would support being man-
aged through SNMP “out of the box.” When appli-
cations are subjected to this same expectation—be-
ing manageable as delivered through a de facto
standard management technology—then application
management becomes feasible. End-to-end business
system management becomes possible. IMX can be
the de facto standard management technology cat-
alyst necessary initiate this chain of events.

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001



Once JMX is part of the foundation application-ex-
ecution environment infrastructure, it can collect op-
erational, statistical, relational, and state manage-
ment data. At the very least, the aggregated data and
relationships could feed more sophisticated manage-
ment systems that would allow distributed (Web and
enterprise) application operations to be more fully
managed. Operators and administrators could per-
form well-informed relative prioritization of re-
sources among applications. They could aggregate
components into applications and applications into
business systems. With widespread enablement
through JMX, automatic (very rapid) correlation of
events and reaction to events across the system would
be feasible. IMX’s data would act as a knowledge base
accessed by a management system that would per-
form distillation of cause and solution and perhaps
offer response recommendations to operations cen-
ters or automated response systems.

Since JMX can provide the foundation for operational
standards and control, it can support definition and
enforcement of service level agreements. Service
level agreements encapsulate the expectation of cer-
tain guaranteed levels of performance (particularly
response time), automated recovery (fail over), and
throughput at an aggregated systems level for a man-
aged infrastructure. The current state of the art is
ad hoc. That is, the consumer of resources in the dis-
tributed environment can, at any time, experience
a busy signal, unpredictable results, and delays as a
result of transient outages or state migrations within
a distributed complex. Moreover, this is an area that
is not well understood or addressed in the distrib-
uted, Web-centric, enterprise management environ-
ment, which begs for solutions that are highly au-
tomated and just-in-time in nature.

A simple, everyday example of the current unsatis-
factory state of operational standards and control
can be experienced by a user at any time by the sim-
ple request for an arbitrary URL (uniform resource
locator) from a browser. The user has no guarantee
that the URL will be resolved in a timely manner, if
at all. As a result, the user may wait for unaccept-
able periods, see time-outs, or experience generally
delayed operations for no explicable reason. Unfor-
tunately, the cause cannot be reliably and rapidly ad-
dressed by the system administrator (or by the ser-
vice provider) who receives the outage calls from
potentially irate service users.

Today, for these scenarios, the service provider has
inadequate or nonexistent instrumentation and tools.

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

Service providers resort to crude rule-of-thumb and
after-the-fact solutions that consist primarily of some
form of capacity expansion (ordering and installing
more capability for the next time). Inevitably, this
becomes a never-ending reactive exercise, as the peak
load and throughput requirements of the system in-
exorably grow over time.

Because of the fundamental nature and placement
of IMX as a gatekeeper of management data, actions,
and events, JMX has the long-term potential to pro-
vide the instrumentation that will be the key to ad-
dressing certain aspects of the service level problem
in an automated, preventive, real-time manner. For
example, because the management system would
have sufficient information and controls, it may be
able to modulate certain critical load levels in the
system during key periods, analyze the best usage
patterns in a given environment at a given time, au-
tomatically dampen, in near real time, certain non-
critical demands on a given system during peak-load
or critical periods in favor of higher-priority require-
ments, as defined by the administrators responsible
for the infrastructure and applications.

Conclusion

Java Management eXtensions is a first-version spec-
ification and an emerging technology. It offers the
hope of insulating Java application developers from
customer management system choices, just as JDBC**
(Java Database Connectivity) does for database
choices. It also sets the stage for more sophisticated,
intelligent, and complete management systems. With
the backing of the major enterprise management
vendors, including Tivoli, Computer Associates, and
BullSoft, there is some assurance for developers that
JMX-instrumented applications will be supported by
enterprise management vendors.

JMX v 1.0 is a reasonable management infrastruc-
ture for J2SE environments; however, it is currently
limited by its single Java virtual machine design point.
It would be difficult to use JMX technology, in its cur-
rent form, in a distributed application model like En-
terprise JavaBeans in J2EE** (Java 2 Platform, En-
terprise Edition). There is hope that this will be
corrected in the next iteration of the JMX specifica-
tion, as this requirement is well known. J2EE man-
agement is being developed with its own expert group
and JMX is currently on its supported technologies
list. The JMX and J2EE expert groups both include
BEA Systems, GemStone, lona, IBM, and iPlanet. The

KREGER 127



presence of these vendors should assure that the IMX
solution for J2EE is complete and viable.

Other management technologies currently being de-
veloped in standards organizations, specifically
CIM/WBEM in the DMTF, and ARM and the Manage-
ability Service Broker from The Open Group, should
be monitored. These technologies will need to be
considered, along with JIMX, when management tech-
nologies are being chosen for applications under de-
velopment. As these technologies mature and gain
adoption throughout industries, there may be a need
to support them in addition to JMX. Fortunately, the
JMX architecture provides an API into which these
technologies can be adapted as JMX agents, or con-
versely, where JMX enablement is adapted into these
newer management technologies. In the meantime,
JMX is a sound technology choice for developing
manageable applications.

To summarize, enterprise and e-business applica-
tions should be developed with manageability in
mind if they are to be part of the business processes.
The components of these applications implemented
with Java technology can be instrumented for man-
ageability using JMX. This development investment
is protected by the involvement of the enterprise
management and Java communities.

Acknowledgments

I would like to dedicate this paper to the memory
of Keith Duvall in acknowledgment and apprecia-
tion of his enormous contribution to its content and
quality. I would also like to recognize his support
and encouragement during our work with the JMX
technology and expert group. I would like to ac-
knowledge the review and support of this paper from
Brett Coley, Peter Brittenham, Karl Gottschalk, John
Feller, Vera Plechash, Ray Williams, John Sweitzer,
and Karl Schopmeyer.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.,
Amdahl Corporation, Tivoli Systems Inc., or Hewlett-Packard
Company.

Cited references and notes

1. Java Management Extensions; available at http://java.sun.
com/products/JavaManagement.

2. J2SE (Java 2 Platform, Standard Edition) is Sun MicroSys-
tems’ Java platform. More information is available at
http://java.sun.com/j2se/.

128 KREGER

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

. Sun Microsystems Jini. Technology information is available

at http://www.sun.com/jini/index.html.

. Universal Plug and Play (UPnP). See http://www.upnp.org/.
. Hewlett-Packard’s e-speak product. See http:/www.e-

speak.hp.com/.

. IBM’s WebServices Initiative information is available through

http://www.alphaworks.ibm.com/tech/webservicestoolKkit.

. IBM System/390 Series is available through http:/www.

$390.ibm.com/.

. Amdahl Millennium. Information available through http://

www.amdahl.com/ or through Amdahl Corporation, 1250 East
Arques Avenue, Sunnyvale, CA 94088-3470.

. Candle Corporation, 201 N. Douglas St., El Segundo, CA

90245. See http://www.candle.com/.

Computer Associates International, Inc., One Computer As-
sociates Plaza, Islandia, NY 11749. See http://www.cai.com/.
SNA (Systems Network Architecture) is an IBM proprietary
architecture for network computing within an enterprise.
More information is available through http://www.ibm.com/.
TCP/IP (Transmission Control Protocol/Internet Protocol)
is an Internet protocol standard defined by the Internet En-
gineering Task Force. Additional information is available
through http://www.ietf.org/.

Tivoli NetView for 390. See http://www.tivoli.com/
products/index/netview_390/.

Hewlett-Packard’s OpenView product. More information
is available through http://www.openview.hp.com?qt=
OpenView/ or from Hewlett-Packard, 3000 Hanover Street,
Palo Alto, CA 94304-1185.

Tivoli Systems Inc., 9442 Capital of Texas Highway North,
Arboretum Plaza One, Austin, TX 78759. See http://www.
tivoli.com/.

BMC Software, Inc., 2101 Citywest Blvd., Houston, TX 77042-
2827. See http://www.bmc.com/.

CMIP (Common Management Information Protocol) is usu-
ally referred to in conjunction with CMIS (Common Man-
agement Information Services). This management standard
was defined by OSI (Open Systems Interconnection) as Stan-
dard ISO 9595/2 and 9596/2 (International Standards Orga-
nization: see http://www.iso.ch/).

SNMP (Simple Network Management Protocol) is an IETF
standard. See http://www.ietf.org/.

DMTF (Distributed Management Task Force) is a standards
body responsible for DMI (Distributed Management Inter-
face), CIM, and WBEM management standards. See http:/
www.dmtf.org.

CIM/WBEM (Common Information Model/Web-Based En-
terprise Management) is defined by the DMTF. More infor-
mation is available through http://www.dmtf.org.

Systems Management Server (SMS) is Microsoft’s workstation
management application. More information is available through
http://www.microsoft.com/smsmgmt/default.asp?RLD=263.
See http://www.snia.org.

DPI (Distributed Program Interface, IETF RFC 1228) is used
to dynamically extend the MIB in SNMP agents. Support for
DPI is predominant in IBM systems. SMUX (SNMP Mul-
tiplexing Protocol, IETF RFC 1227) allows an application to
communicate with an SNMP agent to satisfy a portion of the
MIB. SMUX is predominant in UNIX systems.

AgentX is a standard SNMP agent-to-subagent protocol be-
ing defined in the IETF as RFC2741. More information is
available at http://www.ietf.org/rfc/rfc2741.txt?number=2741.
IETF (Internet Engineering Task Force) defines standards
for Internet technologies, including routing, security, trans-
port, and management. See http://www.ietf.org/.

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001



26. IBM WebSphere. Administration console information on
WebSphere is available through http:/www-4.ibm.com/
software/webservers/appserv/.

27. Understanding the Application Management Model Version 1.0,
The Distributed Management Task Force, Inc. (May 17,
1998). Available at http://www.dmtf.org/spec/whitepapers/
CIM_Applications_wp.htm.

28. Marimba, Inc., 440 Clyde Ave., Mountain View, CA 94043.
See http://www.marimba.com/.

29. Tivoli’s application management specification (AMS) file is
used to define the characteristics of a managed application.
See http://www.tivoli.com/products/index/module_designer/
resources/ams_v20.pdf.

30. MOF (managed object format) file. This format is used to
describe CIM information and is defined by the DMTF
in the CIM specification. See http://www.dmtf.org/spec/
cim_schema23/.

31. TEC (Tivoli Enterprise Console). See http://www.tivoli.com/
products/index/tec/. Currently there is no TEC JMX adapter
that is publicly available.

General references

W. Bumpus, J. W. Sweitzer, P. Thompson, A. R. Westerinen, and
R. C. Williams, Common Information Model Implementing the Ob-
ject Model for Enterprise Management, John Wiley & Sons, Inc.,
New York (2000).

G. Carpenter and B. Wijnen, SNMP-DPI Simple Network Man-
agement Protocol Distributed Program Interface (May 1991); avail-
able at http://www.ietf.org/rfc/rfc1228.txt?number=1228.

J. Case, M. Fedor, M. Schoffstall, and J. Davin, Simple Network
Management Protocol, STD 15, RFC 1157 (May 1990); available
at http://www.ietf.org/rfc/rfc1157.txt?number=1157.

CIM for XML Document Type Definition Version 2.0, The Dis-
tributed Management Task Force, Inc. (July 20, 1999); available
at http://www.dmtf.org/download/spec/xmls/CIM_DTD_V20.txt.
Common Information Model Schema: Version 2.3, The Distrib-
uted Management Task Force, Inc. (July 14, 1999); available at
http://www.dmtf.org/spec/cim_schema_v23.html.

Common Information Model (CIM) Specification Version 2.2, The
Distributed Management Task Force, Inc. (July 14, 1999); avail-
able at http://www.dmtf.org/spec/cim_spec_v22.

M. Daniele, B. Wijnen, M. Ellison, and D. Francisco, Agent Ex-
tensibility (AgentX) Protocol Version 1, RFC2741 (January 2000);
available at http://www.ietf.org/rfc/rfc2741.txt?number=2741.
J. D. Murray, Windows NT SNMP, O’Reilly and Associates, Inc.,
Sebastopol, CA (1998).

M. Rose, SNMP Multiplexing Protocol and MIB, RFC 1227 (May
1991); available at http://www.ietf.org/rfc/rfc1227.txt?number=
1227.

M. Rose and K. McCloghrie, Concise MIB Definitions, STD 16,
RFC 1212 (March 1991), available at http://www.ietf.org/rfc/
rfc1212.txt?number=1212.

M. T. Rose and K. McCloghrie, How to Manage Your Network
Using SNMP: The Networking Management Practicum, Prentice
Hall Inc., Englewood Cliffs, NJ (1995).

M. Rose and K. McCloghrie, Structure and Identification of Man-
agement Information for TCP/IP-Based Internets, STD 16, RFC
1155 (May 1990); available at http://www.ietf.org/rfc/rfc1155.
txt?number=1155.

Specification for CIM Operations over HT'TP Version 1.0, The Dis-
tributed Management Task Force, Inc. (August 11, 1999); avail-

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

able at http://www.dmtf.org/download/spec/xmls/CIM_HTTP_
Mapping10.htm.

Specification for the Representation of CIM in XML Version 2.0,
The Distributed Management Task Force, Inc. (July 20, 1999),
available at http://www.dmtf.org/download/spec/xmls/CIM_XML _
Mapping20.htm.

A. Tang and S. Scoggins, Open Networking with OSI, Prentice-
Hall, Inc., Englewood Cliffs, NJ (1992).

U. Warrier, L. Besaw, L. LaBarre, and B. Handspicker, The Com-
mon Information Services and Protocols for the Internet (CMOT
and CMIP), RFC1189 (October 1990); available at http:/
www.ietf.org/rfc/rfc1189.txt?number=1189.

Accepted for publication November 10, 2000.

Heather Kreger IBM Software Solutions Division, P.O. Box 12195,
Research Triangle Park, North Carolina 27709-2195 (electronic mail:
kreger@us.ibm.com). Ms. Kreger represents IBM as an active, con-
tributing member of the Java Management eXtensions (JSR0003)
Expert Group. Her years in lead positions on the development
teams of Automated Network Operations/MVS and Netview/AIX
products combined with her development experience on the Lo-
tus Domino™ Go Webserver and WebSphere Application Server
products gives her unique insight into the problems of and so-
lutions for managing e-business applications. Ms. Kreger has con-
tributed to the specification, reference implementation, and com-
patibility test suites for Sun’s JMX Reference Implementation.
She is also involved in The Open Group Management Program,
the Distributed Management Task Force Application Manage-
ment and Interoperability work groups, and Sun’s WBEM JSR
(Java Specification Request) expert group.

KREGER 129



