Intermediary-based
transcoding framework

With the rapid increase in the amount of content
on the World Wide Web, it is now becoming clear
that information cannot always be stored in a
form that anticipates all of its possible uses. One
solution to this problem is to create transcoding
intermediaries that convert data, on demand,
from one form into another. Up to now, these
transcoders have usually been stand-alone
components, converting one particular data
format to another particular data format. A

more flexible approach is to create modular
transcoding units that can be composed as
needed. In this paper, we describe the benefits
of an intermediary-based transcoding approach
and present a formal framework for document
transcoding that is meant to simplify the problem
of composing transcoding operations.

oday, content providers on the World Wide Web

(WwWw) are under constant pressure to make in-
formation available in a variety of formats and for
a variety of purposes. For example, the Yahoo!**
catalog server provides information formatted in Hy-
perText Markup Language (HTML) for standard Web
browsers, and also provides some of this informa-
tion formatted for handheld devices such as Palm
Pilots** and wireless phones. In this case, content
is formatted differently for displays that have differ-
ent capabilities, and is also delivered differently for
devices that have different connectivity. Concern for
network bandwidth limitations in particular has
spurred many projects aimed at minimizing the
amount of data transmitted for Web transactions.
For instance, Fox and colleagues'™ developed a
proxy-based architecture for distilling or transform-
ing content so that thin devices receive only the data
they can handle (e.g., devices with monochrome dis-

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

0018-8670/01/$5.00 © 2001 I1BM

plays do not receive color images), thus minimizing
the network bandwidth needed to transmit informa-
tion.

Moreover, as more and more companies explore the
WWW as a place to do business, large amounts of in-
formation of various types and in a variety of for-
mats will be made available on the Web. This leads
to the problem of converting data to enable appli-
cations to handle data that might come from a va-
riety of sources. In this context, bandwidth limita-
tions or client resources (e.g., CPU power and disk
space) are not a major concern. The main questions
here are: what form is the information in; what form
does it need to be in? The ability to convert content
from one form to another lets systems that use dif-
ferent languages and conventions communicate and
interoperate. The Extensible Markup Language*
(XML) is particularly suited to the needs of businesses
to convert data from one form to another, as it pro-
vides means for specifying semantic structure.

The process of converting, distilling, or transform-
ing content is often referred to as transcoding '~ (see
Figure 1). In particular, this term is also used when
referring to algorithms for transforming certain data,
such as images and movies, from one format into an-
other. For example, video transcoding is the process
of converting between different compression formats,
or of further reducing the bit rate of a previously

©Copyright 2001 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

HDE ET AL. 179

Figure 1 Transcoding intermediaries connect a wide variety of devices, applications, and services.

S/390 LEGACY DATA

AVI

DEVICE FORMAT
FILTRATION CONVERSION

MPEG

compressed signal.® Character transcoding is the pro-
cess of translating characters from one encoding
(e.g., EBCDIC, or extended binary-coded decimal in-
terchange code) to another (e.g., to ASCII, or Amer-
ican National Standard Code for Information Inter-
change). Image transcoding is the process of
converting an image from one format (e.g., JPEG, or
Joint Photographic Experts Group) into another
(e.g., to GIF, or graphic interchange format), and pos-
sibly modifying some of its properties, such as size,
resolution, or color depth.” The main motivation be-
hind these sorts of transcoding operations is to over-
come network constraints, such as limited bandwidth,
and to allow clients with limited resources (e.g., pro-
cessing power, display size) access to Web content. ™
Many transcoding operations do not usually alter
the semantics, or meaning, of the object being
transcoded. However, certain kinds of transcoding
operations may alter the semantics, at least to some
extent. For example, lossy compression of an image,
or summarization of a document, may result in an
object that is very different, even unrecognizable
when compared to the original.

180 HDE ET AL.

SHARE DATA AND
APPLICATIONS

<?xml version=1.07>
<transaction>
<record>
<id val="4711"/>
</record>

</transaction>

BUSINESS TO
BUSINESS

<?xml version=1.07>
<order number="4711">

</order>

In general, transcoding operations are applied on de-
mand, rather than precomputed and stored. The
simple reason is that it is difficult and expensive to
anticipate all possible transformations. As the re-
quirements for transcoding operations increase—
new document types to be converted, parameters set
for transcoding, and so on—building specialized
transcoders will become more and more complex.
It seems clear to us that a simpler solution is to de-
velop a framework for combining or composing sim-
ple transcoders to perform more complex jobs. For
example, given three image converters, GIF to JPEG,
JPEG to PNG (Portable Network Graphics), PNG to
TIFF (tagged image file format), our hope is to make
it easy to convert GIF to TIFF by combining (or chain-
ing) these three (see Figure 2). A system that merely
applies specialized transcoding operations would re-
quire the implementation of many transcoders that
anticipate all possible combinations of input and out-
put formats (see Figure 3).

Because transcoding operations apply to data flows,
it is natural to view them as a kind of intermediary-

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

Figure 2 A transcoding framework simplifies the tasks of combining and reusing transcoders.

GIF-PNG
PNG-TIFF

JPEG-GIF

JPEG GIF PNG TIFF

based computation.’™" Of course, final results and
partial results of intermediary-based transcoding can
be cached for quick access later.> Our point is that
all possible transcodings are not generally precom-
puted and stored as if they are simply alternate for-
mats for maintaining content. Transcoding is a fun-
damentally active process of recasting content when
itis needed, and therefore lends itself to implemen-
tation as an intermediary process. This raises the
issue of how to build transcoding applications
as intermediaries. As mentioned, the approach of
chaining transformations seems reasonable, but how
can a system guarantee that any chain produces the
desired result?

Gribble and Fox’s DOLF'? system is an intermediary-
based scheme that automatically adapts content for
particular clients. Specifically, DOLF converts a doc-
ument’s format—that is, its Multipurpose Internet

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

Mail Extensions (MIME) type'*—to one that is
appropriate for the client. DOLF can create chains
of MIME-type transcoders to convert documents of
one type to documents of another type. To create
the proper chain, DOLF must know which transfor-
mations its transcoders can perform, but DOLF’s un-
derstanding of the process is limited to just MIME
type transformations. Thus, DOLF itself cannot be
used to summarize a document or translate from one
language to another, because these transformations
do not affect a document’s MIME type.

The transcoding framework we have developed is
similar to DOLF in several ways. Most notably, both
systems perform dynamic transformations on re-
quested objects by composing a pipeline of compu-
tational elements. However, our framework includes
alanguage for describing in detail the abilities of the
individual transcoders and mechanisms for packag-

HDE ET AL. 181

Figure 3 Without the ability to compose operations, each transcoding operation must be preprogrammed, leading to a

combinatorial explosion of transformations.

)

{/
/
U

J
\
«v

:
\

[
v
i
‘&
\

f.
()
4
Y
Y
j
/

|
|

|
!
()\
y

:,;
\

ing transcoders so they can be added or removed at
run time. The language allows transcoders to spec-
ify semantic transformations on objects regardless
of whether the transformation preserves or alters
type. This allows a richer set of operations to be de-
scribed formally. Within such a framework, differ-
ent parties can supply feature-rich transcoders that
can cooperate automatically.

In the next section of this paper, we describe our
transcoding framework in some detail, including a
formal specification of our language for defining
and manipulating transcoding operations. Next, we
present a specific intermediary-based implementa-
tion of our transcoding framework. Finally, we out-
line future directions for this work.

182 HDE ET AL.

A transcoding framework

Before describing our framework, we first define
some terms. Intuitively, data objects represent con-
tent, type indicates the form the data are in, prop-
erties represent attributes of particular data types,
and format combines a type and a set of properties.
More precisely,

* A data object consists of a sequence of bytes.

* A type is one of the MIME types. ! It represents
the semantic nature of data objects of that type
and specifies the byte-level encoding used to rep-
resent the data. For example, data objects of the
type “image/gif” are images in which the data are
encoded according to the GIF format.

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

* A property is an attribute particular to a type or
set of types that may take on values represented
as strings. The special value “*” represents any
value. For example, the type “text/xml” might have
the property “DTD” (document type definition),
which could take on values such as “http://www.
w3.0rg/TR/1999/PR-xhtml1-19990824,” “foo,” or
sk 9

¢ A format consists of one type and zero or more

property-value pairs. For example, (“text/xml,”

((“DTD,” “f00”))) is a valid format, as is (“text/html,”

((“case,” “upper”), (“length,” “5007))).

A transcoding operation takes an input data ob-

jectd,, in a particular format f;, (we use the nota-

tiond;, (f;,)) and converts it into an output data
objectd,,, in the specified formatf,,, (using again

the notation d,,(f,.)). Thus, we denote a

transcoding operation by

(din(ﬁ'n)r (fin’ f()ut)) - dout(fout)

The type of the input format f;, and the type of
the output format f,,, may be identical. If so, and
if the set of properties specified by f,,, is empty,
the transcoding operation is the identity transfor-
mation and d,,, is identical to d,,.

Although several examples of properties are given
in this paper, it is our intent that the ontology for
these be extensible and ad hoc. Thus, for transcod-
ers from different authors to be able to interoper-
ate, authors must use the same name for the same
property. Properties describe transformations of a
more semantic nature than those the MIME type sys-
tem covers. These transformations may or may not
be reversible. For example, text summarization is not
reversible, nor is increasing the compression factor
in a JPEG image, because both transformations dis-
card information. Other transformations may be re-
versible, such as inverting the color map of an im-
age. In any event, all such transformations can be
described by properties in our system, because they
do not affect the type of the object.

We define intermediaries ™ as a general class of com-
putational entities that act on data flowing along an
information stream. In general, intermediaries are
located in the path of a data flow, possibly affecting
the data as they flow by. For HyperText Transfer Pro-
tocol (HTTP) streams, for instance, intermediary com-
putation might be used to customize '*!7 content
with respect to the history of interaction of individ-
ual users, to annotate'®'® content, such as marking

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

up URLs (uniform resource locators) to indicate net-
work delay, to add awareness and interaction in or-
der to enable collaboration *?° with other users, to
transcode”*! data from one image type to another,
or to cache and aggregate content.’

In general, we distinguish six broad applications of
intermediary computation: customization, annota-
tion, collaboration, transcoding, aggregation, and
caching. More precisely, we distinguish these inter-
mediary functions by the kinds of information they
take into account when performing their actions.
Customization takes account of information about
the user or the user’s environment when modifying
data on the stream, such as adding links the user vis-
its often. Annotation takes account of information
about the world outside the user or user’s environ-
ment, for instance, by determining link speed. Col-
laboration takes account of information about other
users, such as what Web page they are currently vis-
iting. Transcoding takes account of information
about the data’s input and desired output format,
for instance, transforming a JPEG format to a GIF.
Aggregation takes into account additional data
streams, for instance, merging results from several
search engines into a single page of search results.
Caching takes account of when data were last stored
and last changed.

Our transcoding framework is implemented as an
intermediary for a well-defined protocol for docu-
ment or object retrieval, such as HTTP or the Wire-
less Application Protocol (WAP). This intermediary
can inspect or modify both requests for objects and
the responses, that is, the objects themselves. The
intermediary performs transcoding operations on
these objects. Clients may request that the interme-
diary transcode responses on its behalf, or the in-
termediary may make that decision itself based on
other factors. To perform this transcoding, the in-
termediary relies on a set of transcoders, each of
which advertises its capabilities. The advertisements
specify what sort of output object a transcoder is able
to produce given certain constraints on its input. A
transcoder that translates Japanese Web pages into
English might specify

((text/html, (("language", "ja"))),
(text/html, (("Tanguage", "en"))))

A “*” on the right side of an (attribute, value) pair
indicates that the transcoder can produce any value
requested for the corresponding attribute. A
transcoder can advertise more than one capability.

HDE ET AL. 183

Figure 4 Simple BNF grammar for the request and
capability language. We distinguish between
a transcoding request (TR) and capability
advertisement (CA).

A transcoding request (TR) specifies a
format pair (FP) describing the input format
and the desired output format.

TR := FP

A capability advertisement (CA) contains one or
more format pairs describing the supported
transcoding operations by a particular transcoder.

CA := FP+

A format pair describes two formats (F), which are
described by a mimetype and an optional key value
list (KVL). The terminal <mime-type> denotes

the standard MIME types such as "text/plain" or
"application/pdf".

FP
F

W(wF W p oy
"(" <mime-type> "0, (" [KVL] "))"

The key value list (KVL) contains one or more key
value pairs (KVP). The terminals <key> and <value>
denote characteristics of a particular MIME type,
such as compression ratio for "image/jpeg" or
language for "txt/*".

KVL
KVP :

KVP | KVP ", " KVL
"(" <key> "," <value> ")"

A simple BNF (Backus Naur form) grammar for the
language that we use to describe transcoder capa-
bilities and requests is given in Figure 4.

Once the desired transformation is determined, the
capabilities of each transcoder are examined in or-
der to identify a set of transcoders that can perform
the requested operation. Once an appropriate set
of transcoders has been selected, each one is invoked
in turn with two inputs that specify the transcoding re-
quest: (1) the output of the previous transcoder (or the
original input, in the case of the first transcoder); and
(2) atranscoder operation, which specifies one or more
of the operations advertised in a transcoder’s capabil-
ities statement. Each transcoder operation includes the
input format of the object supplied and the output for-

184 HDE ET AL.

mat of the object to be produced, both of which must
respect the transcoder’s advertised capabilities.

More precisely, a transcoding request R is valid for
a transcoder T given that T advertised a set of ca-
pabilities {C, ..., C,} if:

1. There exists at least one capability C; such that
the types specified in the input and output for-
mats of C; are identical to the types specified in
the input and output formats of R. Let the set
{D,, ...,D,} denote all members of {C,, ...,
C,} that meet this criterion.

2. There exists a subset E of D such that the union
of all property-value pairs in the output formats
of the members of E is identical to the set of prop-
erty-value pairs of the output format of R, and
the union of all property-value pairs in the input
formats of the members of E is identical to the
set of property-value pairs of the input format of
R, subject to the following conditions:

a. Any property-value pair in any input format
or in the output format of R with a value of
“*” js meaningless; it is as though the pair were
not present.

b. Any property-value pair in an output format
of a member of £ with a value of “*” will be
considered identical to a property-value pair in
Rwith an identical property and with any value.

The operations of different transcoders can be com-
posed in a straightforward way. Generally, the idea
is to break down an overall request into a series of
subrequests to different transcoders, each of which
accomplishes part of the overall goal or some other
necessary subgoal. Specifically, a list of subrequests
(S, ..., 8,) can be considered equivalent to an
overall request R if the following conditions are met:

* The type of the input format of the first request
S, is identical to the type of the input format of
R.

* The type of the output format of the last request
S, is identical to the type of the output format of
R.

» Each property-value pair in the input format of R
is present in the input format of some subrequest
Sl .

e Each property-value pair (P, V) in the output for-

mat of R is present in the output format of some

subrequest S; such that there does not exist any

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

subrequest S;, kK > j, whose output format con-
tains a property-value pair (P, V'), V # V.

The net effect of these conditions is that every prop-
erty specified in the output format of a request R
may take on any value at various stages throughout
the chain, as long as the final value that it takes is
the one requested in R.

As noted previously, our framework is similar in
many ways to DOLF.'> However, several key differ-
ences distinguish it. In our framework, the use of
properties in addition to MIME types allows transcod-
ers to declare their ability to change attributes of an
object other than its type. DOLF relies on other,
“stacked” proxies**! to perform such transforma-
tions. By contrast, our system allows type-preserv-
ing and type-changing transformations to be auto-
matically combined in any number and order within
the scope of a single intermediary. This would be dif-
ficult to achieve with a combination of DOLF and a
second proxy that communicate only through HTTP.
For instance, stacked or chained proxies operate in
a predefined order. If one proxy handles type-alter-
ing transformations and another one handles type-
preserving transformations, the order in which the
proxies are stacked dictates the only order in which
those transformations may be performed. Of course,
it might be possible to give the proxies detailed
knowledge of each other. With this knowledge, they
could forward requests back and forth until all re-
quired transformations are performed. However, one
of the advantages of a stacked proxy architecture is
that one proxy generally does not know what func-
tion the other proxies perform, and may not even
know of their existence. This lack of knowledge al-
lows a clean architectural separation of function, but
if the functions are heavily intertwined, it makes
more sense and is more efficient to combine them
in a single intermediary.

In addition, our use of a formally specified language
to describe the abilities of transcoders allows
transcoders to be packaged and interchanged in a
simple and automated way, enabling the creation of
transcoder repositories. Thus, an intermediary un-
able to satisfy a request might automatically search
for, retrieve, install, and use an appropriate
transcoder. For instance, if IBM creates transcoders
that operate between the AFP (Advanced Function
Presentation) and SVG (Scalable Vector Graphics)
formats, and Adobe creates transcoders that oper-
ate between PostScript and SVG, a third-party
transcoder repository service could publish these

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

transcoders, enabling any system that knows about
the repository to discover, download, and combine
the transcoders seamlessly.

Transcoding framework in action. Consider the case
of a worker away from the office. Suppose he or she
is traveling by car, perhaps making a sales call. Sup-
pose further that this worker’s Internet-connected
mobile phone can request data from the office via
a transcoding intermediary, and that he or she wants
to hear an English audio summary of a long docu-
ment, such as a sales contract. The mobile phone
browser requests the document from the transcod-
ing intermediary. The phone-browser knows that the
user wants an audio summary, either because it has
been preconfigured or through some other means
(e.g., because an earpiece is plugged into the phone).
Suppose the original document is a PDF (Portable
Document Format) document written in Spanish. In
this case, the phone-browser might specify its pref-
erence for an audio summary by including with its
request a header line such as,

Transcoding-Request:

(Capplication/pdf, (("language","es"))),

(audio/mp3, (("summarize", "10.0"),
("Tanguage", "en"))))

To satisfy the request, the intermediary first retrieves
the original document from its origin. Because a
transcoding specification was included in the orig-
inal request for data, the intermediary must
transcode the data before passing the data along to
the client. To satisfy the transcoding request, the in-
termediary first looks for a single transcoder that can
do the job of transforming Spanish PDF documents
into summarized, English audio. Because there are
no special transcoders for this, the intermediary next
tries to find a chain of transcoders that, when ap-
plied in sequence, satisfies the request.

The chain of transcoders is determined by simple
backward chaining, with the desired output type ex-
amined first. If there is no single transcoder that can
produce “audio/mp3,” then the request cannot be
satisfied. If a transcoder is available, the input re-
quirements of the transcoder are examined in order
to identify another transcoder that can output a
matching type. This process repeats until the input
type of the last transcoder selected matches the in-
put type of the original transcoding request. Further-
more, the output format of the original transcoding
request must be satisfied by the chain of transcod-
ers.

IHDE ET AL. 185

Let us consider this example more carefully:

1. The desired output type is “audio/mp3” and the
only available transcoder that can output “audio”
is the following:

((text/plain, (("language","en"))),
(audio/mp3, ()))

The transcoder’s capability advertisement states
that plain text written in English can be converted
into audio. This transcoder will be selected as the
last transcoder in the chain.

2. Because the transcoder selected in Step 1 only
accepts English input in plain text, the framework
must find a transcoder that outputs plain text in
English. Suppose a language-translation trans-
coder is available:

((text/plain, (("Tanguage","es"))),
(text/plain, (("Tanguage","en"))))

At this point, two jobs remain. First, we must find
a transcoder that can summarize text and, sec-
ond, we must find a transcoder that can convert
PDF into plain text.

3. Suppose there are two such transcoders available,
a PDF-to-text converter,

((application/pdf, ()),
(text/plain, ()))

and a text summarizer,

((text/plain, ()),
(text/plain, (("summarize","*"))))

One final problem remains: ordering these last
two transcoders. If the PDF converter is selected
first, the next step would be to find a summarizer
that outputs a PDF document. Because there is
no such PDF summarizer, the chain of transcod-
ers cannot be completed. Because our framework
implements a search process that can backtrack,
it can revoke the selection of the PDF converter
and select the summarizer, which then leads to
the selection of the PDF-to-text converter.

The overall sequence of transcoding operations
for our example request is

186 HDE ET AL.

(Capplication/pdf, ()),
(text/plain, ()))

((text/plain, (())),
(text/plain, (("summarize","10.0"))))

((text/plain, (("language","es"))),
(text/plain, (("Tanguage","en"))))

((text/plain, (("Tanguage","en"))),
(audio/mp3, ()))

Note that the individual transcoding units in this ex-
ample are reusable and can be combined in many
ways with other transcoders (see Figure 5). The text-
summarization transcoder might be used together
with a text-to-WML (Wireless Markup Language)
transcoder to allow a WML phone to display a sum-
marized document. The text-to-speech transcoder
can be used alone to turn text input into audio out-
put. A language translation transcoder can be com-
bined with the text-to-speech transcoder to turn
Spanish text into English audio. A PDF document can
be transcoded to text in order to take advantage of
a summarization or text-to-speech transcoder. Text-
to-speech conversion might be used alongside a
CAD-to-VRML (computer-aided design to virtual re-
ality modeling language) transcoder that allows one
to walk through an immersive, audio-guided tour of
a building blueprint.

Limitations of the transcoding framework. Our
transcoding framework has two main limitations: (1)
the language used by transcoders to express their ca-
pabilities is somewhat simplified, and (2) the correct
operation of the system depends on the cooperation
among the transcoders in setting the properties of
the input and output formats. As a result of (1), it
is cumbersome for a transcoder to express that it can-
not accept input with certain combinations of prop-
erties. When a transcoder lists several property-value
pairsin a single advertisement, they represent a con-
junction of properties. To express disjunction, the
properties must be listed in separate advertisements.
For example, a transcoder that can accept textual
input only in English or German must list all its other
restrictions on the input twice, once in conjunction
with English, once with German. If a transcoder has
several such restrictions on its input, the list of ad-
vertised capabilities will quickly become long and un-
wieldy.

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

Figure 5 A pluggable, reusable framework allows individual transcoders to be combined in different ways to achieve a

variety of results.

PDF

-
\

The result of the second limitation of our transcod-
ing framework is that the usefulness of the system
as awhole depends on the judicious and correct use
by transcoder authors of properties in the input and
output formats they advertise. If different transcod-
ers use properties in different ways, or have differ-
ent policies with respect to when properties should
be specified in formats, the system will not function
effectively. For example, consider the type
“application/xscript,” which has three different “lev-
els,” “1,”“2,” and “3.” One transcoder might under-
stand all three levels of xscript, and never make any
mention of “level” in its capabilities advertisement.
Another transcoder might only understand levels 1
and 2, and thus advertise that it can accept
“application/xscript” input with the property (“Lev-
el,” “1”) or (“Level,” “2”). These two transcoders
could not work together effectively on xscript doc-
uments because the output produced by the first
transcoder does not specify “Level” at all, and there-
fore cannot be used as input to the second
transcoder.

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

TEXT-TO-AUDIO
SPEECH
——
TEXT
\ o
—
LANGUAGE
TRANSLATION
XML
TRANSFORMATION
WML
—l

An intermediary-based implementation

The Web Intermediaries (WBI) Development Kit is an
implemented framework for adding intermediary
functions to the www.’~'1° WBI is a programmable
proxy that was designed for ease of development and
deployment of intermediary applications. Using WBI,
intermediary applications are constructed from four
basic building blocks: request editors, generators,
document editors, and monitors. We refer to these
collectively as MEGs (monitors, editors, generators).
Monitors observe transactions without affecting
them. Editors modify outgoing requests or incom-
ing documents. Generators produce documents in
response to requests. WBI dynamically constructs a
data path through the various MEGs for each trans-
action. To configure the data path for a particular
request, WBI has a rule associated with each MEG that
specifies a Boolean condition indicating whether the
MEG should be involved in a transaction based on
header information about the request or response.
An application (WBI plug-in) is usually comprised

HDE ET AL. 187

Figure 6 The master transcoder (MT) chains document
editors (DEs). The DEs perform the actual
transcoding.

v

::—
I
f =\ MT
| |

DE 4——— DE

of a number of MEGs that operate in concert to pro-
duce a new function.

Because transcoding is an intermediary application,
we built our transcoding framework on top of WBI.
In particular, the transcoding framework is imple-
mented as a WBI plug-in that consists of several MEGs,
specifically, the master transcoder, and various spe-
cific transcoders (such as GIF-to-JPEG transcoder, or
an XML-to-XML converter based on XSL (Extensible
Stylesheet Language) processing, etc.).

In WBI terms, the master transcoder is a document
editor that receives the original object (e.g., a GIF
image) as input and produces a modified object (e.g.,
aJPEG image) as output according to some transcod-
ing requirements. The master transcoder intercepts
the data flow between client and server. For each
object in the data flow, WBI calls the master
transcoder so that it may inspect the request and the
original object in order to make an appropriate re-
sponse. If transcoding is necessary, the master
transcoder determines the appropriate transcoder
or combination of transcoders. The master
transcoder arranges for the appropriate transcoders
to be subsequently called by WBI in the correct or-
der (see Figure 6).

As mentioned, the means by which the desired out-
put format is determined are external to the master

188 HDE ET AL.

transcoder and beyond the scope of this paper (but
see Reference 22 for an approach to determining
what output format is desired). To demonstrate a
useful system and to keep the implementation sim-
ple, we describe some simple policies as though they
were implemented in the master transcoder itself.
Our current implementation separates this decision
from the master transcoder, and the desired output
format is communicated to the master transcoder
through extra header data attached to the HTTP re-
quest stream.

WBI offers various protocol-specific keywords that al-
low the specification of rules. During transaction pro-
cessing, the information available about the trans-
action (e.g., requested URL, host, content type, etc.)
is matched against the rules of all registered MEGs.
If the rule of a MEG is satisfied, the particular MEG
will be the next one in the chain to handle the data
stream. The master transcoder is registered with WBI
in a way that allows it to inspect every request. In
the Java code below:

MasterTranscoder mt = new
MasterTranscoder();
mt.setup("MasterTranscoder", "%true%");

the special rule “%true%?7 is satisfied in every case,
and any MEG specifying this rule is invoked for ev-
ery request that passes through wBI. Thus, the mas-
ter transcoder can decide when transcoding is nec-
essary, and if it is, it can then decide on the chain
of specific transcoders.

The specific transcoders, which are also document
editors, are registered with the master transcoder in
order to advertise their capabilities. In addition, the
transcoders are also registered with WBI by specify-
ing arule that determines the conditions under which
they will be invoked during a transaction. In addi-
tion to the protocol-specific keywords mentioned
earlier, an extension mechanism, known as extra rule
keys,? is available. This mechanism is used by the
master transcoder to tell WBI which transcoders to
invoke and in what order. Extra rule keys consist of
a key-value pair that may be set by any MEG. MEGs
can register their rules with WBI so that they will be
invoked when another MEG sets a certain value for
an extra rule key.

A transcoder that converts GIFs to JPEGs might be
registered this way:

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

GifTodpegTranscoder g2j = new
GifTodpegTranscoder();
g2j.setup("GIF-To-JPEG",
"$GIF-To-JPEG = %true%", 10);

If the master transcoder determines that the
GIF-to-JPEG transcoder should be called, it simply
sets the extra rule key condition “$GIF-to-JPEG =
%true%.” WBI will then invoke this transcoder to
perform the conversion. This obviously works for sin-
gle-step transcoding, as all the master transcoder
must do is set the special condition, and the rest is
done by WBI itself.

Things become a little more complicated when the
transcoding request can only be satisfied by a com-
bination of transcoders. In this case, the master
transcoder must first determine which transcoders
to invoke to accomplish the transformation, and the
individual transcoders must then be applied in the
proper order. To determine which transcoders are
needed, the master transcoder considers the input
format, the requested output format, and the adver-
tised capabilities of available transcoders. If a single
transcoder is available to perform the operation
(transforming the input format to the desired out-
put format), it is simply used. If not, the master
transcoder searches for a chain of individual
transcoders such that

1. The type of the output format of each transcoder
matches the type of the input format of the next
transcoder in the chain, and

2. Each property contained in the input format of
a transcoder appears with an identical value (or
with the “*” wildcard) in the output format of a
transcoder in the proper place in the chain (or in
the input format of the object itself); that is, the
most recent instance of the property in the chain
must have the correct value.

It can be shown that the overall request is consid-
ered satisfied if a hypothetical transcoder with an in-
put format identical to the requested output format
can be added to the end of the chain. Thus, this pro-
cess implements a simple backward-chaining, state-
space search in which the goal state is the output for-
mat, the initial state is the input format, and the state-
transition operators are individual transcoders.

Once an appropriate chain of transcoders is found,
there remains the problem of invoking the transcod-

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

ers in the correct order. We solved this problem
using WBI's transaction data, which let MEGs associ-
ate arbitrary objects with a transaction (HTTP
request/response), allowing MEGs later in the pro-
cessing chain to use objects (information) generated
by previous MEGs. If the transcoding request can only
be served by chaining multiple transcoders, the mas-
ter transcoder simply determines the order of par-
ticipating operations and stores this information in
an object that is then attached to the transcoding re-
quest. The master transcoder still sets the condition
for the first transcoder in the chain so that WBI can
invoke it. The first MEG and each of the following
MEGs then set the condition for the next MEG (based
on the object stored in the transaction data) until
no more MEGs need to be called.

WBI provides various ways for the master transcoder
to gather the information it uses to determine the
desired output format of an object. One very simple
mechanism is to automatically draw conclusions from
the HTTP request, such as information about the cli-
ent that is requesting the data. For example, the fol-
lowing HTTP request could have been issued by a
handheld device:

GET http://www.ibm.com/image.jpg HTTP/1.0
Accept: */*
User-Agent: tiny-PDA

The master transcoder interprets this as an indica-
tion that the client is a device with limited resources
for display and connectivity. Of course, there must
be a lookup mechanism to identify transcoding op-
erations with a particular device (see Reference 22)
such that the master transcoder can match the de-
vice’s capabilities, for example, by transcoding each
JPEG into a smaller GIF with reduced color depth
(monochrome). This saves bandwidth and allows the
device to display the image. The User-Agent field
is a convenient way to determine standard transcod-
ing operations, such as type conversions or size re-
duction.

This method can be extended, such that the client
specifies allowable or desired transcoding operations
in additional HTTP header fields:

GET http://www.ibm.com/image.jpg HTTP/1.0
Accept: */*

Transcoding-Request:

HDE ET AL. 189

(image/jpg, ()), (image/gif, ())
Transcoding-Request:

(text/xml, ("DTD","a")),

(text/xml, ("DTD","b"))

In this example, the client specifies explicitly which
transcoding operations should be performed through
additional header fields “Transcoding-Request.” In the
above request, the client asks to transcode each JPEG
into a GIF, and to translate XML documents that cor-
respond to the DTD “a” into XML documents that cor-
respond to the DTD “b.” WBI provides the necessary
infrastructure for each MEG to access protocol-specific
header information.

The mechanisms we have described work for the
HTTP protocol but may not work with every HTTP cli-
ent, much less other protocols, such as FTP or SMTP
(File Transfer Protocol or Simple Mail Transfer Pro-
tocol). If the protocol underlying a request does not
offer such functionality, clients can simply register
with the transcoding intermediary and maintain a cli-
ent or device profile. These profiles are made acces-
sible to the master transcoder, such that it only needs
to determine the client during a transaction to per-
form a lookup and decide whether a transcoding op-
eration is necessary. Of course, such a service re-
quires the transcoding intermediary to provide a
mechanism for clients to register their transcoding
needs. Other implementations might make transcod-
ing decisions in different ways. For example, rather
than having clients register with the transcoder, the
transcoder could present a simple form-based inter-
face that would allow a user to request transcoded
objects on a per-request basis, or a specific interme-
diary might always make certain kinds of transcod-
ing decisions based on a mandate to preserve band-
width.

As previously described, our WBI-based prototype
system supports both type and semantic transforma-
tions. Although this prototype has demonstrated our
framework in action, we have not yet deployed it on
alarge scale. A full evaluation of the system requires
that we examine how transcoders from a variety of
sources interact and whether the type and property
ontologies we have described are adequate. Further-
more, in an operational environment performance
is bound to be an issue. It is possible, for example,
that a heuristic search would be needed to construct
the chains of transcoders because a simple depth-
first or breadth-first search might be too time con-
suming. Another performance issue concerns the in-

190 HDE ET AL.

dividual transcoders themselves. Though we cannot
improve the performance of transcoders supplied by
third parties, it may be necessary to take into account
the relative performance of individual transcoders
while constructing the chains so that we can choose
between two equivalent chains on the basis of per-
formance.

Conclusion and future directions

In this paper, we have described a framework and
an intermediary-based implementation for transcod-
ing. Our approach is flexible because our framework
can be used to seamlessly combine a set of transcod-
ing operations in a way that guarantees conversion
from arbitrary input formats to arbitrary output for-
mats. Moreover, by locating transcoding at the in-
termediary rather than at the server or at the client,
our approach enables content conversions that have
not been anticipated by the owner or creator of the
data. The result of formalizing our framework is that
we can combine type transformations with semantic
transformations to express a rich set of transcoding
operations in a uniform way. Because many types of
transformations can be expressed in the same lan-
guage, it is simply a matter of performing a search
and then combining the selected transcoding oper-
ations.

There are many opportunities for future work. Our
architecture does not currently support certain com-
putational optimizations. The framework could be
extended to allow transcoders to advertise the qual-
ity of their output or their consumption of comput-
ing resources. This would enable the transcoding en-
gine to do a better job of optimizing the data flow
through a series of transcoders.

Another direction is to more carefully consider the
details of how the master transcoder derives the path
through the pool of available transcoders. One can
imagine many situations in which more than one
chain of transcoders might satisfy a request. How
does the master transcoder decide which path to
take? Dynamic measurements of the past perfor-
mance of each transcoder could be considered, or
information as to whether type or other conversions
are known to be lossy.

In addition, many enhancements can be made to the
language that describes transcoder capabilities and
requests. A more expressive way of describing pat-
terns might be useful, for instance, one that enables
the system to match ranges of numbers. Currently,

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

each transcoder is free to choose any name it wishes
for the properties specified in its input and output
formats, leading to the possibility of name space col-
lisions. A mechanism for avoiding such collisions is
needed, such as creating a standard ontology for
properties.

Finally, the very notion of transcoding raises many
intellectual property issues. For example, is it legal
to change the format of content owned or copy-
righted by others? It is possible that the formal type-
transforming and property-transforming distinctions
made in our transcoding framework can be used in
determining whether copyrighted content has actu-
ally been modified. Though such legal issues are
clearly beyond the scope of this paper, we feel cer-
tain that these will be addressed by legislatures and
courts in the near future, for the legal battle has al-
ready begun: a group of on-line publishers has sought
to stop one transcoding service from modifying its
copyrighted content.?

Acknowledgments

We thank Stephen Farrell and Ralph Case for help-
ful discussions on this topic, Jim Jennings for point-
ing out the need to formalize our transcoding frame-
work, and three anonymous reviewers for many
helpful and insightful comments on the initial ver-
sion of this paper.

**Trademark or registered trademark of Yahoo! Inc., or Palm,
Inc.

Cited references and notes

1. A.Fox, S. D. Gribble, E. A. Brewer, and E. Amir, “Adapting
to Network and Client Variability via On-Demand Dynamic
Distillation,” Proceedings of the 7th International Conference
on Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS-VII), Cambridge, MA, ACM, New
York (1996).

2. A. Fox, S. D. Gribble, Y. Chawathe, and E. A. Brewer,
“Adapting to Network and Client Variation Using Active
Proxies: Lessons and Perspectives,” IEEE Personal Commu-
nications 5, 10-19 (1998).

3. A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and
P. Gauthier, “Cluster-Based Scalable Network Services,” Pro-
ceedings of the 1997 Symposium on Operating Systems Prin-
ciples (SOSP-16), Saint-Malo, France, ACM, New York
(1997).

4. R.J. Glushko, J. M. Tenenbaum, and B. Meltzer, “An XML
Framework for Agent-Based E-Commerce,” Communications
of the ACM 42, No. 3, 106-114 (1999).

5. M. Hori, R. Mohan, H. Maruyama, and S. Singhal, “Anno-
tation of Web Content for Transcoding,” W3C Note, World
Wide Web Consortium (1999). Available at http:
/www.w3c.org/TR/annot.

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. P.N. Tudor and O. H. Werner, “Real-Time Transcoding of

MPEG-2 Video Bit Streams,” IEEE Conference Publication
of International Broadcasting Convention, IEEE, New York
(1997), pp. 286-301.

. J.R.Smith, R. Mohan, and C. Li, “Transcoding Internet Con-

tent for Heterogeneous Client Devices,” Proceedings of IEEE
Conference on Circuits and Systems (ISCAS), IEEE, New York
(1998).

. P.Noble, M. Price, and M. Satyanarayanan, “A Programming

Interface for Application-Aware Adaptation in Mobile Com-
puting,” Proceedings of the Second USENIX Symposium on
Mobile and Location-Independent Computing, Ann Arbor, MI,
USENIX (1995).

. R. Barrett and P. P. Maglio, “Intermediaries: An Approach

to Manipulating Information Streams,” IBM Systems Jour-
nal 38, No. 4, 629-641 (1999).

R. Barrett and P. P. Maglio, “Intermediaries: New Places for
Manipulating and Producing Web Content,” Computer Net-
works and ISDN Systems 30, No. 1-7, 509-518 (1998).

P. P. Maglio and R. Barrett, “Intermediaries Personalize In-
formation Streams,” Communications of the ACM 43, No. 8,
96-101 (2000).

S. Gribble and A. Fox, “Digital Objects with Lazy Fixations,”
University of California, Berkeley (1996). Available at http:
/lwww.cs.berkeley.edu/~gribble/cs294-5_digdoc/project.html.
MIME types are listed at ftp:/ftp.isi.edu/in-notes/iana/
assignments/media-types/.

N. Freed and N. Borenstein, “Multipurpose Internet Mail
Extensions (MIME) Part One: Format of Internet Mes-
sage Bodies,” RFC 2045 (1996). Available at http://www.
rfc-editor.org/rfc/rfc2045.txt.

N. Freed and N. Borenstein, “Multipurpose Internet Mail
Extensions (MIME) Part Two: Media Types,” RFC 2046
(1996). Available at http://www.rfc-editor.org/rfc/rfc2046.txt.
R. Barrett and P. P. Maglio, “How to Personalize the Web,”
Proceedings of the ACM Conference on Human Factors in Com-
puting Systems (CHI *97), ACM Press, New York (1997).
P. P.Maglio and R. Barrett, “How to Build Modeling Agents
to Support Web Searchers,” Proceedings of the Sixth Inter-
national Conference on User Modeling, Springer-Verlag, New
York (1997).

C. S. Campbell and P. P. Maglio, “Facilitating Navigation in
Information Spaces: Road Signs on the World Wide Web,”
International Journal of Human-Computer Studies 50, 309—
327 (1999).

P.P.Maglio and R. Barrett, “Adaptive Communities and Web
Places,” Second Workshop on Adaptive Hypertext and Hyper-
media, Pittsburgh, PA, ACM, New York (1998).

P. P. Maglio and R. Barrett, “WebPlaces: Adding People to
the Web,” Poster Proceedings of Eighth International World
Wide Web Conference (1999).

A. Fox and E. A. Brewer, “Reducing WWW Latency and
Bandwidth Requirements by Real-Time Distillation,” Pro-
ceedings of the Fifth International World Wide Web Conference
(WWW5) (1996).

K. H. Britton, R. Case, A. Citron, R. Floyd, Y. Li, C. Seekamp,
B. Topol, and K. Tracey, “Transcoding: Extending e-business
to New Environments,” IBM Systems Journal 40, No. 1, 153—
178 (2001, this issue).

WBI programming tutorial. Available at http:/www.almaden.
ibm.com/cs/wbi/doc/Programming.html.

News firm sues over wireless access to content, August 8, 2000,
Associated Press (2000). Available at http://www.canada.
cnet.com/news/0-1004-202-2468835.html.

HDE ET AL. 191

Accepted for publication September 26, 2000.

Steven C. Ihde IBM Research Division, Almaden Research Cen-
ter, 650 Harry Road, San Jose, California 95120 (electronic mail:
ihde @almaden.ibm.com). Mr. Thde is a software engineer at the
IBM Almaden Research Center. He obtained a B.S. degree in
computer science from Stanford University in 1995. He joined
IBM Research, where he has worked on an intelligent help sys-
tem, pointing devices, embedded systems, and Web intermedi-
aries.

Paul P. Maglio IBM Research Division, Almaden Research Cen-
ter, 650 Harry Road, San Jose, California 95120 (electronic mail:
pmaglio@almaden.ibm.com). Dr. Maglio is a manager and re-
search staff member at the IBM Almaden Research Center. He
holds an S.B. degree in computer science and engineering from
the Massachusetts Institute of Technology and a Ph.D. degree
in cognitive science from the University of California, San Di-
ego. He joined IBM Research in 1995, where he studies how peo-
ple think about and use information spaces, such as the World
Wide Web.

Joerg Meyer IBM Research Division, Almaden Research Center,
650 Harry Road, San Jose, California 95120 (electronic mail:
Jjmeyer@almaden.ibm.com). Mr. Meyer is a software engineer at
the IBM Almaden Research Center. He holds a diploma engi-
neering degree in computer science from the University of Ap-
plied Sciences in Hamburg, Germany. He joined IBM Research
in 1998, where he completed his diploma thesis about P3P. Since
graduating in 1999, he has worked on WBI, XML transcoding,
and search and indexing problems.

Robert Barrett IBM Research Division, Almaden Research Cen-
ter, 650 Harry Road, San Jose, California 95120 (electronic mail:
barrett@almaden.ibm.com). Dr. Barrett is a research staff mem-
ber at the IBM Almaden Research Center. He holds B.S. degrees
in physics and electrical engineering from Washington Univer-
sity in St. Louis, and a Ph.D. degree in applied physics from Stan-
ford University. He joined IBM Research in 1991, where he has
worked on magnetic data storage, pointing devices, and Web in-
termediaries.

192 HDE ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

