Application hosting
for pervasive
computing

This paper reviews the impact that the emerging
pervasive “sea of devices” may have on the task
of service provisioning and introduces Whale, an
architecture that enables an application not only
to vary the format of the content generated for
each particular device, but also allows the
author to define a device-specific view on the
application’s data and features, thus providing
optimal application interaction for each device.
Whale achieves this through the strict separation
of content presentation from content generation,
using JavaServer Pages™ and JavaBeans™
technologies, and by creating Whalelnvoker as
an enhancement of WebSphere™, which
dynamically selects and executes the appropriate
combination of JavaServer Pages and JavaBeans
to satisfy a data request from an end-user
device. The paper also describes the first
commercial deployment of the Whale
architecture —Swissair’s Easy Check-In service.

Pervasive computing enables a broad range of
end-user devices to access data and applications
on servers, much like today’s PC (personal computer)
access to HTML (HyperText Markup Language)
sources across the Internet. However, these new form
factors differ from the conventional HTML-centric PC,
not only with regard to their input and output ca-
pabilities, but also, and more significantly, in the way
they interact with the user. This includes alternative
modalities (such as voice) as well as alternative us-
age patterns (such as mobility). The common fea-
ture among those devices is their browser-centric ar-
chitecture: content is transmitted from the server to
the client in the form of a marked-up document, and
all interaction between the users at the client device
is orchestrated through a user-interface that, although
controlled by the server through the marked-up doc-

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

0018-8670/01/$5.00 © 2001 I1BM

by S. G. Hild
C. Binding
D. Bourges-Waldegg
C. Steenkeste

ument, is generated and maintained by a browser
program that is independent of the server and its ap-
plication and resides permanently on the device. The
user interface itself is not necessarily display-based,
but may very well be a voice interface. Such browser
devices are also frequently referred to as “thin” cli-
ents, not because the browser infrastructure on the
device is necessarily thin or the device is compact in
size or has limited storage or memory, but because
the application is maintained exclusively on the
server. Apart from simple caching, no aspect of the
application is resident on the client beyond individ-
ual request-reply boundaries.

In this paper, a review is given of the impact that
this pervasive “sea of devices” may have on the task
of service provisioning, and the Whale prototype is
introduced, an architecture that enables an applica-
tion not only to vary the content format generated
for each particular device, but also allows the au-
thor to define a device-specific view on the applica-
tion’s data and features, thus providing optimal ap-
plication interaction for each device.

Whale acts as a bridge between the user’s receiving
device on the one side and an application server’s
back-end data sources on the other. The back-end
data sources may be transaction engines, in which
case Whale provides a suitable access “window” into
those transactions, allowing the user to select among

©Copyright 2001 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

HILD ET AL. 193

the offered transactions, enter the relevant param-
eters, trigger those transactions, and retrieve the re-
sulting data sets. Alternatively, the back ends can
merely be plain data sources (such as databases, data
warehouses, news feeds, etc.), in which case Whale
serves in addition as the hosting platform for the ac-
tual logic of the application. The JavaServer Pages™*
(JsP**) mechanism has been selected to drive the
overall Whale application architecture. JSP pages po-
tentially have a number of advantages over the com-
mon stylesheet approach. The most relevant of these
is their ability to poll the application logic from within
the output template; if suitably used (not necessar-
ily in the way the JSP specifications advertise their
usage), then one can guarantee that only the appli-
cation logic for a specific device is being executed.
Whale also enables the separation of the JSp-based
content presentation and the bean-based content
generation by introducing the WhaleInvoker, which
dynamically selects and executes the appropriate
combination of JavaServer Pages and JavaBeans™*
to satisfy a data request from an end-user device.

The paper concludes with a summary of the history
of, and the experience gained from, the first com-
mercial deployment of the Whale server infrastruc-
ture—Swissair’s Easy Check-In service.

Sailing the “sea of devices”

Today the World Wide Web revolves around brows-
ers running on bulky, mostly stationary, desktop per-
sonal computers, rendering a content format known
as HTML.! This dominance is about to end: a large
number of diverse, browser-based user devices are
emerging that are using an almost equally large num-
ber of diverse content formats, communication pro-
tocols, and user interfaces. HTML, a derivate of SGML?
(Standard Generalized Markup Language), has, in
its brief history, spawned a number of derivatives for
alternative form-factor devices as well as alternative
uses. None of these derivatives, however, managed
to gather sufficient momentum to become a threat
to HTML. More recently, focus has shifted away from
the markup languages to alternative form-factored
devices. It is these devices that are now driving the
requirements for markup languages and are demand-
ing adapted versions of HTML. Such form factors dif-
fer from the conventional HTML-centric devices, such
as PCs, not only with regard to their input and out-
put capabilities, but also, and more significantly, in
the way they interact with the user. This includes al-
ternative modalities (such as voice) as well as alter-
native usage patterns (such as mobility). Some of

194 HiLD ET AL

those devices are depicted in Figure 1. The common
feature among these devices is their browser-centric
architecture: content is transmitted from the server
to the client in the form of a marked-up document,
all interaction between the users at the client device
is orchestrated through a user-interface that, al-
though controlled by the server through the
marked-up document, is generated and maintained
by a browser program that is independent of the
server and its application and resides permanently
on the device. The user interface itself is then not
necessarily display-based, but may very well be a
voice interface, controlled for example by VoiceML?
(Voice Markup Language) documents. Such browser
devices are also frequently referred to as “thin” cli-
ents, not because the browser infrastructure on the
device is necessarily thin or the device features only
compact hardware, or limited storage or memory,
but because the application is maintained exclusively
on the server—apart from simple caching, no aspect
of the application is resident on the client beyond
individual request-reply boundaries.

Such applications have several advantages: no client-
resident part needs to be maintained or managed,
which in turn allows the application to be upgraded
easily by upgrading only the server; the client is ro-
bust because the application’s state and data can eas-
ily be regenerated from the server side; and the
browser, through the markup language, provides to
the application programmer a high level of abstrac-
tion from the hardware and software details of the
end-user device. On the down side, any application
interaction must be exercised between the client and
the server, which, depending on the latency of the
network involved, may prove slow. This can be rem-
edied, to some extent, through a local scripting ca-
pability, which is supported by most browsers and
enables at least some level of dynamic content gen-
eration on the client.

Taking such scripting capability to the other extreme,
“thick” clients are based merely on such a capabil-
ity. Instead of the browser, a more or less generic
client execution environment provides application
support on the device. Application developers can
program for such an execution environment and,
within that environment, are free to organize the user
interaction as well as the interaction with the server-
resident part of the application (if any). It should be
obvious that such programming models give the pro-
grammer maximum freedom to generate the “look
and feel” of the application, albeit at the price of
having to develop the software for the particular pro-

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

Figure 1

Sailing the “sea of devices.” Shown here (clockwise from top left) are smartcards as an example of a pervasive

authentication token, IBM's Watchpad (two images), an IBM wearable computer prototype, the Palm Pilot™ as
an example of a connected personal digital assistant, two IBM microdrives, and two i-mode smart phones.

DIGITAL

gramming model provided by a specific device in-
frastructure. General-purpose development plat-
forms, such as the Java** virtual machine and its
environment of libraries and utility functions, at-
tempt to provide execution environments that have
applicability across device boundaries. What seems
to prove difficult is to provide a generic API (appli-
cation programming interface) to the device-inter-
action aspects of the device. A compromise must be
found between granting applications tight control
over the display and input features of the device,
while at the same time shielding them from too many
device-specifics. Both Java’s Swing and Abstract
Windowing Toolkit (AWT) attempt to provide such
an interface and, whereas both have succeeded in
some aspects, they fail in others: Swing is big and
slow, AWT is low level. Both approaches are also in
danger of enforcing a particular look and feel, hence
reducing the freedom bought by the application pro-

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

grammer by not using browser infrastructure on the
device. In that respect, these user interface libraries
are very similar in their device-abstraction levels to
browsers and do not, in effect, provide a significantly
higher level of control over the user interface char-
acteristics or interaction with the applications. (For
more details on Java technology, see Reference 4).

In summary, the overwhelming success of the brows-
er-centric World Wide Web is a strong endorsement
of the thin-client approach. However, with scripting
capabilities being added to many browsers and with
browsers growing in terms of capabilities and per-
formance, the boundaries are beginning to blur. Lo-
cal device storage, once a premium, is now cheap
enough to enable much larger quantities of data to
be held locally than could reasonably be downloaded
over some ubiquitous (e.g., mobile) communication
networks. Application models make use of such lo-

HILD ET AL. 195

cal storage by embedding microservers into the de-
vice itself, which may be regarded as proxies for the
server on the browser device.

Browser performance may also play a role in decid-
ing between the two models. As of now many brows-
ers are much slower for some applications (such as

Enabling server-based
applications to support
a “sea of devices”
is a complex endeavor.

games) than native GUI (graphical user interface)
programming and provide a much higher level of ab-
straction between the application and the display.
Applications that require close control over the
display and/or high interaction speeds with the
user/server stretch the capabilities of some of today’s
browsers.

Concepts in service provisioning

Enabling server-based applications to support a “sea
of devices” is a complex endeavor. The variety of de-
vices and browser infrastructures require dedicated
gateways and application servers on all three levels
of the application/communication stack: the “pro-
tocols” layer that provides the rudimentary commu-
nications primitives, the “application” layer that
makes use of such communications, and the “ses-
sion” layer that is the glue between the two.

As far as the protocols layer is concerned, commu-
nication is accomplished primarily using the TCP/IP
(Transmission Control Protocol/Internet Protocol)
suite of protocols,® conveyed by standard bearer net-
works such as Ethernet or token ring in the wired
world, and cCDMA (Code Division Multiple Access),
and in the future GPRS (General Packet Radio Ser-
vice), in the mobile/wireless world. However, islands
of alternatives do exist, in particular in the mobile
area. Notable here is the WAP (Wireless Application
Protocol) suite of protocols,® the WAP Datagram Pro-
tocol (WDP) and the WAP Transaction Protocol
(WTP), where the first is essentially User Datagram
Protocol (UDP), the latter a reincarnation of the
“transactional TCP.”” Most existing wireless cellular
communication systems also implement proprietary
communication stacks; i-mode,® the Japanese com-

196 HILD ET AL

petitor of WAP, for example, uses the datagram ser-
vice built into the Japanese personal digital commu-
nication (PDC) cellular system, which is itself based
on an earlier cordless standard. Bridging between
such proprietary systems or WAP to standard TCP/IP
is possible only when protocol conversion is involved.
However, with some standards such conversion usu-
ally impacts the security layers that are employed in
such systems. WAP, for example, specifies its own se-
curity layer WTLS (Wireless Transport Layer Secur-
ity), which is placed between WDP on one side and
WTP on the other. Conversion above the WTP layer
then requires that the secure session be terminated
at the bridge and thus interrupts the end-to-end se-
cure session between the client and the server.
Hence, the bridge must be a part of the server in-
frastructure and cannot be a function that is rele-
gated to a telecom or Internet service provider (ISP).
Figure 2 shows a typical WAP setup, including the
bridging function into the wired TCP/IP world.

On the application level, the browser and the client
application execution environment differ both in syn-
tax and semantics: from a syntax point of view, the
Internet is currently centered around HTML. HTML
started as a simplification of SGML and has since
grown organically into something that is probably
more complicated and certainly less structured—so
much so that a subset of HTML has emerged, i.e.,
Compact HTML® or cHTML, which is used for i-mode
among other things. The Wireless Markup Language
(WML),' on the other hand, was specified for WAP
and is based on an XML"' (Extensible Markup Lan-
guage) document type definition (DTD), which at
least ensures some level of commonality to other
XML-based content representations. Semantically,
cHTML is a true subset of HTML, whereas WML was
developed specifically for a particular use (the smart
phone) and thus has a range of features that are use-
ful in this domain, such as built-in support for soft
keys, the notion of “cards” to segment content into
small renderable units, and a range of tools to nav-
igate between such cards. This variety of content for-
mats is supplemented by an equally broad range of
scripting and programming environments that are
featured in such devices (e.g., HTMLScript for
HTML-based devices, WMLScript for WML-based de-
vices, and so on).

Finally, on the session level, much browser interac-
tion is now accomplished with HTTP'? (HyperText
Transfer Protocol) 1.1-compatible service primitives,

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

Figure 2 WAP protocol stack and browser (on the right) together with the WAP gateway (middle) bridging to a
conventional TCP/IP-based wired network connection and an HTTP server (on the left). All protocol layers are
shown, including the security layers (SSL on the wired side, WTLS on the WAP side). Note the “mismatch”
of layer functions on the WAP side!

o
L
N &
= z =
5| ¢ 3
o = <) O
N o <D
== | o
S35 s SE
=0 = =Z
‘ WML SERVER ‘ WAP GATEWAY WML BROWSER
HTTP HTTP ’ WsP ‘ ’ R ‘
SsL sEL peaeEEs o
1
I ’ WTP ‘ ’ WTP ‘
TCP TCP f
1
e | wis | [wns |
[wer | [|
’ IP BEARER NETWORK ‘ ’ WIRELESS BEARER NETWORK ‘

e.g., GET, PUT, etc. The HTTP traffic itself is often
transmitted in plain ASCIT (American National Stan-
dard Code for Information Interchange), such as in
the conventional “wired” Internet; WAP, on the other
hand, specifies an otherwise compatible binary en-
coding mechanism called Wireless Session Protocol
(WsP)." Among other standards, WsP also features
an extension to HTTP 1.1 to enable push communi-
cation from the server to the client.

Switching from the client side to the back-end side
of a WAP or Web application, the variance is equally
broad. Very few of the data that are currently ac-
cessible through the Internet in HTML form are ac-
tually stored in that form. Typically, back-end da-
tabase systems and data warehouses are accessed
through a sometimes complex chain of data process-
ing systems. The conversion of the resulting data set
into HTML, the “front-ending,” is logically the last
step before the data are transmitted to the client de-
vice. However, many of the existing services have

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

grown over time; nowadays, one is frequently faced
with back-end systems in which the logic of the ap-
plication is no longer architecturally separated from
the front-ending into the required client format. One
simple example of such a setup is the popular CGI
(common gateway interface) scripting mechanism.
Here, HTML content is generated dynamically as a
side effect to processing an incoming HTTP request
for data. This is accomplished essentially by calling
an executable component that is expected to gen-
erate HTML as its output. From an architectural point
of view, such a setup is less than desirable because
there are no enforceable specifications with regard
to the exact inner working of such scripts. Many such
scripts mix freely the generation of the output HTML
with the application logic itself. It is no surprise that
such a setup complicates the addition of support for
alternative device types, where the front-ending step
needs to be modified, because such modifications
must occur between the application logic and the cli-
ent and may not even be isolated in one particular

HILD ET AL. 197

script or component, but must occur throughout the
entire data chain.

Although there exists a growing but still limited num-
ber of standards for the overall back-end architec-
ture, capabilities, and setup of the client devices and
client infrastructure, the IT (information technology)
shops of application service providers tend to differ.
Standard products and infrastructure elements are
still being employed, such as TCP/1P and MQSeries, '*
CORBA** ! (Common Object Request Broker Ar-
chitecture**), or any of the RMI/RPC'® (Remote
Method Invocation/remote procedure call) solutions
for interprocess communications; Java or servlet!’
execution environments such as JServ'® or I1BM’s
WebSphere* As" (application server) for hosting
logic elements; and data connectors using SQL”
(Structured Query Language) for database access or
DOM?* (Document Object Model) for data exchange.
However, their interconnections and the distribution
of functionality of the entire application among the
various infrastructure elements remain proprietary
and specific to each installation.

Given the huge investments that each of those in-
frastructures represents, it should be little surprise
that application service providers are tempted to pro-
long the lifetime of that infrastructure as long as pos-
sible. In particular, adding support for new devices
should ideally be an additive process with as little
impact on the existing application as possible. In
some cases, complex back-end systems cannot be re-
engineered, either because detailed knowledge of the
workings of the system is lost when its designers are
no longer available, or because lengthy modifications
to the back end would inevitably lead to system down-
times that could impact the day-to-day running of
the business (an earlier treatment of this topic can
be found in Reference 22).

The desire to extend services to new pervasive de-
vices with the fewest possible modifications to the
already existing Web infrastructure is, therefore, at
the top of most IT managers’ wish lists. Transcod-
ing, the process of transforming data from one rep-
resentation into another, appears to be an attrac-
tive solution.

Transcoding. Transcoding solutions are not new and
have frequently been employed in the past at the
lower levels of the application/communications stack.
Essentially, transcoding is necessary whenever two
computer systems that are not completely compat-
ible need to communicate (such as a client computer

198 HiLD ET AL

running a browser and a server providing marked-up
content). In particular, transcoding is employed fre-
quently within communication networks to resolve
incompatible packet formats between two different
networks (e.g., SNA [Systems Network Architecture]
and TCP/IP networks) or to resolve symbolic addresses
when a packet is transmitted across the network or
is being routed.

Pushing transcoding up to the higher levels within
the application stack, to the application itself, re-
quires transcoders to operate on the application data,
with much broadened semantic and syntactic con-
tent (see Figure 3 for an example of such a setup).
Leaving aside the security implications for the mo-
ment (which can essentially only be alleviated by as-
suming that the transcoder resides, if not together
with the application server, certainly within the same
security domain), transformations at the application
layer are not easy in the general case. For example,
transcoding an original HTML page that is designed
to be viewed on a desktop PC into a WML version,
which is to be viewed on a mobile telephone hand-
set that may allow 4 lines of 10 characters each, can
hardly be an automatic process. On the other hand,
removing the color information from an image be-
cause the receiving device features only a black-and-
white display is feasible.

The bottom line is that transcoders can be made to
work, but must be “trained,” e.g., by use of exam-
ples, or programmed to execute the desired mod-
ifications. Any change in the back-end system is likely
to require additional programming and training of
the transcoder. The process of programming or train-
ing such a transcoder can be elaborate. (The exact
workings of such transcoder systems are presented
in more detail elsewhere in this issue).

Even with advanced transcoder engines, two prob-
lems still remain. First, transcoders typically oper-
ate on an interaction-by-interaction basis and they
are not usually designed to diverge from this mode.
However, in order to adapt to the characteristics of
the device, it is necessary to modify the data flow
across interactions. For example, consider the very
popular Travelocity? Internet application, which al-
lows users to get quotes for and purchase airplane
tickets, as well as to make hotel and rental car res-
ervations. The airline reservation application re-
quires about seven mouse clicks from entering the
Travelocity site to making the final purchase (assum-
ing the user has already signed up for the Traveloc-
ity service, which itself takes many more interactions

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

Figure 3

“Mission impossible”? A transcoder translates existing content formats into whatever format is required.

In practice, transcoders require programming and training to accomplish this feat and limitations still remain.

CLIENT GATEWAY "TRANSCODER" LEGACY SERVER
INFRASTRUCTURE

ON REQUEST:

HTML,

WML,

CHTML, L

[\ L " 89 HTML
o

i

but needs to be done only once). A transcoder sup-
porting this service on a mobile personal digital as-
sistant (PDA) device could, with some programming
or training, translate the relevant HTML pages into
a suitable format for the mobile PDA, but it would
still deliver seven HTML pages that need to be nav-
igated. Ideally, one would expect the flight-booking
application for the mobile device to require fewer
interactions, perhaps by sacrificing some of the less
frequently used options, by using a more elaborate
customer profile, or by employing location informa-
tion to “guess” certain parameter values and thereby
streamline the data flow. If a user wishes to purchase
an airplane ticket using a mobile device, one might
reasonably assume that the request is urgent (oth-
erwise why not use a more convenient Web inter-
face?) and infer that the departure city is the user’s
current location.

Second, transcoders usually support existing services.
If the new devices require or permit new services or
forms of interaction, transcoders have difficulty sup-
porting them. One good example is the “push” ca-
pability that many pervasive devices support, a fea-
ture that is by and large rare in the existing
Internet/Web world. Although this feature is some-
times highly valued (for the above-mentioned travel
service, push is the ideal way to notify a passenger
of flight delays), if the back-end systems do not al-
ready support push features, it might be difficult to
imbed these in a transcoder.

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

Inview of these disadvantages it is not surprising that,
over time, many solutions that originally started as
“plain” transcoders have evolved into full-fledged ap-
plication platforms, with the transcoder no longer
merely performing transformations on data, but also
executing application-specific logic to those data to
enhance the interaction pattern of the application
for the target device, or adding new features such
as push functions to a legacy application. One might
view this, of course, as a natural development, but
in effect it is adding logic to the back-end system and
thereby adding to the fragmentation of logic across
the various components. Furthermore, it is question-
able why such applications should process data for-
matted for other front ends rather than access the
data at their source. Once this has been achieved,
a transcoder has fully mutated into an additional ap-
plication platform (next to the original server), not
unlike a dedicated server.

Dedicated device-class infrastructure. A dedicated
device-class infrastructure consists of a replica of any
existing Web back end, with modified front-end gen-
erators for alternative content format, and poten-
tially augmented application logic and behavior to
accommodate device characteristics such as input,
output, browser capabilities, and usage patterns.
Dedicated servers may be put in place for alterna-
tive device classes, such as a dedicated WML server
for WAP phones—hence the term dedicated device-
class infrastructure (see Figure 4). Providing such in-

HILD ET AL. 199

Figure 4 Service provisioning through dedicated servers for each device class

CLIENT GATEWAY

£/

|

mmm=

=== 2 0
L9

="

—

frastructure for each device class is frequently the
fastest way to accommodate a new device class; as
outlined above, it is often much quicker to provide
a completely new front-end generator with special-
ized back-end functions, than to accommodate new
front-end requirements within the existing front-end
infrastructure.

Many service providers have resorted to such an ar-
chitecture, most of them fully aware that it can, at
best, be a temporary solution before a complete “in-
tegration” can be achieved. In the meantime, such
a setup helps establish market share and gain that
all-important “first-mover” advantage. It also enables
services to be nicely tuned to the particular charac-
teristics of the individual device class, allowing de-
vice-specific service provisioning. Unfortunately,
those advantages are often more than offset by the
cost of installing and maintaining such back-end in-
frastructure. Any new device class requires compar-
atively high startup costs and continuous mainte-
nance thereafter: any new feature or update that gets
rolled into such an application must be added to each

200 HLD ET AL

DEDICATED SERVERS LEGACY DATA
BACK END
Ej Mﬂﬂﬂm HTML
(I
(I
CHTML
I S

(I
I

-

I
[

dedicated server separately for each device class. As
device manufacturers show no signs of slowing the
pace of developing new devices and device classes,
the number of such “dedicated server infrastruc-
tures” should necessarily grow rapidly and quickly
become unmanageable. Furthermore, even within
each device class, different device models show suf-
ficient differences in capabilities and user interface
to necessitate slightly augmented service offerings
for each version, further adding to the burden by re-
quiring additional specialized servers.

Rehosting the application. The preceding discussion
raises the question of how application service back
ends can be re-engineered to allow their services to
be accessed from a variety of different browser-based
end-user devices. The requirements for this appli-
cation “rehosting” seem daunting. The application
server has to identify the type and version of the re-
ceiving device; the output that is being generated in
the “front end” has to be adapted to the class of de-
vice—i.e., a different markup language (HTML, WML,
cHTML) must be chosen depending on the device

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

Figure 5 Content provisioning through a server for pervasive computing (the PvC Server) that differentiates between
available content logic and device-dependent front ends, thus providing adapted and usable services to all
device classes from within a single-server architecture

CLIENT GATEWAY

browser. The exact content of each page must be aug-
mented depending on the device model because
screen size and display capabilities vary among dif-
ferent models of the same device class (see Figure
5). The application flow must be modified in accor-
dance with the overall device characteristics and us-
age models. Finally, individual features of the ap-
plication may be exposed or hidden, depending on
the browser’s ability to handle them (for example,
push functions).

It should be obvious that fulfilling all these objec-
tives requires significant modifications to the server
and back-end infrastructure. In essence, it requires
a solution to the above-mentioned problem, the lack
of a clear architectural distinction between the ap-
plication logic, the data, and the presentation of those
data, i.e., the front-end user interface. In many cases
HTML is used to convey all these three elements,
amalgamated into a single text stream. Indeed, it
must be considered one of the major failings of HTML
that data content and data representation are not
separated. As mentioned above, due to the organic
growth of many server back-end infrastructures, such
separation was rarely realized. Within the IETF** and
Ww3C,® the two standard bodies largely responsible
for the development of Web technology, several ef-
forts have recently gone a long way toward provid-

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

PvC SERVER LEGACY DATA
BACK END

APPLICATION
FRONT- LOGIC
END

HTML
ﬂ

END |] 8

FRONT- |||
CHTML

FRONT-

ing the technological foundation to achieve such a
separation. Some of the most relevant of those tech-
nologies are being developed under the auspices of
the XML working groups.

The XML effort comprises a number of specifications,
in particular the XML metalanguage for specifying
markup languages, Extensible Stylesheet Language®
(xsL) and Extensible Stylesheet Language Transfor-
mations?’ (XSLT) to manipulate XML data sets and
potentially create front-end generators.

The syntax of a language to be specified using XML
is contained in the so-called document type defini-
tion (DTD). Various such concrete languages have
already been specified using XML, among those
VoiceXML? and WML'® of WAP.

Yet another popular mechanism for dynamically
generating content in some markup language with-
out mixing the particular syntax of that language with
the generation of the dynamic content is JavaServer
Pages® (JSP).

JSP pages/beans. JSP pages control the content of
the HTML pages sent to the client. JSP pages contain
an escape syntax used to include Java code fragments
and, in particular, JavaBeans property access meth-

HILD ET AL. 201

Figure 6 A sample JSP, accessing a bean representing a set of train connections and rendering these connections in

WML syntax

<%@ content_type="text/vnd.wap.wml" %>

<bean name="Connections" type="com.ibm.zrl.Connections"

introspection="yes" create="yes"></bean>

<?xml version=1.07>

<IDOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"

"http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>
<template>
<do type="prev">
<prev/>
</do>
</template>

<card id="Train connections">
<p>
Results:
<repeat index=i>

From: <%= Connections.getFrom(i) %>

To: <%= Connections.getTo(i) %>

=
</repeat>
</p>
</card>
</wml>

ods. For example, the JSP compiler contained in IBM’s
WebSphere AS uses “<%@” and “%>" to encap-
sulate compiler directives, “<%="and “%>" to in-
dicate accessor methods that must be evaluated, and
“<%?” and “%>" for arbitrary Java code fragments.

The JSP page compiler translates these templates into
Java servlets whose generated output consists of the
markup data into which the string-type values of the
referenced JavaBeans properties are inserted; this
step may either be carried out during preprocessing
(at install time of a JSP on the server), or the first
time a JSP is being requested from the user device.
Any subsequent call to the same JSP will simply in-
voke the generated servlet code; hence, the perfor-
mance impact of having to execute the JSP compi-
lation is of consequence only the first time a JSP is
requested.

JavaBeans® are Java components that provide a cod-
ified set of access methods to set and get the values
of properties. The bean’s properties have names, and
the naming convention for access methods is to con-
catenate the operation with the property name. For

202 HILD ET AL

example, a bean property “prop” would be accessed
through access methods getProp(), which by com-
mon definition would return a Java “String” object.
Setting the value of “prop” is through method
setProp(String value). Properties can also represent
an array of values; this is termed “indexed proper-
ties,” for which the access methods take an additional
indexing parameter. Indices that are out of bounds
are indicated by raising the Java exception Array-
IndexOutOfBoundException.

One inherent feature of the JSP/bean model is in-
trospection. At call time, every argument that is
passed to the URL (uniform resource locator) in the
HTTP-typical name-value fashion is interpreted as a
set-Property call to the underlying beans behind the
requested JSP. Hence, bean properties can be explic-
itly set by passing appropriate argument strings to
the URL call itself. A simple example of a JSP and
a corresponding bean is provided for illustration pur-
poses in Figures 6 and 7.

From the application developer’s point of view, JSP
combined with such JavaBeans divide the applica-

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

Figure 7 A skeleton implementation of Connections.java. Properties may be set by using the introspection feature
of JavaBeans; for example, if the JSP resides on the local host as train.jsp, connections from “New York” to
“Boston” may be retrieved by sending: http://localhost/train.jsp?FROM=NewYork&TO=Boston.

class Connections {
// properties for desired itinerary
String origin, destination;
// indexed properties for possible train times
String[| from, to;
// itinerary current?
boolean current = false;

// accessor methods for desired itinerary;
void setFROM(String f) { origin = f; };
void setTO(String d) { destination =d; };

// accessor methods for actual itinerary; db request as side-effect
String getFROM(int i) throws java.lang.ArraylindexOutOfBoundsException {

if (lcurrent) {

getConnections(); // go to train db, get connection information, fill arrays from[] and tof]

current = true;

return from[i];

}
(]

tion into the user interface aspects embodied in the
JSP pages’ markup and the data access encapsulated
in the JavaBeans’ components. How a given bean
obtains the actual values for its properties is entirely
open to the bean implementor; the entire Java lan-
guage and its supporting APIs can be used to embed
application logic as well as access logic. A more mod-
ular design of the application thus becomes possi-
ble with the well-known advantages of modulari-
zation, such as reuse of components, ease of
maintenance, etc. Authoring tools have been devel-
oped that allow such JSP templates to be generated
in an essentially WYSIWYG (what-you-see-is-what-
you-get) manner.

Whale

“Whale” is the name of a research project at IBM’s
Zurich Research Laboratory, and is a loose fit to the
more descriptive name “Wireless Application Host-
ing Environment,” although the scope of the proj-
ect soon expanded beyond wireless receiving devices.
Whale is an attempt to provide an execution envi-
ronment for applications that can correctly interact
syntactically and semantically, with a large set of

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

browser-based receiving devices. Whale started in
early 1999; the approach taken has proved its valid-
ity in a well-publicized project with Switzerland’s na-
tional airline Swissair, which now offers a WAP-based
check-in service to selected customers using a Whale
application server in the back end. In this and the
next section of this paper, the Whale architecture
and the Swissair application are introduced.

Whale architecture. Whale can be viewed as a bridge
between the user’s receiving device on the one side
and an application server’s back-end data sources
on the other (see Figure 8). The back-end data
sources may be transaction engines, in which case
Whale may simply provide a suitable access “win-
dow” into those transactions, allowing the user to
select among the offered transactions, enter the rel-
evant parameters, trigger those transactions and re-
trieve the resulting data sets. Alternatively, the back
ends can merely be plain data sources (such as da-
tabases, data warehouses, news feeds, etc.), in which
case Whale serves in addition as the hosting plat-
form for the application logic. Common to both con-
figurations is the need to provide a single commu-
nications platform to the set of receiving devices.

HILD ET AL. 203

Figure 8 The Whale server attempts to enforce a clean separation between device-independent application logic and
device-dependent front ends by adding the Whalelnvoker component and the MetaBean component.

WHALE

MARKUP GENERATION

BOOKING
WML
JSP

BOOKING

APPLICATION LOGIC

FLT
BOOKING

METABEAN

N HTML
JSP
USER ’ WHALEINVOKER
DEVICE
: ’ WEBSPHERE AS

’ IBM HTTP SERVER

———!

CONTENT
SOURCE

HI

JDBC

[|
N |
= = ==]

This communications platform is provided using the
HTTP protocol layer as a common abstraction. As
pointed out above, HTTP is already widely used in
many Web-based client/server systems. When HTTP
derivatives are used (as in WAP, which uses WSP, a
binary version of HTTP), there is a clear mapping to
HTTP primitives, except for features, such as “push,”
that have no clear counterpart in HTTP. Here, the
common solution is to overload HTTP directives and
add header field information.

Whale is, therefore, based on the conventional set
of IBM middleware products, in particular the eNet-
work Wireless® product suite, which already sup-
ports a large number of network-proprietary com-
munication standards and bridges those into TCP/IP,
together with the required remote access functions,
such as RADIUS* or other third-party provided au-
thentication services.

204 HLD ET AL

eNetwork Wireless has recently been completed with
the necessary bridging functions to operate as a gate-
way for WAP, thus also providing a bridge to HTTP.
Security is provided here in the low levels of the pro-
tocol stack, either in the form of WTLS for WAP, or
SSL* (secure sockets layer) or IPSec® for TCP/IP. Ses-
sions are identified in a manner that is specific to
the underlying bearer service, and may be based on
the source address of the incoming requests (e.g., in
the case of IP connections, or on equivalent packet-
based mobile links, such as GPRS- or CDMA-con-
nected mobile clients), caller-line identification (e.g.,
with circuit-switched dial-up links), or application-
level cookies if supported. It is specific to the Whale
setup that a session can also be identified based on
header information carried with incoming requests,
i.e., packaged as “application level” data. This fea-
ture has been added to counter either the lack of
support for similar services from the network oper-

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

ators, or the great variety in which such support is
granted by different network operators. In addition,
many of the existing client authentication schemes
do not operate under all conditions; caller-line-iden-
tification information, for example, does not travel
beyond the boundaries of the home network. Mo-
bile users that have roamed into an alien network
can therefore not be authenticated using such a fea-
ture.

Once established, the session information is contin-
uously updated and made available to the applica-
tions sitting on top of the middleware either through
a session database or additional header fields that
are carried across the HTTP API. In the future, user
and session management functions will be developed
further and APIs provided for third-party subscriber
management systems or Tivoli’s “TSM.”**

Once an incoming call has been identified and ac-
cepted, the incoming application level data are car-
ried through the HTTP API to a standard set of Web-
hosting products, such as IBM’s HTTP server and
WebSphere AS (application server). It is at this ap-
plication level that Whale diverges from most con-
ventional server configurations. Here, Whale aims
to provide a framework for application developers
that forces the developer to clearly and cleanly sep-
arate the two fundamental elements of a server ap-
plication—the application logic on the one side, and
the generation of the user interface and the data rep-
resentation on the other. It is worth noting at this
stage that Whale allows applications to be triggered
using the same URL for any device; application ser-
vice providers want to be able to advertise a single
URL rather than one for each device type.

In deciding on the fundamental technology to pro-
vide that separation, the decision has been taken not
to use “style sheets.” Style sheets are essentially ap-
plied to previously generated data sets to generate
a device-dependent representation of such set. The
problem with this approach is that such a data set
must be generated up front; this is usually accom-
plished through some programmed application el-
ement, typically a servlet. If that servlet is device-
neutral, it must implicitly assume the richest possible
client device, and completely “fill” the data set. In
practice, this may mean that a travel application, for
example, generates a rich data set about some travel
destination, including pictorial and video data about
ajourney’s destination. If browsed from a powerful
desktop device, the entire data set may be available
once a suitable representation is generated by an

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

HTML style sheet. However, if the same request was
made from a much simpler WAP-capable cellular
handset, a different style sheet is applied that prunes
much of the data, maybe 99 percent of the gener-
ated data volume. In such a setup the load on the
server is not correlated to the data requirements of
the receiving device—on average, the server gener-
ates more data than are required.

Alternatively, the servlet may, of course, implement
logic to differentiate between receiving devices and
then augment its data-generation behavior as appro-
priate. In that case, however, the servlet is no longer
device-neutral and the implementor is again forced
to mix device-dependency with the application logic
inside that servlet. Supporting additional device
types, then, requires fundamental changes to the en-
tire application stream.

Instead, the ISP mechanism has been selected to drive
the overall Whale application architecture. JSP pages
potentially have a number of advantages over the
style-sheet approach. The most relevant of those is
their ability to poll the application logic from within
the output template; if appropriately used (not nec-
essarily in the way the JSP specifications advertise
their usage), then one can guarantee that only ap-
plication logic that is relevant to a specific device-
dependent markup is being executed. Second, JSP
pages can be authored easily using existing author-
ing tools and provide an intuitive framework to en-
code the application’s user interface by virtue of spec-
ifying the menu structure through which the
application’s logic is made accessible.

Consequently, Whale uses JavaBeans or Enterprise
JavaBeans** for the logic aspects of the application.
As pointed out above, those beans either improve
application logic directly, or act as wrappers and ac-
cessor methods to databases or transaction systems
in the back end of the application service provider.

However, the standard JSP mechanisms do not fit the
bill entirely for two reasons: first, they are tied to
specific URLs—different JSP pages for two different
device types will also have two different URL ad-
dresses. Second, the JSP syntax requires a compar-
atively tight coupling to the application logic com-
ponents, the beans. Although not a concern per se,
this requires that JSP templates need to be “touched”
whenever the configuration of the application logic
changes, and vice versa. Whale, on the other hand,
aims to provide enough separation to update and
modify the application logic without requiring ad-

HILD ET AL. 205

Figure 9 The Whalelnvoker analyzes the incoming requests and attempts a classification of the device. The requested URL

is then rewritten according to the device classification.

http://pagr/abc.html.jsp

http://par/abc.chtml.jsp

http://par/abc.wml.jsp

http://pgr/abc.nokia_wml.jsp

http://par/abc.js
P/Ppq ISP > WHALEINVOKER
USER-AGENT
UAPROF L 3
CC/PP
WHALEINVOKER
CONFIGURATION

http://par/abc.ericsson_wml.jsp

ditional changes to the JSP pages and, equally, to up-
date the JSP repository (for example to add support
for a new device), without having to modify the ap-
plication logic. Consequently, in addition to provid-
ing effective tool support for the generation of Java-
Beans (see the subsection on bean tools later), two
components have been added to the WebSphere
environment, which is at the core of Whale, to al-
leviate these concerns. The two components are the
Whalelnvoker and the MetaBean.

Whalelnvoker. The Whalelnvoker replaces the stan-
dard Invoker in the WebSphere environment. It is
the component in WebSphere AS that is presented
with incoming URL requests and has the responsi-
bility to fan those requests out to either the servlet
runner, the JSP compiler, the style sheet interpreter,
or any other execution environment.

The Whalelnvoker has the additional task of gath-
ering the device type information from the request
and redirecting the requested URL to the correct URL
for that device type. The type of device can be iden-
tified using one of three mechanisms. All browsers
today (including pervasive devices’ browsers such as
Palm’s ¢cHTML browser or the WAP-typical WML
browsers) send user-agent information as one of the
standard header fields with every request. It is un-
fortunate that the exact format of that header field
is not specified; by common convention, browsers
encode their type and version as strings. The
Whalelnvoker can match the user-agent field against

206 HLD ET AL

a known set of user-agent fields (fuzzy matches are
also possible) and thus infer the correct device type.
In the future, browsers may also send structured user-
agent information. Two closely related standards ex-
ist for structuring the said information; in the Web
space, the World Wide Web consortium is promot-
ing the composite capability preference profile®
(ccypp) for that purpose. Within the WAP Forum, the
same functionality is achieved using the closely re-
lated User Agent Profile* (UAPROF). Both standards
use the Resource Description Framework* (RDF)
as their encoding base, which in turn is an XML-based
language. One interesting feature of both cC/PP and
UAPROF is that they are hierarchical. Parts of the
complete user agent definition are static and can re-
side on hosts in the Internet; those parts can then
be referenced by a URL from within the actual cc/pp
or UAPROF component, which may also include the
more dynamic parts of the complete profile.

The Whalelnvoker is set up by a configuration file,
which holds a list of all supported device classes and
identifies rules for each one. Once the device class
is known, the URL redirection is executed by simply
rewriting the requested URL. Essentially, a request
to URL “http://pqr/abc.jsp” is augmented by insert-
ing device-type information, for example by rewrit-
ing said request into “http://pqr/abc.wml.jsp” if the
request is coming from WAP devices, or into
“http://pqr/abc.html.jsp” if the request has its origin
on a conventional HTML-based browser (see Figure
9 for an illustration of this process and Figure 10 for

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

Figure 10 A sample Whale configuration file, specifying two device classes. Additional device classes are easily added

using a simple command language.

what kind of device classes we can distinguish:
DeviceClasses=wml,html

actual user agent fields for each device class:
wml=Nokia7110,EricssonR320
html=Mozilla,Netscape,Internet Explorer

accept headers that may indicate a device class,
used in case user agent is unavailable

wml_content=text/vnd.wap.wml, text/vnd.wap.wml-wbxml, text/vnd.wap.wmlscript,
application/vnd.wap.wmlscriptc, application/vnd.wap.wmlc, image/vnd.wap.wbmp

html_content=text/html, text/plain

error files

error404=errorPages/404.jsp.whale
error500=errorPages/500.jsp.whale
errorNoUserAgent=errorPages/noUserAgent.html.jsp

an example of a Whalelnvoker configuration file).
The device class is inserted in front of the final type-
extension (“.jsp” in this case) in order to allow stan-
dard mechanisms within WebSphere AS to handle
the correct fan-out to the execution environment,
in essence by calling the standard WebSphere AS In-
voker from within the WhaleInvoker.

A backtrack mechanism is built into the Whaleln-
voker, which is triggered if the rewritten URL can-
not be located, i.e., if it returns error code 404 in the
status line of the resulting stream. The backtrack
mechanism itself is easily extended; however, in the
current setup the final attempt is being made to the
originally requested URL (in the example above,
“http://pqr/abc.jsp”).

One interesting option of the WhaleInvoker and its
backtrack mechanism is the configuration of hier-
archical classification schemes. The device identifi-
cation is capable of distinguishing among different
vendor and version types of the same base class, e.g.,
between a “Nokia 7110” and an “Ericsson R320”
WAP device. In fact, under certain conditions it is nec-
essary to distinguish and provide alternative JSP re-
sponses for those two devices. Hierarchical device
classification can be provided, identifying the device
as a “wml” device on the top level, a “nokia_wml”
device, or a “nokia_7110_wml” device. Correspond-

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

ingly, the rewriting and backtracking mechanism
rewrites the URLs to: “http://pqr/abc.nokia_7110_
wml.jsp,” “http://pqr/abc.nokia_wml.jsp,” and “http:
//pqr/abc.wml.jsp,” in that order, before resorting to
the original “http://pqr/abc.jsp.” The first URL to hit
a real JSP target is then executed and the result re-
turned to the device. Unfortunately a small perfor-
mance hit is experienced by using the backtracking
mechanism, which, however, is easily reduced by en-
suring that the JSP tree is indeed complete, maybe
simply by providing symbolic links from the originally
unused leaf nodes in the JSP tree to the appropriate
parent nodes.

In summary, the Whalelnvoker provides an appli-
cation-independent framework for selecting the cor-
rect JSP to process a user request. It allows users to
utilize a single URL entry point across a range of de-
vices, and it allows the application providers to dif-
ferentiate to an arbitrary level their responses to
those requests, depending on the device class and
type. Mixed differentiation is also possible: for some
pages strong differentiation may be required, whereas
others are generic enough to be used across a higher-
order class of devices, i.e., “all WML devices.”

MetaBean. The MetaBean is a Whale-unique com-
ponent that provides the desired separation of the
JSP pages from JavaBeans. It essentially operates as

HILD ET AL. 207

a dispatcher of property set and get calls from the
JSP pages to the actual bean instances. The standard
JSP mechanism provides the “use bean” directive,
which couples a JSP to one or more JavaBeans, which
can then be queried by embedding the appropriate
set and get calls to the bean’s properties. This cou-
pling is comparatively tight because it implies that
any change to the beans’ structures also requires
changes to the JSP templates that use those beans.
Whale inserts a “meta-bean” layer between the JSP
pages and the beans in order to alleviate this tight
coupling and allows application providers to main-
tain and upgrade separately either JSP pages or Java-
Beans.

Conceptually the MetaBean is a singular bean that
exhibits the union of all properties exposed by the
set of beans that exist in the logic part of the appli-
cation. MetaBean getProperty and setProperty calls
originating from the JSP pages are redirected to the
appropriate concrete application logic bean. This de-
couples the JSP templates from the beans and im-
proves the level of separation between the two ap-
plication components. Whale has a built-in tool that
automatically generates MetaBeans based on an ab-
stract definition of the properties set and a mapping
from those properties to the concrete beans exhib-
iting those properties. There exists an implementa-
tion of the tool that derives both the set of proper-
ties and the mapping from the beans themselves by
dynamically introspecting each bean class. Every time
a get-Property call is executed against the generated
MetaBean, the appropriate concrete bean that ex-
hibits that property is located in the mapping table;
then the get-Property call is executed against the
bean, and the result is returned to the calling JSP.
This implies that for every property name there is
exactly one concrete bean that is being called to sat-
isfy the “get” requests; it is not uncommon for sev-
eral beans within such a setup to exhibit the same
property. In such situations the tool allows the user
to define the “master” for each property name, i.e.,
to define one particular bean that is responsible for
a specific property. If a null value is returned from
the master bean, the other beans exhibiting that
property name are invoked in an implementation-
specific order until the list is either exhausted (in
which case a null value is passed to the JSP), or a non-
null result value is being received from a concrete
bean. Conversely, by convention, the “set-Proper-
ty” call of a JSP page is passed on to every concrete
bean that exhibits that specific property.

208 HiLD ET AL

The MetaBean approach is particularly effective if
the overall application logic is implemented in a large
set of individual JavaBeans, each of which imple-
ments an essentially “atomic” transaction against the
application’s back-end servers. This allows each call
to start a variable number of such atomic beans and
ensures that the server load is finely tuned to the ac-
tual data requirements of the incoming request.
Larger, more-than-atomic beans are in danger of
generating more data than are actually required for
a particular data request. The exact split of trans-
action functionality between the individual beans is,
of course, a matter that is particular to every data
back-end system. For example, in relational database
systems it is cheaper to retrieve an entire row and
use a caching mechanism within the bean to return
individual columns within that row than to access
those columns individually.

Bean tools. Many aspects of a server application and
back-end integration are actually recurring problems.
As an example, applications frequently need to ac-
cess data that are stored in relational data systems.
Such tasks can be solved by implementing beans that
follow a common implementation model and, as a
result, can to a large extent be generated automat-
ically. Whale incorporates three simple tools that
help application developers in such situations.

BeanBox. The BeanBox is an abstract bean imple-
mentation that holds all data structures associated
with the common JavaBean mode, such as the names
of the individual bean properties and hash tables to
store their concrete values. It is also “self-cloning,”
i.e., it can generate copies of itself on demand, for
example for indexed properties. A master instance
of a set of cloned BeanBoxes (with special index ‘0”)
holds and maintains all references to its clones, and
orchestrates all access to those clones. Abstract
BeanBoxes can be generated automatically using the
BeanTemplateGenerator tool, which generates the
boilerplate Java code and placeholders where the
implementor manually adds the actual data gener-
ation part. BeanBoxes are also the foundation classes
used for the SQLBeanGenerator and the XMLBean-
Generator.

In other words, the BeanBox is a generic data struc-
ture that exhibits the conventional JavaBean API.
Once instantiated with the list of property names,
any property exists an “indefinite” number of times
and can be accessed by accessing indexed methods
on the master instance; the master instance clones
itself if previously nonexistent property instances are

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

being “set.” A new instance inherits the settings of
the older “clones.”

SQLBeanGenerator. Many enterprise data still re-
side in relational databases. Making such databases
accessible from new application domains has been
the subject of many efforts in the academic and in-
dustrial community, a good overview of which is given
in Reference 38.

The SQLBeanGenerator can automatically gener-
ate an accessor bean into an SQL-accessible database
back end by expanding on the BeanBox type. On in-
vocation of the generator, the database’s schema are
explored and a bean attribute is generated for each
row. For each property, a “get” and “set” method
is generated with the following semantics:

On a set-Property call, an SQL selector is narrowed
to include the selected property/value pair. On the
first get-Property call, an SOL select statement is is-
sued to retrieve the data sets that satisfy the con-
ditions issued in the previous “set” calls. Those set
calls are combined to generate the SQL selector state-
ments, which are then executed against the database.
As an example, consider a database dbName and a
set of rows (or properties) property;, property,,
... propertyy and a corresponding set of values (set
using setProperty calls) of value,, value,, . . ., valuey,
then the corresponding SQL statement is:

SELECT * FROM dbName
WHERE property, = value; AND property, = value,
AND . . . AND propertyy = valuey

For every column returned from the database, a new
clone of the present BeanBox instance is generated,
each returned row setting the value of the corre-
sponding property. The requested property is then
returned as the result of the get-Property call. Any
subsequent get-Property request is answered imme-
diately by exploring the set of columns returned as
the result of the previous get-Property call. This re-
sult is invalidated when another set-Property call is
being encountered. It is worth noting here that the
handling of multiple returned columns and rows is
an optimization that takes into account that appli-
cations rarely request a singular row/column value
from a database. There is, hence, a high chance that
subsequent get-Property calls from the JSP template
will access other data values from that data set. A
nonoptimized implementation may execute a slightly

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

different SOL query—namely, if the requested prop-
erty is propertyo:

SELECT property, FROM dbName
WHERE property, = value; AND property, = value,
AND . .. AND propertyy = valuey

Figures 11 and 12 illustrate the operations of the
SQLBeanGenerator and show some sample code
segments as generated by the respective generator.
The output of the SQLBeanGenerator is an imme-
diately usable Java bean, where simple database que-
ries are sufficient. Currently manual modifications
or programming are necessary if the required SQL
query has a different format, for example if the log-
ical connectors between the property/value state-
ments are other than simple ANDs.

XMLBeanBox. Another source of data with grow-
ing popularity are sites that exhibit XML-type con-
tent. Again, the main interest here is in data-cen-
tric XML rather than representational XML instances.
Unlike relational data, which due to their table-like
form are easily converted into a matrix of indexed
bean properties, XML data are hierarchical in nature;
the hierarchy expresses a containment relationship.
On the other hand, for use in JSP pages the beans
better limit their API to return string-typed proper-
ties. This limitation removes the need to “walk” com-
plex data structures from within JSP pages, which it-
self would require considerable “logic” to be
embedded in those JSP pages.

The approach of flattening the hierarchical data has
been driven by the desire to keep the structure of
the JSP pages that use the generated beans simpler.
Therefore the decision was taken to not reflect the
data’s hierarchy also in the beans hierarchy, where
nested XML elements would correspond to Java-
Beans typed properties. Consequently, the hierar-
chically structured data are mapped onto a flat, tuple-
like data model. In addition, this flattening should
be performed automatically, i.e., it should be driven
by the structural definition of the XML data contained
in the DTD associated with the actual data. Especially
in this case the generation of such XML accessing
beans by hand represents a cumbersome, error-prone
and, hence, inefficient method; automatic beans gen-
eration is thus highly desirable.

The method to perform this task is based on the fol-
lowing observations:

HILD ET AL. 209

Figure 11

SQL database access can be accommodated through automatically generated accessor beans. These convert

a relational database table into a bean with the following structure: each column is turned into a bean
property, each row into a separate instance of the same bean which subsequently becomes accessible as

an indexed property.

BEAN
TEMPLATES

|

BEAN GENERATOR

A

META-DATA

BEANBOX

t1:

c c2
0 ri.ct r1.c2
1 r2.cl r2.c2
2 r3.ct r3.c2 }

e The XML data model can be split into “structure”
and “information.” The structure is given by the
nesting of the elements, whereas the information
content is contained in attributes and character
data.

e Itis assumed that a nested element inherits all in-
formation content from its containing element.
This is particularly true for XML DTDs, which im-
plicitly represent a hierarchical data structure. This
observation is used to flatten the XML structure in
establishing a “joint” in the relational calculus
sense between the nesting element and its nested
elements.

* The technique is restricted to XML structures that
do not contain mixed content, i.e., an element ei-
ther contains only character data or only one or
several other elements, but not both PCDATA (pars-
ible character data) and other elements.

* A further restriction consists in disallowing recur-
sion in the element structure. That is, in a given
XML element E there may not exist another ele-
ment from which E can be derived: a flattening on
such recursive structures would be unbounded.

210 HLD ET AL

SQL META-DATA

‘Dﬁ
& >

public class t1 {
void setC1(int counter, String c1);
void setC2(int counter, String c2);
String getC1(int counter);
String getC2(int counter);

A
A

Formally, let a;, a,, . . ., a, be the set of attributes
of an element E, which also contains other elements
Ei, E,, ..., En, each of which contains only charac-
ter data (PCDATA). No beans are generated for E,,
E,, ..., Enx—instead properties with the element
name to represent those elements are created. For
E’s attributes one property per attribute is created.
Thus, the bean corresponding to element E will have
properties a;, @y, . . ., a,, Eq, E,, ..., Ey, all of which
are of Java-type “String.” This algorithm can be ap-
plied recursively down the XML hierarchy.

In the case of there being a child node C of E that
contains only character data, the element names are
concatenated and thus generate a bean called E_C,
which has all the properties of E as well as the prop-
erties derived from XML attributes and PCDATA sub-
elements of C, using the algorithm described above.
Figure 13 illustrates the progression of the flatten-
ing algorithm through an XML tree.

This process is essentially equivalent to performing
a “join” operation in a relational database system.

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

Figure 12

Sample code generated by the SQLBeanGenerator, accessing an SQL-based user database

// This java file was automatically generated by the "SQLBeanGenerator".

// Do not edit manually.
package ...;
import ...;

public class USER extends SQLBeanBox implements java.io.Serializable {
public static String[| atts = { "FIRST_NAME", "LAST_NAME", "TITLE", "MOBILE_PHONE", "STREET", "CITY",

public USER() { addAttribute(this, "USER", atts); }
// for each attribute:

"POSTAL_CODE", "COUNTRY", "PWD", "WAPID", "WEBID" };

public void setFIRST_NAME(String v) { setAttribute{"FIRST_NAME", v}; }

public void setFIRST_NAME(int i, String v) { setAttribute(i, "FIRST_NAME", v); }

public String getFIRST_NAME() throws Exception { return getAttribute("FIRST_NAME"); }

public String getFIRST_NAME(int i) throws Exception { return getAttribute(i, "FIRST_NAME"); }
[.]

// 'getData()" is called by BeanBox as appropriate, passing the gathered selector as an argument
public void getData(String constr) throws IOException, InstantiationException, lllegalAccessException,

// fills in entire population
ResultSet rs = null;

// build constrainer
String constrainer = buildConstrainer();

ClassNotFoundException, SQLException {

// connect to database using driver and access information passed to the SQLBeanGenerator tools at run-time
Class.forName("COM.ibm.db2.jdbc.app.DB2Driver").newinstance();
Connection dbConn = DriverManager.getConnection("jdbc:db2:WAPUDB", "username"”, "password");

if (doConn == null)

throw new IOException("Failure to connect to DB");

Statement stmt = dbConn.createStatement();

rs = stmt.executeQuery("select * from USER" + constrainer);

ResultSetMetaData md = rs.getMetaData();
for (int instanceNr = 0; rs.next(); instanceNr++) {

for (int columnNr = 1; columnNr <= md.getColumnCount(); columnNr++) {

String ¢ = md.getColumnName(columnNr);

String v = rs.getString(c);
setAttribute(instanceNr, ¢, v};

}

dbConn.close();

All descendants of a given XML element inherit the
data properties of the element’s attributes and sub-
elements, i.e., the Cartesian product of the proper-
ties of E and the properties of C is implicitly being
built.

As usual, the properties of the created beans are in-
dexed in order to support repeated occurrences of
identically labeled paths through the XML data hi-
erarchy.

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

The efficiency of this approach is limited by the ne-
cessity to create such “join” operations over the XML
hierarchy, and thus replicate the data unnecessar-
ily. This stands against the main advantage of au-
tomatically deriving a JavaBeans code that is intu-
itively accessed from within the JSP templates without
requiring additional access logic inside the JSP pages,
as would be necessary if the hierarchical XML struc-
ture is represented directly in the form of a hierar-
chical beans structure. Figure 14 illustrates this ad-

HILD ET AL.

211

Figure 13 Outline of the XMLBeanGenerator process while flattening the XML input tree

BEAN o BEAN GENERATOR |
TEMPLATES i h

META-DATA
A

BEANBOX

doci: doc:

XML DATASOURCE DTD

XML SERVER

doci:

elem1 i att1
att2

elem? iatﬂ

elem1 i att1
att2

elem2 att1
: elem3_att1

elem1_att1
elem1_att2
elem2_att1
elem2_elem3_att1

elem3 ~Z
att2

vantage by showing a JSP fragment accessing a
JavaBeans component using the flattening approach
against a potential JSP solution using a hierarchical
bean structure.

A more complete treatment of the XML flattening
algorithm can be found in Reference 39; other de-
scriptions and alternative approaches can be found
in References 40 and 41.

Swissair’s Easy Check-In

A first commercial deployment of the Whale archi-
tecture has recently been put through its paces for
Switzerland’s national airline. There, Whale is used
to host pervasive computing services to Swissair pas-
sengers (see Figure 15). The pervasive device of par-
ticular user interest in this context is of course the
WAP phone, which at the time of the first discussions
between IBM Zurich Research and Swissair was just
a promising technology, but its popularity has since
grown wildly. That is not surprising since cellular tele-
phones are seeing a tremendous market penetration
among the airline’s most valued (business) passen-
gers. For the airlines it is, therefore, an ideal com-
munications channel to their mobile clientele. The

212 HILD ET AL

elem3_att2

elem2_elem3_att2

ability to automatically use this communications
channel to provide update information from their
back-end system and allow passengers direct inter-
actions with those systems is of extremely high in-
terest. On the other hand, the airline industry is in
afortunate position because the vast majority of their
business activities and all of the interactions with
their customers is conducted and recorded on line;
thus, the airlines have gathered tremendous amounts
of customer-related data that are available for data
mining, and subsequently for customizing and per-
sonalizing the pervasive service offerings for each
passenger individually.

Yet the selection of the appropriate services for such
devices is not straightforward. Simply migrating ex-
isting services to WAP is difficult because of the ob-
vious input and output limitations of the receiving
device. Whale’s strength of providing customized,
device-dependent interfaces to existing back-end sys-
tems is showcased in this area. Use cases require that
many application scenarios be modified and updated.
For example, providing ordinary ticket booking ca-
pability via WAP has little justification, because there
exist other communication channels that are much
more adapted to and better suited for this transac-

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

Figure 14 Sample JSP fragment accessing an XML hierarchy through a simple flattened Java bean (top) and a potential
solution using nonflattened bean structures (bottom). Here, it is assumed that a flight-database exists where a
property “ALT” is available to indicate the number of available flight segments. Clearly seen is the need to include
programming elements and detailed knowledge of the underlying bean data structure.

<repeat index=i>

Anliernative: <%= i %>
<% FLIGHT.setALT(i); %>
<repeat index=j>

From: <%= FLIGHT_SEGMENT.getFROM(j) %>

To: <%= FLIGHT_SEGMENT.getTO(j) %>

</repeat>

]

</repeat

<repeat index=i>

[
<% SEGMENT seg = FLIGHT.getSEGMENT(i); %>

<repeat index=j>
From:
<insert bean=seg property=FROM(j)>
</insert>
To:
<insert bean=seg property=TO(j)>
</insert>

</repeat>

</repeat>

tion—in particular the airline’s call centers, travel
agents, or the Web channel. The application service
provider must therefore define an appropriate ser-
vice that makes the best use of the device charac-
teristics as well as the usage paradigms of the in-
tended end-user device, and define the correct
integration scenario for that service into the exist-
ing offerings that utilize other communication chan-
nels. Here, Whale’s ability to integrate different chan-
nels against a variety of back-end systems is of
interest.

The application selected by the customer is a
check-in service. The check-in transaction, usually
executed by the traveler on arrival at an airport,
serves two primary purposes: it registers the traveler
with a particular outgoing flight and assigns a seat
number. A boarding pass is issued to the traveler.
It also flags the passenger’s entry in the airline’s res-
ervation system and feeds that information further
to the airline’s revenue and availability applications.
Enabling passengers to execute this transaction
through the WAP phone has a positive impact on the

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

passenger as well as the airline: once the passenger
has checked in, the airline can use the WAP channel
to continuously update the flight status. If the flight
is delayed, the user is informed immediately. The
passenger is also informed if his or her check-in sta-
tus changes (for example if a standby passenger is
granted a seat). Having such up-to-date information
and needing no manual check-in at the airport (which
could involve queuing at the counter and therefore
an unpredictable holdup) enables the passenger to
better schedule a trip to the airport and limits wait-
ing time once in the terminal. For the airline, hav-
ing passengers checking in early allows better capac-
ity and availability planning for the outgoing aircraft
and, as a secondary step, reduces the burden on the
airline staff in the terminal. In addition, check-in is
a transaction that can be executed with minimal in-
put and is thus a good fit for the device capabilities.

The WAP-based check-in solution interacts with a re-
lated project, called FastTrack, involving Swissair,
IBM, and other partners. FastTrack is based on so-
called radio-frequency-tagged cards (RF cards) that

HILD ET AL. 213

Figure 15 The IBM/Swissair WAP services home page,
allowing passengers to check in to Swissair
flights, accessed from a Nokia 7110 WAP device

are used in Swissair’s frequent-flyer customer loy-
alty program. In addition to the conventional mag-
netic stripe, all cards issued by Swissair to its pas-
sengers are also equipped with a passive radio
transmitter that, once carried through a magnetic
field of specified strength and frequency, emits a ra-
dio signal that can be encoded with the owner’s fre-
quent flyer number. If the passenger agrees, the num-
ber is encoded on the card and the passenger’s
movements within the terminal are traced through
corresponding receiver gates that are located at stra-
tegic locations in the building. The FastTrack infra-
structure itself is interesting and provides the basis
for a number of services for the airline and the pas-
senger. For brevity this paper is only concerned with
its role as a complement to the WAP-based and
Whale-hosted check-in service.

The usage model for the WAP-based check-in is sim-
ple (see Figure 16): Using the mobile phone, the user
selects the WAP service, which immediately estab-
lishes a connection to Whale and the Swissair back
end. The user isidentified and greeted; a list of avail-

214 HILD ET AL

able flights is presented. This list will of course con-
tain the flights for which the passenger has a book-
ing, but may also contain alternative flights to which
the passenger is free to check in. High-fare passen-
gers are usually allowed to check in to alternative
flights at will, and they may do so because they are
early for their booked flight and have a valid earlier
flight at their disposal. Upon selection of the desired
flight, the check-in is executed and an “electronic
boarding pass” is generated and rendered to the user
device. All further steps such as passport control and
boarding are controlled using the FastTrack system.
If any of the boarding pass information changes, an
appropriate update message is transmitted and dis-
played to the user. The entire check-in process itself
can be triggered either by the user, or on arrival of
the passenger at the airport if the network operator
has the technical capability to provide such infor-
mation and suitable agreements exist among the user,
the network operator, and the application service
provider (i.e., Swissair in this case). In addition, the
currently operational setup also generates a reminder
message for the passenger two hours prior to depar-
ture of a booked flight.

Implementing this seemingly simple application re-
veals some lesser-known areas of issues and concerns
with such pervasive computing applications. From
a business process engineering point of view, imple-
menting such applications is nothing short of a “pal-
ace revolution.” The business processes in place at
the airport have remained essentially unchanged
since the early 1970s. This has had an effect on the
IT back-end systems that supported those processes
inasmuch as they have, over the years, been opti-
mized and continuously streamlined to support ex-
actly those processes. In the case of a check-in, the
existing process involves a check-in staff member who
enters the passenger’s booking data from the paper
ticket, verifies these data against the data stored in
the airline’s reservation system, and finally executes
the check-in transaction on the airline’s departure
control system (DCS). The DCS is preloaded nightly
with the details of all departing passengers and flights
for the next 24 hours through what is essentially a
replication process of the reservation system. Both
the DCS and the reservation system are, however, in-
dexed exclusively by flight numbers, not passenger
names. Hence, it is not possible to generate the list
of booked flights for a given passenger name or pas-
senger frequent flyer number. Easy Check-In must
rely on yet another intermediate database, which is
continuously replicated out of the DCS or the res-

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

Figure 16 The Swissair Easy Check-In process

swissairgy
Easy Process
Check-In
Yourflight SR5112 | swissairgy) Easy Check-In e ~
is leaving at 0905.)) i
T chiek goto Easy Services View Boarding Passes Hello Mr. Demonstration.
Easy Checkdn in Help You have 1 Booking.
"Services." To check in, select:
Options Options 1. SR 5112, Jun 08,
departing at 0905 to
Turin
\Options Back /
/Your check-in request has\

Your flight SR 5112
is now leaving at
0935. We apologize
for the delay.

Options Back

ervation system and generates an additional index
on the booking information using the frequent flyer
identifier (ID). Integrating alternative flight offerings
requires the integration of additional back-end sys-
tems. Pervasive computing initiatives in other indus-
tries will probably face similar challenges, namely the
need to change business processes that have left their
footprint throughout the IT infrastructure.

In addition to the actual application and the deliv-
ery path associated with it, a further element that
had to be put in place as part of this service offering
is the capability to subscribe users, manage their per-
sonal data, and configure their user devices accord-
ingly. These functions have been implemented and
are hosted as additional applications on Whale. They
are accessible through an HTML interface and are
thus easily integrated into Swissair’s existing call cen-
ter IT infrastructure. Using the interfaces provided,

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

been submitted. Please
verify the status of your
flight in the "View Boarding
Passes" menu.

Flight: SR 5112
To: Turin | |
Date: Jun 08 Options Back
Departure Time: 0905 \ /
Gate: A1

Seat number: 17A

Status: Checked-in

Options Back

the Swissair call center staff can access a simple Web
page and enter the personal details of a new sub-
scriber. On the press of a button, the back-end in-
frastructure is updated and a personalized config-
uration set is generated and transmitted to the user
device. Within less than 30 seconds, the configura-
tion set is delivered by SMS (short messages system)
and installed automatically on the user’s device, and
the user is ready to access the service. The complete
architecture of the solution put in place for Swissair
can be seen in Figure 17.

Swissair’s Easy Check-In went on line on December
16, 1999. Swissair issued an initial batch of 150
WAP-capable telephones to selected frequent flyers.
The user group remained constant at this level for
roughly the first three months of operation. During
this time, valuable usage statistics (see Figure 18)

HILD ET AL. 215

Figure 17 IBM/Swissair Easy Check-In service architecture, showing the complex Swissair database system on the right:
the Airport Information Management System (AIMS) stores gate information, the Departure Control System (DCS)
processes the actual check-in, the Reservation System (PARS) gathers booking information, and the Tracking
Server (TSRV) tracks passengers within the airport. Also shown are the data delivery channels for the application
itself (via Application Server, WAP gateway, and RAS), as well as the SMS-based push channel (via Application
Server, RAS, and SMSC), and the provisioning circuits for subscriber and device management (via Configuration
Server and Push Proxy gateway). Both the application server and the configuration server are based on the

Whale architecture.

CONSOLE
ADMINISTRATION
USER SELF-CARE

[\
D
PUSH CONFIGURATION ISDN RAS AIMS
PROXY == SERVER TA -
G/W (-
DCS
FT
DB -
I SMSC | | RAS
L PARS
— APPLICATION ISDN RAS >
= L SERVER TA -
EEE TSRV
[o
m s RAS WAP
[- G/W

have been gathered, which will help predict the re-
sources required for larger roll-outs.

Conclusions

Whale, a Web application server architecture devel-
oped at the 1BM Zurich Research Laboratory and
deployed at present in a high-profile customer en-
gagement, provides a framework for application ser-
vice programmers and providers that enforces a clean
separation between the application logic and the
markup generation. This is necessary because of the
growing variety of end-user devices that require de-
vice-specific content due to different markup lan-
guages, a diverging set of device features that need
to be integrated into the application, and a different
usage and interaction model. By separating the logic
components of an application from the front end in
a thorough manner, additional devices can be added
easily by supplying an additional set of markup gen-
eration components, without requiring modification

216 HLD ET AL

to other parts of the application. Conversely, migrat-
ing an existing application to a modified back-end
system with the same functional characteristics only
affects the logic components and does not require
changes to the markup generation. This requires that
the transactions and services provided by the back-
end system be completely and cleanly exhibited in
the form of beans within the application logic com-
ponents of the entire application, and that this set
of beans be as fine in granularity as possible.

There is very little need to use existing Web back
ends, in particular HTML, for data sources. Typically,
service provisioning happens by or in collaboration
with the owner of the content, and more suitable ac-
cess mechanisms to the content source are usually
available. Whale has tool support to generate beans
automatically for a number of standard application
scenarios, and tools to automatically generate the
bridge between these application components and

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

Figure 18 Preliminary usage statistics for the Swissair Easy Check-In after 100 days of continuous service. Taking into
account the nature of the application and the limited number of end-user devices, the number of executed
check-in transactions is unexpectedly high and reflects the great interest in this service. This is further evident
in the comparatively stable usage exhibited in these statistics.

DEDICATED CLIENT BASE 1000
OF APPROXIMATELY —
150 PHONES 9001
oo [] Requess PER weEK
USAGE: 800
* PAGES VIEWED: 7,741 il
o AVERAGE PAGES/DAY: 66
» DATA TRANSFER: 10.5 MB ool
¢ AVERAGE DATA/DAY: 92.0 KB] []
* CHECK-INS: 363 so0d H M
e FLIGHT STATUS REQUESTS: 1,575]
4007 H H
301 H H M M
201 H H H H
1000 H H H M
0
S 2 g 2 e g g e © gy L s 2 g o
°c 9 9 % %2zzzB8pgpgfzczgd
=) Qo =) = - %(%(g:) [[T - = s s s <

the set of JSP templates that represent the user in-
terface to those application logic components.

Support for additional devices requires an additional
ISP template, which can be authored using one of
the growing set of WYSIWYG JSP authoring tools.
Many application service providers believe that the
above requirement is not prohibitive: Given the ex-
tremely limited user interface “real estate” of many
pervasive computing devices, it is instrumental for
the application service providers to exactly and tightly
control the look-and-feel of every single application
element. In particular, a semiautomatic translation
even of image data (e.g., the application service pro-
vider’s company logo) had to be dropped in favor
of custom-designed versions for various receiving de-
vices. Controlling the corporate identity and its rep-
resentation on the customer devices here seems to
rank above ease and speed of implementation.

Acknowledgments

Thanks are due to our colleagues at IBM Zurich Re-
search, especially Francois Dolivo and Philippe Jan-
son, to the anonymous reviewers, to the editorial staff

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

of the IBM Systems Journal for their help in improv-
ing the final version of this paper, and to Swissair
for giving us the opportunity to apply our technol-
ogy in a real-world setting.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.,
Palm, Inc., or Object Management Group.

Cited references

1. D. Raggett, A. Le Hors, and I. Jacobs, “HTML 4.01 Spec-
ification,” W3C (December 1999), http://www.w3.org/TR/
REC-html40/.

2. ISO 8879:1986. Information Processing—Text and Office Sys-
tems—Standard Generalized Markup Language (SGML), In-
ternational Organization for Standardization, Geneva/New
York (1986).

3. W3C, “Voice Browser,” http://www.w3.org/Voice.

4. M. Campione and K. Walrath, The Java Tutorial—Program-
ming for the Internet, Second Edition, Addison-Wesley Pub-
lishing Co., Reading, MA (1999).

5. J. Postel, Transmission Control Protocol, RFC 793, IETF Net-
work Working Group (September 1981), http://www.ietf.org/
rfc/rfc0793.txt.

6. WAP Forum, “WAP Forum Specifications,” http://www.
wapforum.org/what/technical.htm.

HILD ET AL.

217

7. R.Braden, “T/TCP—TCP Extensions for Transactions,” RFC
1644, IETF Network Working Group (July 1994), http://www.
ietf.org/rfc/rfc1644.txt.

8. NTT DoCoMo, “What Is i-mode?” http://www.nttdocomo.
com/i/index.html.

9. T. Kamada, “Compact HTML for Small Information Appli-
ances,” W3C (February 1998), http://www.w3.org/TR/1998/
NOTE-compactHTML-19980209.

10. WAP Forum, “Wireless Application Protocol: Wireless
Markup Language Specification” (August 1999), http://www.
wapforum.org.

11. T. Bray, J. Paoli, and C. M. Sperberg-McQueen, “Extensible
Markup Language (XML) 1.0,” W3C (February 1998),
http://www.w3.0rg/TR/1998/REC-xml-19980210.

12. T. Berners-Lee, R. Fielding, and H. Frystyk, “Hypertext
Transfer Protocol—HTTP/1.0,” RFC 1945, IETF Network
Working Group (May 1996), http://www.ietf.org/rfc/rfc1945.txt.

13. WAP Forum, “Wireless Application Protocol: Wireless Ses-
sion Protocol Specification” (August 1999), http://www.
wapforum.org.

14. L. Gilman and R. Schreiber, Distributed Computing with IBM
MQSeries, John Wiley & Sons, Inc. (October 1996).

15. M. Debusmann, R. Kruger, and C. Weyer, “Towards an Au-
tomated Management of Distributed Applications,” Proceed-
ings of the IFIP International Working Conference on Distrib-
uted Applications and Interoperability Systems (DAIS97),
Cottbus, Germany (October 1997).

16. Sun Microsystems, “RMI—Remote Method Invocation,”
http://java.sun.com/products/jdk/1.1/docs/guide.rmi.

17. J. D. Davidson and S. Ahmed, “Java Servlet API Specifica-
tion,” Sun Microsystems (November 1998) http://www.javasoft.
com/products/servlet/index.html.

18. S.Mazzochi, “The Java Apache Project Information System”
(December 1998), http://java.apache.org.

19. IBM, “WebSphere Application Server,” http://www-4.
ibm.com/software/webservers/appserv.

20. C.J.Date and H. Darwen, A Guide to the SQL Standard, Third
Edition, Addison-Wesley Publishing Co., Reading, MA
(1993).

21. V. Apparao et al., “Document Object Model (DOM), Level
1 Specification,” W3C (October 1998), http://www.w3c.
org/TR/1998/REC-DOM-Level-1-19981001.

22. S. Hild, “Service Provisioning for the Wireless Application
Protocol,” Technical Report RZ3130, IBM Zurich Research
Laboratory (March 1999).

23. Travelocity Travel Service home page, http://www.
travelocity.com.

24. The Internet Engineering Task Force, http://www.ietf.org.

25. The World Wide Web Consortium (W3C), http://www.w3.org.

26. World Wide Web Consortium (W3C), “Extensible Stylesheet
Language (XSL),” http://www.w3.org/Style/XSL.

27. J. Clark, “XSL Transformations (XSLT),” W3C (November
1999), http://www.w3.org/TR/xslt.

28. E. Pelegri-Llopart, L. Cable, and S. Ahmed, “JavaServer
Pages Specification,” Sun Microsystems (November 1999),
http://www.javasoft.com/products/jsp/download.html.

29. Sun Microsystems, “JavaBeans” (July 1997), http://www.
javasoft.com/beans/doc/spec.html.

30. D.Pozefsky, R. Turner, A. K. Edwards, S. Sarkar, J. Mathew,
G. Bollella, K. Tracey, D. Poirier, J. Fetvedt, W. S. Hobgood,
W. A. Doeringer, and D. Dykeman, “Multiprotocol Trans-
port Networking: Eliminating Application Dependencies on
Communications Protocols,” IBM Systems Journal 34, No. 3,
472-500 (1995).

31. C.Rigney, A. Rubens, W. Simpson, and S. Willens, “Remote

218 Hio ET AL

Authentication Dial-In User Services (RADIUS),” RFC
2138, IETF Network Working Group (April 1997), http:/
www.ietf.org/rfc/rfc2138.txt.

32. Kocher et al., “The SSL Protocol Version 3.0,” Internet Draft,
Internet Engineering Task Force (November 1996).

33. P.-C. Cheng, J. A. Garay, A. Herzberg, and H. Krawczyk, “A
Security Architecture for the Internet Protocol,” IBM Sys-
tems Journal 37, No. 1, 42—-60 (1998).

34. R. Leins et al., “Tivoli Storage Manager Version 3.7: Tech-
nical Guide,” IBM Redbooks, SG24-5477-00, IBM Corpo-
ration (December 1999).

35. R. Franklin, J. Hjelm, S. Dawkins, and S. Singhal, “Compos-
ite Capability/Preference Profile (CC/PP): A User Side
Framework for Content Negotiation,” W3C (July 1999),
http://www.w3.0rg/TR/NOTE-CCPP.

36. WAP Forum, “WAP User Agent Profiling Specification” (Au-
gust 1999), http://www.wapforum.org.

37. D. Brickley and R. V. Guha, “Resource Description Frame-
work (RDF) Schema Specification 1.0,” W3C (March 2000),
http://www.w3.0rg/TR/2000/CR-rdf-schema-20000327.

38. J. M. Cheng, N. M. Mattos, D. D. Chamberlin, and L. G.
DeMichiel, “Extending Relational Database Technology for
New Applications,” IBM Systems Journal 33, No. 2, 264-279
(1994).

39. C. Binding, D. Bourges-Waldegg, and S. Hild, “Generation
of XML Data Accessing Java Beans,” Proceedings of the First
International Conference on Web Information System Engineer-
ing, Hong Kong (June 2000).

40. D.Bourges-Waldegg, C. Binding, and S. Hild, “Bringing Leg-
acy Data to Pervasive Devices,” IBM Pervasive Computing
Conference, Singapore (November 1999).

41. M. Reinhold, “An XML Data-Binding Facility for the Java
Platform,” Sun Microsystems (July 1999), http://java.sun.com/
xml/white-papers.html.

Accepted for publication September 10, 2000.

Stefan G. Hild IBM Research Division, Zurich Research Labo-
ratory, Sdaumerstrasse 4, 8803 Riischlikon, Switzerland (electronic
mail: sgh@zurich.ibm.com). Dr. Hild is a research staff member
in the Mobile Internet research group of the IBM Zurich Re-
search Laboratory. He holds doctorate and undergraduate de-
grees in computer science from the University of Cambridge, En-
gland, and the University of London, respectively. Before he
joined the IBM Research Division in 1997 he held positions at
the IBM Scientific Center, Heidelberg, Germany, and at the IBM
Hursley Development Laboratory, England.

Carl Binding IBM Research Division, Zurich Research Labora-
tory, Saumerstrasse 4, 8803 Riischlikon, Switzerland (electronic mail:
cbd@zurich.ibm.com). Dr. Binding is a research staff member in
the Mobile Internet research group of the IBM Zurich Research
Laboratory. He holds a doctorate in computer science from the
University of Washington, Seattle, and a diploma of electrical en-
gineering from the Eidgendssische Technische Hochschule in Zur-
ich, Switzerland. He previously held positions with Olivetti Re-
search Center and Union Bank of Switzerland.

Daniela Bourges-Waldegg IBM Research Division, Zurich Re-
search Laboratory, Sidumerstrasse 4, 8803 Riischlikon, Switzerland
(electronic mail: dbw@zurich.ibm.com). Dr. Bourges-Waldegg has
been a research staff member in the Mobile Internet group of the
IBM Zurich Research Laboratory since January 1999. She holds
Ph.D. and M.S. degrees in computer science from Université de

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

Rennes 1, France, and a B.S. degree in electrical engineering from
the Metropolitan Autonomous University of Mexico City.

Céline Steenkeste IBM Global Services, EMEA, WEST, BIS,
Telecommunication Sector Immeuble Zeus, Bercy 40, Avenue des
Terroirs de France, 75611 Paris 12, France (electronic mail:
csteenkeste@fr.ibm.com). Ms. Steenkeste is an I'T professional in
the Business Innovation Services branch of IBM Global Services
in France. She holds an engineering diploma from Telecom INT
(Institut National des Telecommunications, Evry, France) and a
certification in communication systems and multimedia commu-
nications from the Eurecom Institute (Sophia Antipolis, France).
She completed her professional thesis requirements at the IBM
Zurich Research Laboratory during the spring semester, 2000.

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

HILD ET AL. 219

