220 KAN, PARRISH, AND MANLOVE

In-process metrics
for software testing

In-process tracking and measurements play a
critical role in software development, particularly
for software testing. Although there are many
discussions and publications on this subject and
numerous proposed metrics, few in-process
metrics are presented with sufficient experiences
of industry implementation to demonstrate their
usefulness. This paper describes several in-
process metrics whose usefulness has been
proven with ample implementation experiences
at the IBM Rochester AS/400° software
development laboratory. For each metric, we
discuss its purpose, data, interpretation, and use
and present a graphic example with real-life
data. We contend that most of these metrics,
with appropriate tailoring as needed, are
applicable to most software projects and should
be an integral part of software testing.

Measurement plays a critical role in effective
software development. It provides the scien-
tific basis for software engineering to become a true
engineering discipline. As the discipline has been
progressing toward maturity, the importance of mea-
surement has been gaining acceptance and recog-
nition. For example, in the highly regarded software
development process assessment and improvement
framework known as the Capability Maturity Model,
developed by the Software Engineering Institute at
Carnegie Mellon University, process measurement
and analysis and utilizing quantitative methods for
quality management are the two key process activ-
ities at the Level 4 maturity.'?

In applying measurements to software engineering,
several types of metrics are available, for example,
process and project metrics versus product metrics,

0018-8670/01/$5.00 © 2001 I1BM

by S. H. Kan
J. Parrish
D. Manlove

or metrics pertaining to the final product versus met-
rics used during the development of the product.
From the standpoint of project management in soft-
ware development, it is the latter type of metrics that
is the most useful—the in-process metrics. Effective
use of good in-process metrics can significantly en-
hance the success of the project, i.e., on-time deliv-
ery with desirable quality.

Although there are numerous discussions and pub-
lications in the software industry on measurements
and metrics, few in-process metrics are described
with sufficient experiences of industry implementa-
tion to demonstrate their usefulness. In this paper,
we intend to describe several in-process metrics per-
taining to the test phases in the software develop-
ment cycle for release and quality management.
These metrics have gone through ample implemen-
tation experiences in the IBM Rochester AS/400* (Ap-
plication System/400*) software development labo-
ratory for a number of years, and some of them likely
are used in other IBM development organizations as
well. For those readers who may not be familiar with
the AS/400, it is a midmarket server for e-business.
To help meet the demands of enterprise e-commerce
applications, the AS/400 features native support for
key Web-enabling technologies. The AS/400 system
software includes microcode supporting the hard-
ware, the Operating System/400* (0S/400*), and many
licensed program products supporting the latest tech-

©Copyright 2001 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

nologies. The size of the AS/400 system software is
currently about 45 million lines of code. For each
new release, the development effort involves about
two to three million lines of new and changed code.

It should be noted that the objective of this paper
is not to research and propose new software met-
rics, although it may not be that all the metrics dis-
cussed are familiar to everyone. Rather, its purpose
is to discuss the usage of implementation-proven
metrics and address practical issues in the manage-
ment of software testing. We confine our discussion
to metrics that are relevant to software testing after
the code is integrated into the system library. We do
not include metrics pertaining to the front end of
the development process such as design review, code
inspection, or code integration and driver builds. For
each metric, we discuss its purpose, data, interpre-
tation and use, and where applicable, pros and cons.
We also provide a graphic presentation where pos-
sible, based on real-life data. In a later section, we
discuss in-process quality management vis-a-vis these
metrics and a metrics framework that we call the
effort/outcome paradigm. Before the conclusion of the
paper, we also discuss the pertinent question: How
do you know your product is good enough to ship?

Since the examples in this paper are based on ex-
periences with the AS/400, it would be useful to out-
line the software development and test process for
the AS/400 as the overall context. The software de-
velopment process for the AS/400 is a front-end fo-
cused model with emphases on key intermediate de-
liverables such as architecture, design and design
verification, code integration quality, and driver
builds. For example, the completion of a high-level
design review is always a key event in the system
schedule and managed as a key intermediate deliv-
erable. At the same time, testing (development and
independent testing) and customer validation are the
key phases with an equally strong focus. As Figure
1 shows, the common industry model of testing in-
cludes functional test, system test, and customer beta
trials before the product is shipped. Integration and
solution test can occur before or after a product is
first shipped and is often conducted by customers
because a customer’s integrated solution may con-
sist of products from different vendors. For AsS/400,
the first formal test after unit test and code integra-
tion into the system library consists of component
test (CT) and component regression test (CRT), which
is equivalent to functional test. Along the way, a stress
test is also conducted in a large network environ-
ment with performance workload running in the

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

background to stress the system. When significant
progress is made in component test, the product level
test (PLT), which focuses on the products and sub-
systems of the AS/400 system (e.g., Transmission Con-
trol Protocol/Internet Protocol, database, client ac-
cess, clustering), starts. Network test is a specific
product level test focusing on communications and
related error recovery processes. The above tests are
conducted by the development teams (CT, CRT) or
by joint effort between the development teams and
the independent test team (PLT, stress test). The tests
done by the independent test group include the in-
stall test and the software system integration test
(called Software RAISE—for reliability, availability,
install, service, environment) which is preceded by
its acceptance test—the system test acceptance test
(STAT). Because AS/400 is a highly integrated system,
these different tests each play an important role in
achieving a quality deliverable for each release of
the software system. As Figure 1 shows, several early
customer programs also start in the back end of our
development process, and some of them normally
run until 30 days after general availability (GA) of
the product.

In-process metrics for software testing

In this section, we discuss what in-process metrics
are used in software testing.

Test progress S curve (plan, attempted, actual). Test
progress tracking is perhaps the most important and
basic tracking for managing software testing. The
metric we recommend is a test progress S curve over
time with the x-axis representing the time unit (pref-
erably in weeks) and the y-axis representing the num-
ber of test cases or test points. By S curve we mean
that the data are cumulative over time and resem-
ble an “s” shape as a result of the period of intense
test activity, causing a steep planned test ramp-up.
For the metric to be useful, it should contain the fol-
lowing information on the same graph:

* Planned progress over time in terms of number of
test cases or number of test points to be completed
successfully by week

* Number of test cases attempted by week

e Number of test cases completed successfully by
week

The purpose of this metric is obvious—to track ac-
tual testing progress against plan and therefore to
be able to be proactive upon early indications that
testing activity is falling behind. It is well-known that

KAN, PARRISH, AND MANLOVE 221

Figure 1 AS/400 software testing cycle

GA
BETA

COMMON

INDUSTRY FUNCTION TEST SYSTEM TEST || INTEGRATION

MODEL: : SOLUTION TEST

AS/400 SW 3 T GA
COMPONENT TEST (CT) |

DEVELOPMENT: !

DEVELOPMENT

TEST
COMPLETE

SW STRESS TEST

SW STRESS (REGRESSION)

SUPPORTED BY

LARGE NETWORK
ENVIRONMENT

(LNE)

PRODUCT LEVEL TEST (PLT)

AS/400
INDEPENDENT
TEST

SW INSTALL TEST (SIT)

EARLY
CUSTOMER
PROGRAMS

when the schedule is under pressure in software de-
velopment, it is normally testing (especially devel-
opment testing, i.e., unit test and component test or
functional verification test) that is impacted (cut or
reduced). Schedule slippage occurs day by day and
week by week. With a formal metric in place, it is
much more difficult for the team to ignore the prob-
lem, and they will be more likely to take actions.

222 KAN, PARRISH, AND MANLOVE

NETWORK TEST |

‘ STAT ‘ SW RAISE

CUSTOMER INVITATIONAL PROGRAM

IS IS PRODUCTION
NONPRODUCTION
BETA BETA PRODUCTION
NONPRODUCTION

BUSINESS PARTNER BETA

From the project planning perspective, the request
for an S curve forces better planning (see further dis-
cussion in the following paragraphs).

The example shown in Figure 2 shows the compo-
nent test (functional verification test) metric at the
end of the test for a major release of the AS/400 soft-
ware system.

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

Figure 2 Testing progress S curve example

120

120000 | | ArrempTED
SUCCESSFUL =TT
100 PLANNED =T [L |
100000 =
80000gq e [L | | |
"_
Be0000 |
2 60 S T T EHTH FH H I |
(@] =
=
@40000
40 g HIHIHIHIHIHIHIH HH i H i
7
20000 | =
zom : .
O{‘H I I
4 1 29 27 24 21 19 16 14 11
MAY JUN JUL AUG SEP ocT NOV DEC JAN
199_ 199_
WEEK ENDING

As can be seen from the figure, the testing progress
plan is expressed in terms of a line curve, which is
put in place in advance. The lightly shaded bars are
the cumulative number of test cases attempted, and
the red bars represent the number of successful test
cases. With the plan curve in place, each week when
the test is in progress, two more bars (one for at-
tempted and one for successful completion) are
added to the graph. This example shows that during
the rapid test ramp-up period (the steep slope of the
curve), for some weeks the test cases attempted were
slightly ahead of plan (which is possible), and the
successes were slightly behind plan.

Because some test cases may be more important than
others, it is not a rare practice in software testing to
assign test scores to the test cases. Using test scores
is a normalized approach that provides more accu-
rate tracking of test progress. The assignment of
scores or points is normally based on experience, and
for AS/400, teams usually use a 10-point scale (10 for
the most important test cases and 1 for the least).
As mentioned before, the unit of tracking for this
S curve metric can be any unit that is appropriate.
To make the transition from basic test-case S-curve
tracking to test-point tracking, the teams simply en-

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

ter the test points into the project management tool
(for the overall plan initially and for actuals every
week). The example in Figure 3 shows test point
tracking for a product level test, which was under-
way for a particular function of the AS/400 system. It
should be noted that there is always an element of
subjectivity in the assignment of weights. The weights
and the resulting test scores should be determined
in the testing planning stage and remain unchanged
during the testing process. Otherwise, the purpose
of this metric will be lost in the reality of schedule
pressures. In software engineering, weighting and test
score assignment remains an interesting area where
more research is needed. Possible guidelines from
such research will surely benefit the planning and
management of software testing.

For tracking purposes, testing progress can also be
weighted by some measurement of coverage. For ex-
ample, test cases can be weighted by the lines of code
tested. Coverage weighting and test score assignment
consistency become increasingly important in pro-
portion to the number of development groups in-
volved in a project. Lack of attention to tracking con-
sistency across functional areas can result in a
misleading view of true system progress.

KAN, PARRISH, AND MANLOVE 223

Figure 3 Testing progress S curve—test points tracking

(a9 ATTEMPTED
SUCCESSFUL []
O
- PLANNED &
&
&

2 60
=
o}
o
2
= 40

20 <

| Uj
0 | | | | | | | |

12/10/99 12/17/99 12/24/99 12/31/99 01/07/00 01/14/00 01/21/00 01/28/00 02/04/00 02/11/00 02/18/00 02/25/00 03/03/00

WEEK ENDING DATES

When a plan curve is in place, an in-process target
can be set up by the team to reduce the risk of sched-
ule slippage. For instance, a disparity target of 15
percent or 20 percent between attempted (or suc-
cessful) and planned test cases can be used to trig-
ger additional actions versus a business-as-usual ap-
proach. Although the testing progress S curves, as
shown in Figures 2 and 3, give a quick visual status
of the progress against the total plan and plan-to-
date (the eye can quickly determine if testing is ahead
or behind on planned attempts and successes), it may
be difficult to discern the exact amount of slippage.
This is particularly true for large testing efforts, where
the number of test cases is in the hundreds of thou-
sands, as in our first example. For that reason, it is
useful to also display testing status in tabular form,
as in Table 1. The table also shows underlying data
broken out by department and product or compo-
nent, which helps to identify problem areas. In some
cases, the overall test curve may appear to be on
schedule, but because some areas are ahead of sched-
ule, they may mask areas that are behind when pro-
gress is only viewed at the system level. Of course,
testing progress S curves are also used for functional
areas and for specific products.

224 KAN, PARRISH, AND MANLOVE

When an initial plan curve is put in place, the curve
should be subject to brainstorming and being chal-
lenged. For example, if the curve shows a very steep
ramp-up in a short period of time, the project man-
ager may challenge the team with respect to how do-
able the plan curve is or what the team’s specific ac-
tions to execute the plan are. As a result, better
planning will be achieved. It should be cautioned that
before the team settles on a plan curve and uses it
as a criterion to track progress, a critical evaluation
of what the plan curve represents should be made.
For example, is the total test suite considered effec-
tive? Does the plan curve represent high test cov-
erage? What are the rationales behind the sequences
of test cases in the plan? This type of evaluation is
important because once the plan curve is in place,
the visibility of this metric tends to draw the whole
team’s attention to the disparity between attempts,
successes, and the plan.

Once the plan line is set, any changes to the plan
should be reviewed. Plan slips should be evaluated
against the project schedule. In general, the base-
line plan curve should be maintained as a reference.
Ongoing changes to the planned testing schedule can
mask schedule slips by indicating that attempts are

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

Figure 4 Testing plan curve—release-to-release comparison

110
100 —
90 —
8 8o
Pz -
P
< 70
o -
L 60
O L
L
S 50—
2 L
40 —
30 [—
20
10 —
oL L N T
—42 -39 -36 -33 -30 27 —24 -21 -18 —15 —12 -9 -6 -3 0
WEEKS TO GA
Table 1 Test progress tracking—plan, attempted, successful
Plan to Date Percent Percent Plan Not Percent Percent
(# of Test Attempted Successful Attempted Attempted Successful
Cases) of Plan of Plan (# of Test Cases) of Total of Total
System 60577 90.19 87.72 5940 68.27 66.1
Dept. A 1043 66.83 28.19 346 38.83 15.6
Dept. B 708 87.29 84.46 90 33.68 32.59
Dept. C 33521 87.72 85.59 4118 70.6 68.88
Dept. D 11275 96.25 95.25 423 80.32 78.53
Dept. E 1780 98.03 94.49 35 52.48 50.04
Dept. F 4902 100 99.41 0 96.95 95.93
Product A 13000 70.45 65.1 3841 53.88 49.7
Product B 3976 89.51 89.19 417 66.82 66.5
Product C 1175 66.98 65.62 388 32.12 31.4
Product D 277 0 0 277 0 0
Product E 232 6.47 6.47 217 3.78 3.7

on track, whereas the plan is actually moving for-
ward.

In addition to what is described above, this metric
can be used for release-to-release or project-to-proj-
ect comparisons, as the example in Figure 4 shows.

For release-to-release comparisons, it is important
to use weeks before product general availability (GA)

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

as the time unit for the x-axis. By referencing the GA
dates, the comparison provides a true in-process sta-
tus of the current release. In Figure 4, we can see
that the release represented by the red, thicker curve
is more back-end loaded than the release represented
by the blue, thinner curve. In this context, the met-
ricis both a quality and a schedule statement for the
release, as late testing will affect late cycle defect ar-
rivals and hence the quality of the final product. With

KAN, PARRISH, AND MANLOVE 225

this type of comparison, the project team can plan
ahead (even before the actual start of testing) to mit-
igate the risks.

To implement this metric, the testing execution plan
needs to be laid out in terms of the weekly target,
and actual data need to be tracked on a weekly ba-
sis. For small to medium projects, such planning and
tracking activities can use common tools such as Lo-
tus 1-2-3** or other project management tools. For
large, complex projects, a stronger tools support fa-
cility normally associated with the development envi-
ronment may be needed. For AS/400, the data are
tracked via the DCR (Design Change Request—a tool
for project management and technical information
for all development items) tool, which is a part of
the IDSS/DEV2000 (Integrated Development Support
System) environment. The DCR is an on-line tool to
track important characteristics and the status of each
development item. For each line item in the release
plan, one or more DCRs are created. Included in the
DCRs are descriptions of the function to be devel-
oped, components that are involved, major design
considerations, interface considerations (e.g., appli-
cation programming interface and system interface),
performance considerations, Double Byte Charac-
ter Set (DBCS) requirements, component work sum-
mary sections, lines of code estimates, machine read-
able information (MRI), design review dates, code
integration schedule, testing plans (number of test
cases and dates), and actual progress made (by date).
For the system design control group reviews, DCRs
are the key documents with the information needed
to ensure design consistency across the system. For
high-level design reviews, DCRs are often included
in the review package together with the design doc-
ument itself. The DCR process also functions as the
change-control process at the front end of the de-
velopment process. Specifically, for each integration
of code into the system library by developers, a rea-
son code (a DCR number) is required. For test pro-
gress tracking, development or test teams enter data
into DCRs, databases are updated daily, and a set of
reporting and analysis programs (VMAS, or Virtual
Machine Application System, SAS**, Freelance™) are
used to produce the reports and graphs.

PTR (test defects) arrivals over time. Defect track-
ing during the testing phase is highly recommended
as a standard practice for any software testing. At
IBM Rochester, defect tracking is done via the Prob-
lem Tracking Report (PTR) tool. With regard to met-
rics, what is recommended here is tracking the test
defect arrival pattern over time, in addition to track-

226 KAN, PARRISH, AND MANLOVE

ing by test phase. Overall defect density during test,
or for a particular test, is a summary indicator, but
not really an in-process indicator. The pattern of de-
fect arrivals over time gives more information. Even
with the same overall defect rate during testing, dif-
ferent patterns of defect arrivals imply different qual-
ity levels in the field. We recommend the following
for this metric:

* Always include data for a comparable release or
project in the tracking chart if possible. If there is
no baseline data or model data, at the minimum,
some expected level of PTR arrivals at key points
of the project schedule should be set when track-
ing starts (e.g., system test entry, cut-off date for
code integration for GA driver).

* The unit for the x-axis is weeks before GA.

e The unit for the y-axis is the number of PTR ar-
rivals for the week, or related measures.

Figure 5 is an example of this metric for several AS/400
releases. For this example, release-to-release com-
parison at the system level is the main goal. The met-
ric is also often used for defect arrivals for specific
tests, i.e., functional test, product level test, or sys-
tem integration test.

The figure has been simplified for presentation. The
actual graph has much more information, including
vertical lines depicting the key dates of the devel-
opment cycle and system schedules such as last new
function integration, development test completion,
start of system test, etc. There are also variations of
the metric: total PTR arrivals, high-severity PTRs, PTRs
normalized to the size of the release (new and
changed code plus a partial weight for ported code),
raw PTR arrivals versus valid PTRs, and number of
PTRs closed each week. The main chart, and the most
useful one, is the total number of PTR arrivals. How-
ever, we also include a high-severity PTR chart and
a normalized view as mainstays of our tracking. The
normalized PTR chart can help to eliminate some of
the visual guesswork of comparing current progress
to historical data. In conjunction with the high-se-
verity PTR chart, a chart that displays the relative per-
centage of high-severity PTRs per week can be use-
ful. Our experience indicated that the percentage of
high-severity problems normally increases as the re-
lease moves toward GA, while the total number de-
creases to a very low level. Unusual swings in the
percentage of high-severity problems could signal se-
rious problems and should be investigated.

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

Figure 5 Testing defect arrivals metric

OF PROBLEMS VARA
V4R2
V4R3
o
- w
E
W)
— m
i B S S Y I | S I I |
=71 -66 —61 -56 =51 -46 -41 -36 -31 -26 -21 -16 =11 -6 -1
WEEKS TO GA

When do the PTR arrivals peak relative to time to
GA and previous releases? How high do they peak?
Do they decline to a low and stable level before GA?
Questions such as these are crucial to the PTR ar-
rivals metric, which has significant quality implica-
tions for the product in the field. The ideal pattern
of PTR arrivals is one with higher arrivals earlier, an
earlier peak (relative to previous releases or the base-
line), and a decline to a lower level earlier before
GA. The latter part of the curve is especially impor-
tant since it is strongly correlated with quality in the
field, as long as the decline and the low PTR levels
before GA are not attributable to an artificial reduc-
tion or even to the halt of testing activities. High PTR
activity before GA is more often than not a sign of
quality problems. Myers® has a famous counterin-
tuitive principle in software testing, which states that
the more defects found during testing, the more that
remain to be found later. The reason underlying the
principle is that finding more defects is an indica-
tion of high error injection during the development
process, if testing effectiveness has not improved
drastically. Therefore, this metric can be interpreted
in the following ways:

* If the defect rate is the same or lower than that
of the previous release (or a model), then ask: Is
the testing for the current release less effective?

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

— Ifthe answer is no, the quality perspective is pos-
itive.

— Ifthe answer is yes, extra testing is needed. And
beyond immediate actions for the current proj-
ect, process improvement in development and
testing should be sought.

e If the defect rate is substantially higher than that
of the previous release (or a model), then ask: Did
we plan for and actually improve testing effective-
ness significantly?

— If the answer is no, the quality is negative. Iron-
ically, at this stage of the development cycle,
when the “designing-in quality” phases are past
(i.e., at test phase and under the PTR change con-
trol process), any remedial actions (additional
inspections, re-reviews, early customer pro-
grams, and most likely more testing) will yield
higher PTR rates.

— Ifthe answer is yes, then the quality perspective
is the same or positive.

The above approach to interpretation of the PTR ar-
rival metric is related to the framework of our
effort/outcome paradigm for in-process metrics qual-
ity management. We discuss the framework later in
this paper.

The data underlying the PTR arrival curve can be fur-
ther displayed and analyzed in numerous ways to gain

KAN, PARRISH, AND MANLOVE 227

additional understanding of the testing progress and
product quality. Some of the views that we have
found useful include the pattern of build and inte-
gration of PTR arrivals and the pattern of activity
source over time. The later charts can be used in con-
junction with testing progress to help assess quality
as indicated by the effort/outcome paradigm.

Most software development organizations have test
defect tracking mechanisms in place. For organiza-
tions with more mature development processes, the
problem tracking system also serves as a tool for
change control, i.e., code changes are tracked and
controlled by PTRs during the formal test phases.
Such change control is very important in achieving
stability for large and complex software projects. For
AS/400, data for the above PTR metric are from the
PTR process that is a part of the IDSS/DEV2000 devel-
opment environment. The PTR process is also the
change control process after code integration into
the system library. Integration of any code changes
to the system library to fix defects from testing re-
quires a PTR number.

PTR (test defects) backlog over time. We define the
number of PTRs remaining at any given time as the
“PTR backlog.” Simply put, the PTR backlog is the
accumulated difference between PTR arrivals and
PTRs that were closed. PTR backlog tracking and man-
agement are important from the perspective of both
testing progress and customer rediscoveries. A large
number of outstanding defects during the develop-
ment cycle will likely impede testing progress, and
when the product is about to go to GA, will directly
affect field quality performance of the product. For
software organizations that have separate teams con-
ducting development testing and fixing defects,
defects in the backlog should be kept at the lowest
possible level at all times. For those software orga-
nizations in which the same teams are responsible
for design, code, development testing, and fixing de-
fects, however, there are appropriate timing windows
in the development cycle for which the highest pri-
ority on what to focus may vary.

Although the PTR backlog should be managed at a
reasonable level at all times, it should not be the high-
est priority during a period when making headway
in functional testing is the most important develop-
ment activity. During the prime time for develop-
ment testing, the focus should be on test effective-
ness and test execution, and defect discovery should
be encouraged to the maximum possible extent. Fo-
cusing too early on overall PTR reduction may run

228 KAN, PARRISH, AND MANLOVE

into a conflict with these objectives and may lead to
more latent defects not being discovered or being
discovered later at subsequent testing phases (e.g.,
during the independent testing time frame), or PTRs
not opened to record those defects that are discov-
ered. The focus should be on the fix turnaround of
the critical defects that impede testing progress in-
stead of the entire backlog. Of course, when testing
is approaching completion, there should be a strong
focus on drastic PTR backlog reductions.

For software development projects that build on ex-
isting systems, a large backlog of “aged” problems
can develop over time. These aged PTRs often rep-
resent fixes or enhancements that developers believe
would legitimately improve the product, but which
are passed over during development because of re-
source or design constraints. They may also repre-
sent problems that have already been fixed or are
obsolete because of other changes. Without a con-
certed effort, this aged backlog can build over time.
This area of the PTR backlog is one which can and
should be focused on earlier in the release cycle, even
prior to the start of development testing.

Figure 6 shows an example of the PTR backlog met-
ric for AS/400. Again, release-to-release comparisons
and actuals versus targets are the main objectives.
The specific targets in the graph are associated with
key dates in the development schedule, for exam-
ple, cut-off dates for fix integration control and for
the GA driver.

It should be noted that for this metric, solely focus-
ing on the numbers is not sufficient. In addition to
the overall reduction, what types and which specific
defects should be fixed first play a very important
role in terms of achieving system stability early. In
this regard, the expertise and ownership of the de-
velopment and test teams are crucial.

Unlike PTR arrivals that should not be controlled ar-
tificially, the PTR backlog is completely under the
control of the development organization. For the
three metrics we have discussed so far, the overall
project management approach should be as follows:

* When a test plan is in place and its effectiveness
evaluated and accepted, manage test progress to
achieve early and fast ramp-up.

e Monitor PTR arrivals and analyze the problems
(e.g., defect cause analysis and Pareto analysis of
problem areas of the product) to gain a better un-
derstanding of the test and the quality of the prod-

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

Figure 6 Testing defect backlog tracking

OF PROBLEMS

I e

TARGET = Y/

WEEK BEFORE GA

uct, but do not artificially manage or control PTR
arrivals, which is a function of test effectiveness,
test progress, and the intrinsic quality of the code
(the amount of defects latent in the code). (Pa-
reto analysis is based on the 80-20 principle that
states that normally 20 percent of the causes ac-
counts for 80 percent of the problems. Its purpose
is to identify the few vital causes or areas that can
be targeted for improvement. For examples of Pa-
reto analysis of software problems, see Chapter 5
in Kan.*)

¢ Strongly manage PTR backlog reduction, especially
with regard to the types of problems being fixed
early and achieving predetermined targets that are
normally associated with the fix integration dates
of the most important drivers.

The three metrics discussed so far are obviously in-
terrelated, and therefore special insights can be
gained by viewing them together. We have already
discussed the use of the effort/outcome paradigm for
analyzing PTR arrivals and testing progress. Other
examples include analyzing testing progress and the
PTR backlog together to determine areas of concern
and examining PTR arrivals versus backlog reduction
to project future progress. Components or develop-
ment groups that are significantly behind in their test-

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

ing and have a large PTR backlog to overcome war-
rant special analysis and corrective actions. A large
backlog can mire progress and, when testing progress
is already lagging, prevent rudimentary recovery ac-
tions from being effective. Combined analysis of test-
ing progress and the backlog is discussed in more
detail in a later section. Progress against the back-
log, when viewed in conjunction with the ongoing
PTR arrival rate, gives an indication of the total ca-
pacity for fixing problems in a given period of time.
This maximum capacity can then be used to help
project when target backlog levels will be achieved.

Product/release size over time. Lines of code or an-
other indicator of product size or function (e.g., func-
tion points) can also be tracked as a gauge of the
“effort” side of the development equation. During
development there is a tendency toward product
growth as requirements and designs are fleshed out.
Functions may also continue to be added because of
late requirements or a developer’s own desire to make
improvements. A project size indicator, tracked over
time, can serve as an explanatory factor for testing pro-
gress, PTR arrivals, and PTR backlog. It can also relate
the measurement of total defect volume to per unit im-
provement or deterioration.

KAN, PARRISH, AND MANLOVE 229

Figure 7 CPU utilization metric

CPU HOURS PER SYSTEM PER DAY VAR1

VAR2

| VBR7
TARGET

e e e e e e e e e e

WEEKS BEFORE GA

CPU utilization during test. For computer systems
or software products for which a high level of sta-
bility is required in order to meet customers’ needs
(for example, systems or products for mission-crit-
ical applications), it is important that the product
performs well under stress. In testing software dur-
ing the development process, the level of CPU uti-
lization is an indicator of the extent that the system
is being stressed.

To ensure that our software tests are effective, the
AS/400 development laboratory sets CPU utilization
targets for the software stress test, the system test
acceptance test (STAT), and the system integration
test (the RAISE test). The stress test starts at the mid-
dle of component test and may run into the RAISE
time frame with the purpose of stressing the system
in order to uncover latent defects that cause system
crashes and hangs that are not easily discovered in
normal testing environments. It is conducted with a
network of systems. RAISE test is the final system in-
tegration test, with a customer-like environment. It
is conducted in an environment that simulates an en-
terprise environment with a network of systems in-
cluding CpU-intensive applications and interactive
computing. During test execution, the environment

230 KAN, PARRISH, AND MANLOVE

is run as though it were a 24-hour-a-day, seven-day-
a-week operation. STAT is used as a preparatory test
prior to the formal RAISE test entry.

The example in Figure 7 demonstrates the tracking
of CPU utilization over time for the software stress
test. We have a two-phase target as represented by
the step line in the chart. The original target was set
at 16 CPU hours per system per day on the average,
with the following rationale:

e The stress test runs 20 hours per day, with four
hours of system maintenance.
e The CPU utilization target is 80%+.

For the last couple of releases, the team felt that the
bar should be raised when the development cycle is
approaching GA. Therefore, the target from three
months to GA is now 18 CPU hours per system per
day. As the chart shows, a key element of this met-
ric, in addition to actual versus target, is release-to-
release comparison. One can observe that the V4R2
curve had more data points in the early development
cycle, which were at higher CPU utilization levels. It
results from conducting pretest runs prior to when
the new release content became available. As men-

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

Figure 8 System crashes/hangs metric
OF UNPLANNED IPLS V4R1
V4R2
— V3R7
TARGET

WEEKS BEFORE GA

tioned before, the formal stress test starts at the mid-
dle of the component test cycle, as the V3R7 and V4R1
curves indicate. The CPU utilization metric is used
together with the system crashes and unplanned IPL
(initial program load, or “reboot”) metric. We will
discuss this relationship in the next subsection.

To collect actual CPU utilization data, we rely on a
performance monitor tool that runs continuously (a
24-hour-a-day, seven-day-a-week operation) on each
test system. Through the communication network,
the data from the test systems are sent to an AS/400
nontest system on a real-time basis, and by means
of a Lotus Notes** database application, the final
data can be easily tallied, displayed, and monitored.

System crashes and unplanned IPLs. Going hand
in hand with the CPU utilization metric is the metric
for system crashes and unplanned IPLs. For software
tests whose purpose is to improve the stability of the
system, we need to ensure that the system is stressed
and testing is conducted effectively to uncover the
latent defects leading to system crashes and hangs
or, in general, any IPLs that are unplanned. When
such defects are discovered and fixed, stability of the
system improves over time. Therefore, the metrics

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

of CPU utilization (stress level) and unplanned IPLs
describe the effort aspect and the outcome (findings)
aspect of the effectiveness of the test, respectively.

Figure 8 shows an example of the system crashes and
hangs metric for the stress test for several AS/400 re-
leases. The target curve, which was derived after
V3R7, was developed by applying statistical tech-
niques (for example, a simple exponential model or
a specific software reliability model) to the data
points from several previous releases including V3R7.

In terms of data collection, when a system crash or
hang occurs and the tester re-IPLs the system, the
performance monitor and IPL tracking tool will pro-
duce a screen prompt and request information about
the last IPL. The tester can ignore the prompt tem-
porarily, but it will reappear regularly after a cer-
tain time until the questions are answered. One of
the screen images of this prompt is shown in Figure
9. Information elicited via this tool includes: test sys-
tem, network identifier, tester name, IPL code and
reason (and additional comments), system reference
code (SRC) (if available), data and time system went
down, release, driver, PTR number (the defect that
causes the system crash or hang), and the name of

KAN, PARRISH, AND MANLOVE 231

Figure 9 Screen image of an IPL tracking tool

CIET —
T

IPL History Data Collection
System: RCHASTMI
Control Point : 00000000
Network ID . . : 00000000

Your name Jon Doe

IPL code & . a5 e s 002 F4 for list
IPL reason Software Problem
Additional comments . . . Knoun Problem

SRC code

Date system went down . . 12 31 99 (mm/dd/yy)
Time system went down . . 16 30 00 (hh:mm:ss)

-

Release V4R3MO
XPF driver 40NO93C
SLIC driver 34K549R

PTR number 1234567
PTR product PROD

MA) 08/038]

the product. The IPL reason code consists of the fol-
lowing categories:

e 001 hardware problem (unplanned)
* (002 software problem (unplanned)
* 003 other problem (unplanned)

* 004 load fix (planned)

Because the volume and trend of system crashes and
hangs are germane to the stability performance of
the product in the field, we highly recommend this
in-process metric for any software for which stabil-
ity is considered an important attribute. These data
should also be used to make release-to-release com-
parisons in similar time frames prior to GA, and can
eventually be used as leading indicators to GA read-
iness. Although CPU utilization tracking definitely re-
quires a tool, tracking of system crashes and hangs
can start with pencil and paper if a proper process
is in place.

Mean time to IPL (MTI). Mecan time to failure
(MTTF) or mean time between failures (MTBF) is the
standard measurement in the reliability literature.’
In the software reliability literature, this metric and
various models associated with it have also been dis-
cussed extensively. The discussions and use of this
metric are predominantly related to academic re-
search or specific-purpose software systems. To the
authors’ knowledge, implementation of this metric
is rare in organizations that develop commercial sys-
tems. This may be due to several reasons, including
issues related to single-system versus multiple-sys-
tems testing, the definition of a failure, the feasibil-
ity and cost in tracking all failures and detailed time-

232 KAN, PARRISH, AND MANLOVE

related data (note: failures are different from defects
or faults because a single defect can cause failures
multiple times and in different machines) in large
commercial projects during testing, and the value and
return on investment of such tracking.

System crashes and hangs and therefore unplanned
IPLs (or rebooting) are the more severe forms of fail-
ures. Such failures are more clear-cut and easier to
track, and metrics based on such data are more
meaningful. Therefore, for the AS/400, we use mean
time to unplanned IPL (MTI) as the key software re-
liability metric. This metric is used only during the
STAT/RAISE tests time period, which, as mentioned
before, is a customer-like system integration test
prior to GA. Using this metric for other tests earlier
in the development cycle is possible but will not be
as meaningful since all the components of the sys-
tem cannot be addressed collectively until the final
system integration test. To calculate MTI, one can
simply take the total number of CPU run hours for
each week (H;) and divide it by the number of un-
planned IPLs plus 1 (/; + 1). For example, if the to-
tal CPU run hours from all systems for a specific week
was 320 CPU hours and there was one unplanned IPL
caused by a system crash, the MTI for that week would
be 320/(1 + 1) = 160 cpU hours. In the AS/400 im-
plementation, we also apply a set of weighting fac-
tors that were derived based on results from prior
baseline releases. The purpose of using the weight-
ing factors is to take the outcome from the prior
weeks into account so that at the end of the RAISE
test (with a duration of 10 weeks), the MTI repre-
sents an entire RAISE statement. It is up to the prac-
titioner whether or not to use weighting or how to
distribute the weights heuristically. Deciding factors
may include: type of products and systems under test,
test cycle duration, or even how the testing period
is planned and managed.

kl 2 i
Wee YMTIn_,-lei* I+

where n = the number of weeks that testing has been
performed on the current driver (i.e., the current
week of test), H = total of weekly CPU run hours,
W = weighting factor, and / = number of weekly
(unique) unplanned IPLs (due to software failures).

Figure 10 is a real-life example of the MTI metric for

the STAT and RAISE tests for a recent AS/400 release.
The x-axis represents the number of weeks to GA.

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

Figure 10 MTI (mean time to unplanned IPL) metric

UNPLANNED IPLS TARGET HOURS (MTI)
12 600
ACTUAL =i P=>
) RAISE SW L + 3 WEEKS N
< »< P
8s—m- "= = = = = = = = = = = = = — = — — — /! 7777777 400
3 WEEKS ADDED <& ®
<&
<&
4 - - - - - - - -1 - - - — — > — — - - - - - - - — — — — — — — 200
STAT (3 WEEKS) MTI RESTARTED FOR REMAINING WEEKS OF
RAISE DUE TO EARLY INSTABILITY (BLUE SHADED
[NEW AREAS REPRESENT UNPLANNED OUTAGES)
DRIVER
l N N I

21 20 -19 -18 -17 -16 -15 -14 -3 -12 -1

0 9 -8 -7 6 -5 -4 -3 2 -4 0

WEEKS TO GA (WEEK ENDING ON SUNDAY)

The y-axis on the right side is MTI and on the left
side is the number of unplanned IPLs. Inside the
chart, the shaded areas represent the actual num-
ber of unique unplanned IPLs (crashes and hangs)
encountered. From the start of the STAT test, the MTI
metric is shown tracking to plan until week 10 (be-
fore GA) when three system crashes occurred dur-
ing a one-week period. From the significant drop of
the MTI, it was evident that with the original test plan,
there would not be enough burn-in time for the sys-
tem to reach the MTI target. Since this lack of burn-in
time typically results in undetected critical problems
at GA, additional testing was added, and the RAISE
test was lengthened by three weeks with the product
GA date unchanged. (Note that in the original plan,
the duration for STAT and RAISE was three weeks
and ten weeks, respectively. The actual test cycle was
17 weeks.) As in the case above, discrepancies be-
tween actual and targeted MTI should be used to trig-
ger early, proactive decisions to adjust testing plans
and schedules to make sure that GA criteria for
burn-in can be achieved, or at a minimum, that the
risks are well understood and a mitigation plan is in
place.

Additionally, MTI can also be used to provide a
“heads-up” approach for assessing weekly in-process

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

testing effectiveness. If weekly MTI results are sig-
nificantly below planned targets (i.e., 10—15 percent
or more), but unplanned IPLs are running at or be-
low expected levels, this situation can be caused by
other problems affecting testing progress (just not
those creating system failures). In this case, low MTI
tends to highlight how the overall effect of these in-
dividual products or functional problems (possibly
being uncovered by different test teams using the
same system) are affecting overall burn-in. This is
especially true if it occurs near the end of the testing
cycle. Without an MTI measurement and planned tar-
get, these problems and their individual action plans
might unintentionally be assessed as acceptable to
exit testing. But to reflect the lack of burn-in time
seen as lower CPU utilization numbers, MTI targets
are likely to not yet be met. Final action plans might
include:

» Extending testing duration or adding resources, or
both

* Providing for a more exhaustive regression test-
ing period if one were planned

* Adding a regression test if one were not planned

 Taking additional actions to intensify problem res-
olution and fix turnaround time (assuming that

KAN, PARRISH, AND MANLOVE 233

there is still enough elapsed time available until
the testing cycle is planned to end)

Note that MTI targets and results, because they rep-
resent stability, are only as reliable as the condition
under which the system(s) was tested. MTI does not
substitute for a poorly planned or executed test, but
instead tends to highlight the need for improvements
in such areas as stress testing capabilities (i.e., num-
bers of real or simulated users, new automation tech-
nologies, network bandwidth, understanding system,
and testing limitations, etc.), and providing for
enough burn-in time—with all testing running at “full
throttle”—for test exit criteria to be satisfied.

Another positive side effect from the visibility of re-
porting weekly MTI results is on the core system com-
ponents that are used to support the performance
monitoring and CPU data collection. These tools are
also performing an indirect usage test of many base
system functions, since MTI data are also collected
or retrieved by a central system on fixed hourly in-
tervals, seven days a week. This requires those key
interfaces of the system(s) and network to not only
stabilize early, but to remain so for the duration of
the testing cycle. Problems in those core areas are
quickly noticed, identified, and resolved because of
the timing and possible effect on the validity of MTI
data.

Critical problems—show stoppers. The show stop-
per parameter is very important because the sever-
ity and impact of software defects varies. Regard-
less of the volume of total defect arrivals, it only takes
a few show stoppers to render the product dysfunc-
tional. Compared to the metrics discussed previously,
this metric is more qualitative. There are two aspects
to this metric. The first is the number of critical prob-
lems over time, with release-to-release comparison.
This dimension is as quantitative as all other met-
rics. More importantly, the second dimension is con-
cerned with the types of critical problems and the
analysis and resolution of each of them.

The As/400 implementation of this tracking and fo-
cus is based on the general criterion that any prob-
lem that will impede the overall progress of the proj-
ect or that will have significant impact on a
customer’s business (if not fixed) belongs to such a
list. The tracking normally starts at the middle of
component test when a critical problem meeting is
held weekly by the project management team (with
representatives from all functional areas). When it
comes close to system test and GA time, the focus

234 KAN, PARRISH, AND MANLOVE

intensifies and daily meetings take place. The ob-
jective is to facilitate cross-functional teamwork to
resolve the problems swiftly. Although there is no
formal set of criteria, problems on the critical prob-
lem list tend to be related to install, system stability,
security, data corruption, etc. Before GA, all prob-
lems on the list must be resolved—either fixed or
a fix underway with a clear target date for the fix to
be available.

In-process metrics and quality management

On the basis of the previous discussions of specific
metrics, we have the following recommendations for
implementing in-process metrics in general:

* Whenever possible, it is preferable to use calen-
dar time as the measurement unit for in-process
metrics, versus using phases of the development
process. There are some phase-based defect mod-
els or defect cause or type analysis methods avail-
able, which were also extensively used in AS/400.
However, in-process metrics and models based on
calendar time provide a direct statement on the
status of the project with regard to whether it can
achieve on-time delivery with desirable quality. As
appropriate, a combination of time-based metrics
and phase-based metrics is desirable.

* For time-based metrics, use the date of product
shipment as the reference point for the x-axis and
use weeks as the unit of measurement. By refer-
encing the GA date, the metric portrays the true
in-process status and conveys a “marching toward
completion” message. In terms of time units, we
found that data at the daily level proved to have
too much fluctuation, and data at the monthly level
lost their timeliness; neither can provide a trend
that can be spotted easily. Weekly data proved to
be optimal in terms of both measurement trends
and cycles for actions. Of course, when the proj-
ect is approaching the back-end critical time pe-
riod, some metrics need to be monitored and ac-
tions taken at the daily level. Examples are the
status of critical problems near GA and the PTR
backlog a couple of weeks prior to the cut-off date
for the GA driver.

e Metrics should be able to tell what is “good” or
“bad” in terms of quality or schedule in order to
be useful. To achieve these objectives, historical
comparisons or comparisons to a model are often
needed.

* Some metrics are subject to strong management
actions; for others there should be no intervention.
Both types should be able to provide meaningful

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

indications of the health of the project. For exam-
ple, defect arrivals, which are driven by testing pro-
gress and other factors, should not be artificially
controlled, whereas the defect backlog is com-
pletely subject to management and control.

e Finally, the metrics should be able to drive im-
provements. The ultimate question for metric work
is what kind and how much improvement will be
made and to what extent the final product quality
will be influenced.

With regard to the last item in the above list, it is
noted that to drive specific improvement actions,
sometimes the metrics have to be analyzed at a more
granular level. As a real-life example, in the case of
the testing progress and PTR backlog metrics, the fol-
lowing was done (analysis and guideline for action)
for an AS/400 release near the end of development
testing (Component Test, or CT, equivalent to Func-
tional Verification Test [FVT] in other 1BM labora-
tories).

Components that were behind in CT were identified
using the following methods:

1. Sorting all components by “percentage attempted
of total test cases” and selecting those that are
less than 65 percent. In other words, with less than
three weeks to completion of development test-
ing, these components have more than one-third
of CT left.

2. Sorting all components by “number of planned
cases not attempted” and selecting those that are
100 or larger, then adding these components to
those from 1. In other words, these several ad-
ditional components may be on track or not se-
riously behind percentage-wise, but because of the
large number of test cases they have, there is a
large amount of work left to be done.

Because the unit (test case, or test variation) is not
of the same weight across components, 1 was used
as the major criterion, supplemented by 2.

Components with double-digit PTR backlogs were
identified. Guidelines for actions are:

1. If cT is way behind and PTR backlog is not too
bad, the first priority is to really ramp-up CT.

2. If cTis on track and PTR backlog is high, the key
focus is on PTR backlog reduction.

3. If cTis way behind and PTR backlog is high, these
components are really in trouble. Get help (e.g.,

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

extra resources, temporary help from other com-
ponents, or teams, or areas).

4. For the rest of the components, continue to keep
a strong focus on both finishing up CT and PTR
backlog reduction.

Furthermore, analysis on defect cause, symptoms,
defect origin (in terms of development phase) and
where found can provide more information for pos-
sible improvement actions. For examples of such
analyses and the discussion on phase defect removal
effectiveness (design reviews, code inspections, and
test), see Kan.*

Metrics are a tool for project and quality manage-
ment. In software development as well as many types
of projects, commitment by the teams is very impor-
tant. Experienced project managers know, however,
that subjective commitment is not enough. Is there
a commitment to the system schedules and quality
goals? Will delivery be on time with desirable qual-
ity? Even with eyes-to-eyes commitment, these ob-
jectives are often not met because of a whole host
of reasons, right or wrong. In-process metrics pro-
vide the added value of objective indication. It is the
combination of subjective commitments and objec-
tive measurement that will make the project success-
ful.

To successfully manage in-process quality (and there-
fore the quality of the final deliverables), in-process
metrics must be used effectively. We recommend an
integrated approach to project and quality manage-
ment vis-a-vis these metrics, in which quality is man-
aged as importantly as other factors such as sched-
ule, cost, and content. Quality should always be an
integral part of the project status report and check-
point reviews. Indeed, many of the examples we give
in this paper are metrics for both quality and sched-
ule (those weeks to GA measurements) as the two
parameters are often intertwined.

One common observation with regard to metrics in
software development is that the project teams of-
ten explain away the negative signs as indicated by
the metrics. There are two key reasons for this. First,
in practice there are many poor metrics, which are
further complicated by abundant abuses and misuses.
Second, the project managers and teams do not take
ownership of quality and are not action-oriented.
Therefore, the effectiveness, reliability, and validity
of metrics are far more important than the quantity
of metrics. And once a negative trend is observed,
an early urgency approach should be taken in order

KAN, PARRISH, AND MANLOVE 235

Figure 11 Example of an effort-outcome matrix

OUTCOME (DEFECTS FOUND)

HIGHER LOWER
CELLA1 CELL2
BETTER
EFFORT GOOD/NOT BAD | BEST/DESIRABLE
(TESTING
EFFECTIVENESS)
CELL3 CELL4
WORSE
WORST UNSURE

to prevent schedule slips and quality deterioration.
Such an approach can be supported via in-process
quality targets, i.e., once the measurements fall be-
low a predetermined target, special actions will be
triggered.

Effort/outcome paradigm. From the discussions thus
far, it is clear that some metrics are often used to-
gether in order to provide adequate interpretation
of the in-process quality status. For example, test-
ing progress and PTR arrivals, and CPU utilization and
the number of system crashes and hangs are two ob-
vious pairs. If we take a closer look at the metrics,
we can classify them into two groups: those that mea-
sure the testing effectiveness or testing effort, and
those that indicate the outcome of the test expressed
in terms of quality. We call the two groups the effort
indicators (e.g., test effectiveness assessment, test
progress S curve, CPU utilization during test) and the
outcome indicators (PTR arrivals—total number and
arrivals pattern, number of system crashes and hangs,
mean time to IPL), respectively.

To achieve good test management, useful metrics,
and effective in-process quality management, the
effort/outcome paradigm should be utilized. The
effort/outcome paradigm for in-process metrics was
developed based on our experience with AS/400 soft-
ware development and was first introduced by Kan.*
Here we provide further details. We recommend the
2 X 2 matrix approach such as the example shown
in Figure 11.

For testing effectiveness and the number of defects
found, cell 2 is the best-case scenario because it is
an indication of the good intrinsic quality of the de-

236 KAN, PARRISH, AND MANLOVE

sign and code of the software—low error injection
during the development process. Cell 1 is also a good
scenario; it represents the situation that latent de-
fects were found via effective testing. Cell 3 is the
worst case because it indicates buggy code and prob-
ably problematic designs— high error injection dur-
ing the development process. Cell 4 is the unsure
scenario because one cannot ascertain whether the
lower defect rate is a result of good code quality or
ineffective testing. In general, if the test effective-
ness does not deteriorate substantially, lower defects
are a good sign.

It should be noted that in the matrix, the better/worse
and higher/lower designation should be carefully de-
termined based on release-to-release or actual ver-
sus model comparisons. This effort/outcome ap-
proach also provides an explanation of Myers’
counterintuitive principle of software testing as dis-
cussed earlier.

The above framework can be applied to pairs of spe-
cific metrics. For example, if we use testing progress
as the effort indicator and the PTR arrivals pattern
as the outcome indicator, we obtain the following
scenarios:

Positive scenarios:

» Testing progress is on or ahead of schedule, and
PTR arrivals are lower throughout the testing cy-
cle (compared with the previous release).

 Testing progress is on or ahead of schedule, and
PTR arrivals are higher in the early part of the
curve—chances are the PTR arrivals will peak ear-
lier and decline to a lower level (compared with
the previous releases).

Negative scenarios:

e Testing progress is significantly behind schedule,
and PTR arrivals are higher—chances are the PTR
arrivals will peak later and the problem of late cy-
cle defect arrivals will emerge.

 Testing progress is behind schedule, and PTR ar-
rivals are lower in the early part of the curve—this
is an unsure scenario, but from the testing effort
point of view it is not acceptable.

The interpretation of the pair of metrics for system
stability (CPU utilization and system crashes and
hangs) is similar.

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

Generally speaking, outcome indicators are more
common, whereas effort indicators are more diffi-
cult to establish. Furthermore, different types of soft-
ware and tests may need different effort indicators.
Nonetheless, the effort/outcome paradigm forces one
to establish appropriate effort measurements, which,
in turn, drive the improvements in testing. For ex-
ample, the metric of CPU utilization is a good effort
indicator for operating systems. In order to achieve
a certain level of CPU utilization, a stress environ-
ment needs to be established. Such effort increases
the effectiveness of the test.

For integration type software where a set of vendor
software is integrated together with new products
to form an offering, effort indicators other than CPU
stress level may be more meaningful. One could look
into a test coverage-based metric, including the ma-
jor dimensions of testing such as:

Setup

Install

Minimum/maximum configuration
Concurrence

Error recovery

Cross-product interoperability
Cross-release compatibility

e Usability

* DBCS

A five-point score (one being the least effective and
five being the most rigorous testing) can be assigned
for each dimension, and the sum total can represent
an overall coverage score. Alternatively, the scoring
approach can include the “should be” level of test-
ing for each dimension and the “actual” level of test-
ing per the current testing plan based on indepen-
dent assessment by experts. Then a “gap score” can
be used to drive release-to-release or project-to-proj-
ect improvement in testing. For example, assuming
the testing strategy for an offering calls for the fol-
lowing dimensions to be tested, each with a certain
sufficiency level: setup (5), install (5), cross-product
interoperability (4), cross-release compatibility (5),
usability (4), and DBCS (3). Based on expert assess-
ment of the current testing plan, the sufficiency lev-
els of testing are: setup (4), install (3), cross-prod-
uct interoperability (2), cross-release compatibility
(5), usability (3), and DBCS (3). Therefore, the
“should be” level of testing would be 26 and the “ac-
tual” level of testing would be 20, with a gap score
of 6. This approach may be somewhat subjective, but
it also involves the experts in the assessment pro-
cess—those who can make the difference. Although

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

it would not be easy in a real-life implementation,
the point here is that the effort/outcome paradigm
and the focus on effort metrics have direct linkage
to improvements in testing. In AS/400, there was only
limited experience in this approach while we were
improving our product level test. Further research
in this area or implementation experience will be use-
ful.

How you know your product is good enough
to ship

Determining when a product is good enough to ship
is a complex issue. It involves the types of products
(for example, shrink-wrap application versus an op-
erating system), the business strategy related to the
product, market opportunities and timing, custom-
ers’ requirements, and many more factors. The dis-
cussion here pertains to the scenario that quality is
an important consideration and that on-time deliv-
ery with desirable quality is the major project goal.

A simplistic view is that a target is established for
one or several in-process metrics, and when the tar-
get is not met, the product is not shipped per sched-
ule. We all know that this rarely happens in real life,
and for legitimate reasons. Quality measurements,
regardless of their maturity levels, are never as black
and white as meeting or not meeting a GA date. Fur-
thermore, there are situations where some metrics
are meeting targets and others are not. There is also
the question: If targets are not being met, how bad
is the situation? Nonetheless, these challenges do not
diminish the value of in-process measurements; they
are also the reason for improving the maturity level
of software quality metrics.

When various metrics are indicating a consistent neg-
ative message, it is then evident that the product may
not be good enough to ship. In our experience, in-
dicators from all of the following dimensions should
be considered together to get an adequate picture
of the quality of the product to be designated GA:

System stability/reliability/availability

Defect volume

Outstanding critical problems

Feedback from early customer programs

Other important parameters specific to a partic-
ular product (ease of use, performance, install, etc.)

In Figure 12, we present a real-life example of an
assessment of in-process quality of a recent AS/400
release when it was near GA. The summary tables

KAN, PARRISH, AND MANLOVE 237

Figure 12 Quality assessment summary—an example
INDICATOR OBSERVATION VS. VS. ASSESSMENT
V3R7 V4R2

CT/CTR PROGRESS BASE COMPLETE. PRODUCT X TO OK
COMPLETE 7/31.

PTR ARRIVALS PEAK EARLIER THAN V4R2 AND V3R7, AND GOOD
LOWER BACK END—FOR BOTH ABSOLUTE
NUMBERS AND NORMALIZED (TO SIZF) RATES.

PTR SEVERITY LOWER THAN V3R7 AND V4R2 GOOD

DISTRIBUTION AT BACK END.

PTR BACKLOG EXCELLENT BACKLOG MANAGEMENT, LOWER OK
THAN V4R2 AND V3R7 AND ACHIEVED
TARGETS AT PTF CONTROL AND HIDING.
NEEDS FOCUS FOR FINAL CUM.

PENDING PTFs ABOVE V4R2 AT SAME TIME. NEED FOCUS TO OK
MINIMIZE CUSTOMER REDISCOVERY.

CRITICAL PROBLEM LIST STRONG PROBLEM MANAGEMENT. NUMBER GOOD
OF PROBLEMS ON THE CRITICAL LIST
SIMILAR TO V4R2.

SYSTEM STABILITY STABILITY SIMILAR TO, MAYBE SLIGHTLY OK

- UNPLANNED IPLS BETTER THAN, V4R2.

- CPU RUN TIME

PLAN CHANGE VA4R3 PLAN CHANGES NOT AS PERVASIVE N/A OK
AS V4R2.

TIMELINESS OF NLS/MRI EARLY AND PROACTIVE BVT DAILY MEETINGS. OK
NLV BVT BEHIND, BUT SCHEDULES
ACHIEVABLE.

outline the parameters or indicators used (column Conclusion
1), a brief description of the status (column 2), re-
lease-to-release comparisons (columns 3 and 4), and
an assessment (column 5). Although some of the in-
dicators and assessments are based on subjective in-
formation, for many parameters we have formal met-
rics and data in place to substantiate the assessment.
The assessment was done about two months before
GA, and as usual, a series of actions was taken
throughout GA. The release now has been in the field

In this paper we discuss a set of in-process metrics
for the testing phases of the software development
process. We provide real-life examples based on im-
plementation experiences of the IBM Rochester
AS/400 development laboratory. We also describe the
effort/outcome paradigm as a framework for estab-
lishing and using in-process metrics for quality man-
agement.

for over two years and has demonstrated excellent
field quality.

238 KAN, PARRISH, AND MANLOVE

There are certainly many more in-process metrics
for software testing that we did not include, nor is

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

Figure 12 Continued

INDICATOR OBSERVATION VS, VS, ASSESSMENT
V3R7 VAR2
HARDWARE RAISE TARGET COMPLETE: 7/31/98. FOCUSING ON | VS.V4R1- | INVADER | GOOD
AND NORTH STAR BACKLOG REDUCTION. MAKO/MIL
HARDWARE RELIABILITY HARDWARE RELIABILITY PROJECTED VS.V4R1- | INVADER | GOOD
TO MEET CI/105 (BE BETTER THAN PRIOR MAKO/MIL
RELEASES) FOR ALL MODELS.
PLT/LNE TESTING CONTINUES FOR DATABASE (SAP), OK
INTERNET (HTTP SERVER), AND LDAP, BUT
NO MAJOR PROBLEMS.
INSTALL PHASE Il TESTING AHEAD OF PLAN. ONE OF OVERALL: GOOD
THE CLEANEST RELEASES IN SIT.
SERVICEABILITY/UPGRADE ~ CONCERN W/CONFIGURATOR READINESS CONCERN
TESTING AND SOFTWARE ORDER STRUCTURE
IN MANUFACTURING.
SOFTWARE STAT/RAISE RELEASE LOOKS GOOD OVERALL. OVERALL: GOOD
SERVICE READINESS WW SERVICE COMMUNITY IS ON TRACK TO OVERALL: GOOD
BE READY TO SUPPORT V4R3.
EARLY PROGRAMS GOOD EARLY FEEDBACK ON THE RELEASE. OVERALL: GOOD
MANUFACTURING STILL EARLY, BUT NO MAJOR PROBLEMS. OK
BUILD AND TEST

our intent to provide comprehensive coverage. Even
for those that we discussed here, not each and every
one is applicable universally. However, we contend
that the several metrics that are basic to software
testing (such as the testing progress curve, defect ar-
rivals density, and critical problems before GA)
should be an integral part of any software testing.

It can never be overstated that it is the effectiveness
of the metrics that matters, not the number of met-
rics available. It is a strong temptation for quality or
metrics practitioners to establish more and more
metrics. However, in the practice of metrics and mea-

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

surements in the software engineering industry,
abuses and misuses abound. It is ironic that software
engineering is relying on the measurement approach
to elevate its maturity level as an engineering dis-
cipline, yet measurement practices when improperly
used pose a big obstacle and provide confusion and
controversy to such an expected advance. Ill-founded
metrics are not only useless, they are actually coun-
terproductive, adding extra costs to the organization
and doing a disservice to the software engineering
and quality disciplines. Therefore, we must take a
serious approach to metrics. Each metric to be used
should be subjected to the examination of basic prin-

KAN, PARRISH, AND MANLOVE 239

ciples of measurement theory. For example, the con-
cept, the operational definition, the measurement
scale, and validity and reliability issues should be well
thought out. At a macro level, an overall framework
should be used to avoid an ad hoc approach. We dis-
cuss the effort/outcome framework in this paper,
which is particularly relevant for in-process metrics.
We also recommend the Goal/Question/Metric
(GQM) approach in general for any metrics.®®

At the same time, to enhance success, one should
take a dynamic and flexible approach, for example,
tailor-make the metrics to meet the needs of a spe-
cific team, product, and organization. There must
be “buy-in” by the team (development and testing)
in order for the metrics to be effective. Metrics are
a means to an end—the success of the project—not
an end itself. The project team should have intel-
lectual control and a thorough understanding of the
metrics and data that they use, and should therefore
make the right decisions. Although good metrics can
serve as a useful tool for software development and
project management, they do not automatically lead
to improvement in testing and in quality. They do
foster data-based decision-making and provide ob-
jective criteria for actions. Proper use and contin-
ued refinement by those involved (for example, the
project team, the testing community, and the devel-
opment teams) are therefore crucial.

Acknowledgment

This paper is based on a white paper written for the
IBM Software Test Council. We are grateful to Carl
Chamberlin, Gary Davidson, Brian McCulloch, Dave
Nelson, Brock Peterson, Mike Santivenere, Mike
Tappon, and Bill Woodworth for their reviews and
helpful comments on an earlier draft of the white
paper. We wish to thank the three anonymous re-
viewers for their helpful comments on the revised
version for the IBM Systems Journal. We wish to
thank the entire AS/400 software team, especially the
release managers, the extended development team
members, and the various test teams who made the
metrics described in this paper a state of practice in-
stead of just a theoretical discussion. A special thanks
goes to Al Hopkins who implemented the perfor-
mance monitor tool on AS/400 to collect the CPU uti-
lization and unplanned IPL data.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Lotus Development Cor-
poration or SAS Institute, Inc.

240 KAN, PARRISH, AND MANLOVE

Cited references

1. M. C. Paulk, C. V. Weber, B. Curtis, and M. B. Chrissis, The
Capability Maturity Model: Guidelines for Improving the Soft-
ware Process, Addison-Wesley Longman, Inc., Reading, MA
(1994).

2. W. S. Humphrey, A Discipline for Software Engineering, Ad-
dison-Wesley Longman, Inc., Reading, MA (1995).

3. G.J. Myers, The Art of Software Testing, John Wiley & Sons,
Inc., New York (1979).

4. S. H. Kan, Metrics and Models in Software Quality Engineering,
Addison-Wesley Longman, Inc., Reading, MA (1995).

5. P. A.Tobias and D. C. Trindade, Applied Reliability, Van Nos-
trand Reinhold Company, New York (1986).

6. V.R. Basili, “Software Development: A Paradigm for the Fu-
ture,” Proceedings of the 13th International Computer Software
and Applications Conference (COMPSAC), keynote address,
Orlando, FL (September 1989).

7. Materials in the Software Measurement Workshop conducted
by Professor V. R. Basili, University of Maryland, College Park,
MD (1995).

8. N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous
and Practical Approach, 2nd edition, PWS Publishing Company,
Boston (1997).

Accepted for publication September 15, 2000.

Stephen H. Kan IBM AS/400 Division, 3605 Highway 52 N, Roch-
ester, Minnesota 55901 (electronic mail: skan@us.ibm.com). Dr.
Kan is a Senior Technical Staff Member and a technical manager
in programming at IBM in Rochester, Minnesota. He is respon-
sible for the Quality Management Process in AS/400 software de-
velopment. His responsibility covers all aspects of quality rang-
ing from quality goal setting, supplier quality requirements, quality
plans, in-process metrics, quality assessments, and CI105 com-
pliance, to reliability projections, field quality tracking, and cus-
tomer satisfaction. Dr. Kan has been the software quality focal
point for the software system of the AS/400 since its initial re-
lease in 1988. He is the author of the book Metrics and Models
in Software Quality Engineering, numerous technical reports, and
articles and chapters in the IBM Systems Journal, Encyclopedia
of Computer Science and Technology, Encyclopedia of Microcom-
puters, and other professional journals. Dr. Kan is also a faculty
member of the University of Minnesota Master of Science in Soft-
ware Engineering (MSSE) program.

Jerry Parrish IBM AS/400 Division, 3605 Highway 52 N, Roch-
ester, Minnesota 55901 (electronic mail: parrishj@us.ibm.com). Mr.
Parrish is an advisory software engineer and has been a member
of the IBM Rochester AS/400 System Test team since the late
1980s. He is currently the test lead for the AS/400 Software Plat-
form Integration Test (also known as RAISE). As part of the over-
all focus of the AS/400 on system quality, he has applied his ex-
pertise since the early 1990s to focus on the areas of test process
methodology and applied models and metrics. Over this period,
he has helped transform the System Test group in Rochester into
a significant partner in IBM Rochester’s total quality commit-
ment. Mr. Parrish holds an undergraduate degree in computer
science. He has been employed by IBM since 1980 with expe-
rience in software development, software system testing, and prod-
uct assurance.

Diane Manlove /BM AS/400 Division, 3605 Highway 52 N, Roch-
ester, Minnesota 55901 (electronic mail: dmanlove @us.ibm.com).

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

Ms. Manlove is an advisory software quality engineer for IBM
in Rochester. Her responsibilities include management of release
quality during product development, system quality improvement,
and product quality trend analysis and projections. Ms. Manlove
is certified by the American Society for Quality as a Software Qual-
ity Engineer, a Quality Manager, and a Reliability Engineer. She
holds a master’s degree in reliability and an undergraduate de-
gree in engineering. She has been employed by IBM since 1984
and has experience in test, manufacturing quality, and product
assurance.

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

KAN, PARRISH, AND MANLOVE 241

